1
|
Agarwal N, Jha AK. DNA hypermethylation of tumor suppressor genes among oral squamous cell carcinoma patients: a prominent diagnostic biomarker. Mol Biol Rep 2024; 52:44. [PMID: 39644423 DOI: 10.1007/s11033-024-10144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Oral Squamous Cell Carcinoma is a globally revealing form of oral malignancy. Epigenetics, which studies genetic modifications in gene expression without altering the sequence of DNA, is crucial for understanding OSCC. Key epigenetic modifications such as histone modifications, DNA methylation, and microRNA regulation play significant roles in Oral carcinoma. Aberrant methylation of DNA of tumor suppressor genes which leads to their inactivation, promoting cancer development, and specific methylation patterns are emerging as biomarkers for early OSCC detection.Current treatments like surgery, radiotherapy, and chemotherapy often fall short, prompting research into epigenetic therapies. Agents like DNMT and HDAC inhibitors demonstrate the potential for reversing aberrant epigenetic patterns, perhaps reactivating silenced TSGs, and suppressing oncogenes. Despite early promise, the development of effective combination medicines and the identification of reliable biomarkers continue to present challenges.In OSCC, resistance to therapy is also influenced by epigenetic processes. Aberrant DNA methylation and changes in histone modifications impact genes involved in medication metabolism and the survival of cells. Enhancing treatment efficacy and overcoming medication resistance may be possible by recognizing and focusing on these processes. This review explores the interplay between epigenetic changes and OSCC, their role in the disease's initiation and progression, and their impact on diagnosis and treatment. It also discusses the potential of epigenetic drugs (epi-drugs) to improve diagnostic precision and treatment outcomes.
Collapse
Affiliation(s)
- Nistha Agarwal
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology, Galgotias University, Greater Noida, India.
| |
Collapse
|
2
|
Gabusi A, Gissi DB, Querzoli G, Sangiovanni A, Rossi R, Lucchi E, Tarsitano A, Montebugnoli L, Foschini MP, Morandi L. DNA methylation analysis from oral brushing reveals a field cancerization effect in proliferative verrucous leukoplakia. Pathologica 2024; 116:368-378. [PMID: 39748722 DOI: 10.32074/1591-951x-n838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives The aim of the present study was to analyze the methylation status in patients who presented with an Oral Squamous Cell Carcinoma (OSCC) concomitantly with multifocal Proliferative Verrucous Leukoplakia (PVL)(PVL-OSCC). Methods Nine patients with OSCC and concomitant PVL lesions were selected. Two brushing samples were collected simultaneously from OSCC and PVL lesions in contralateral mucosa from each patient. 15 genes (272 CpGs) were used to compare methylation profiles of PVL-OSCC and paired OSCC. CpGs with a methylation level superimposable between PVL-OSCC and contralateral OSCC were selected for a comparative analysis between PVL-OSCC, 8 PVL patients with no history of OSCC (PVL) and 23 healthy donors. Samples were also tested using an algorithm that was recently validated for epigenetic alterations in OSCC. Results 220/272 CpGs islands (80%) showed a superimposable methylation level in OSCC and in PVL-OSCC. 10 genes (88 CpGs) and in particular PARP15 and ITGA4 (100% of the studied CpGs) were able to stratify PVL-OSCC from PVL and healthy donors. 3/4 (75%) PVL-OSCC patients with a "positive" algorithm score developed second neoplastic events compared to only 1/5 (20%) patients with a "negative" score. Conclusions The present study provides evidence that PVL shares an aberrant methylation profile with contralateral OSCC. In agreement with the theory of field cancerization, our data point towards the potential role of epigenetics in patients at risk of developing multiple neoplastic events.
Collapse
Affiliation(s)
- Andrea Gabusi
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Davide Bartolomeo Gissi
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Giulia Querzoli
- Section of Anatomic Pathology S. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Asia Sangiovanni
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Roberto Rossi
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Lucchi
- Oral and Maxillofacial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Achille Tarsitano
- Oral and Maxillofacial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Section of Maxillo-facial Surgery at Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Lucio Montebugnoli
- Department of Biomedical and Neuromotor Sciences, Section of Oral Sciences, University of Bologna, Bologna, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Liu H, Ma L, Cao Z. DNA methylation and its potential roles in common oral diseases. Life Sci 2024; 351:122795. [PMID: 38852793 DOI: 10.1016/j.lfs.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Oral diseases are among the most common diseases worldwide and are associated with systemic illnesses, and the rising occurrence of oral diseases significantly impacts the quality of life for many individuals. It is crucial to detect and treat these conditions early to prevent them from advancing. DNA methylation is a fundamental epigenetic process that contributes to a variety of diseases including various oral diseases. Taking advantage of its reversibility, DNA methylation becomes a viable therapeutic target by regulating various cellular processes. Understanding the potential role of this DNA alteration in oral diseases can provide significant advances and more opportunities for diagnosis and therapy. This article will review the biology of DNA methylation, and then mainly discuss the key findings on DNA methylation in oral cancer, periodontitis, endodontic disease, oral mucosal disease, and clefts of the lip and/or palate in the background of studies on global DNA methylation and gene-specific DNA methylation.
Collapse
Affiliation(s)
- Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Rapado-González Ó, Salta S, López-López R, Henrique R, Suárez-Cunqueiro MM, Jerónimo C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: a systematic review. Clin Epigenetics 2024; 16:105. [PMID: 39138540 PMCID: PMC11323632 DOI: 10.1186/s13148-024-01716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
More than 50% of oral cancer (OC) patients are diagnosed with advanced-stage disease associated with poor prognosis and quality of life, supporting an urgent need to improve early OC detection. The identification of effective molecular markers by minimally invasive approaches has emerged as a promising strategy for OC screening. This systematic review summarizes and evaluates the performance of the DNA methylation markers identified in non- or minimally invasive samples for OC detection. PubMed's MEDLINE, Scopus, Embase, and Cochrane Library databases were systematically searched for studies that evaluated DNA methylation markers in non-invasive and/or minimally invasive samples (oral rinse/saliva, oral brush, and blood) from OC patients. Two investigators independently extracted data on study population characteristics, candidate methylation markers, testing samples, DNA methylation assay, and performance diagnostic outcomes. Methodological study quality was assessed with the Quality Assessment for Studies of Diagnostic Accuracy-2 tool. Thirty-one studies met the inclusion criteria for this systematic review. DNA methylation markers were evaluated in oral rinse/saliva (n = 17), oral brush (n = 9), and blood (n = 7) samples. Methylation-specific PCR (MSP) and quantitative-MSP were the most common DNA methylation assays. Regarding diagnostic performance values for salivary, oral brush, and blood DNA methylation markers, sensitivity and specificity ranged between 3.4-100% and 21-100%, 9-100% and 26.8-100%, 22-70% and 45.45-100%, respectively. Different gene methylation panels showed good diagnostic performance for OC detection. This systematic review discloses the promising value of testing DNA methylation markers in non-invasive (saliva or oral rinse) or minimally invasive (oral brush or blood) samples as a novel strategy for OC detection. However, further validation in large, multicenter, and prospective study cohorts must be carried out to confirm the clinical value of specific DNA methylation markers in this setting.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706, Santiago de Compostela, Spain
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center - Raquel Seruca (Porto.CCC) & CI-IPOP@RISE (Health Research Network), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Shalaby R, Ibrahim S, Kotb AAW, Baz S, Hafed L, Shaker O, Afifi S. MALAT1 as a potential salivary biomarker in oral squamous cell carcinoma through targeting miRNA-124. Oral Dis 2024; 30:2075-2083. [PMID: 37703315 DOI: 10.1111/odi.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES To determine the diagnostic accuracy of the long non-coding RNA "MALAT1" measured in the saliva of patients with oral squamous cell carcinoma (OSCC) and assess the salivary expression of microRNA-124, which MALAT1 targets. SUBJECTS AND METHODS Forty subjects were collected in a consecutive pattern and allocated into two groups. Group A included 20 patients with OSCC, while Group B included 20 healthy subjects. Salivary expression of MALAT1 and microRNA (miRNA)-124 was evaluated in the two study groups using quantitative real-time polymerase chain reaction and correlated with histopathological examination of OSCC subjects. RESULTS OSCC yielded a statistically significant higher expression of MALAT1 than healthy controls and a lower expression of miRNA-124 in OSCC than controls. There is a statistically significant inverse relationship between salivary MALAT1 and miRNA-124. Moreover, there is a statistically significant difference in the MALAT1 expression in saliva samples from metastatic cases compared with non-metastatic cases, as well as in patients with lymph node involvement compared with those without involvement. At a cut-off value of 2.24, salivary MALAT1 exhibited 95% sensitivity and 90% specificity in differentiating OSCC from healthy subjects. CONCLUSION Salivary MALAT1 acts as a sponge for miRNA-124 and could be a potential salivary biomarker for OSCC.
Collapse
Affiliation(s)
- Rania Shalaby
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Sally Ibrahim
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| | - Ali A W Kotb
- Oral and Maxillofacial Pathology, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Safaa Baz
- Oral Pathology, Faculty of Dentistry, The British University in Egypt, El Shorouk City, Egypt
| | - Layla Hafed
- Oral and Maxillofacial Pathology, Al-Mamoon Diagnostic Medical Center, Sana'a, Yemen
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Salsabeel Afifi
- Oral Medicine, Oral Diagnosis and Periodontology, Faculty of Dentistry, Fayoum University, Fayoum, Egypt
| |
Collapse
|
6
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
7
|
Arfin S, Kumar D, Lomagno A, Mauri PL, Di Silvestre D. Differentially Expressed Genes, miRNAs and Network Models: A Strategy to Shed Light on Molecular Interactions Driving HNSCC Tumorigenesis. Cancers (Basel) 2023; 15:4420. [PMID: 37686696 PMCID: PMC10563081 DOI: 10.3390/cancers15174420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer worldwide, accounting for hundreds thousands deaths annually. Unfortunately, most patients are diagnosed in an advanced stage and only a percentage respond favorably to therapies. To help fill this gap, we hereby propose a retrospective in silico study to shed light on gene-miRNA interactions driving the development of HNSCC. Moreover, to identify topological biomarkers as a source for designing new drugs. To achieve this, gene and miRNA profiles from patients and controls are holistically reevaluated using protein-protein interaction (PPI) and bipartite miRNA-target networks. Cytoskeletal remodeling, extracellular matrix (ECM), immune system, proteolysis, and energy metabolism have emerged as major functional modules involved in the pathogenesis of HNSCC. Of note, the landscape of our findings depicts a concerted molecular action in activating genes promoting cell cycle and proliferation, and inactivating those suppressive. In this scenario, genes, including VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miRNAs, including mir-6728 and mir-99a, emerge as key players in the molecular interactions driving HNSCC tumorigenesis. Despite the heterogeneity characterizing these HNSCC subtypes, and the limitations of a study pointing to relationships that could be context dependent, the overlap with previously published studies is encouraging. Hence, it supports further investigation for key molecules, both those already and not correlated to HNSCC.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Dhruv Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Andrea Lomagno
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
- IRCCS Foundation, Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Pietro Luigi Mauri
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| |
Collapse
|
8
|
Aghiorghiesei O, Irimie AI, Braicu C, Raduly L, Nutu A, Balint E, Mehterov N, Vladimirov B, Sarafian V, Lucaciu O, Campian R, Berindan-Neagoe I. Epigenetic methylation changes: implication as biomarkers in oral and maxillofacial area cancers. Med Pharm Rep 2023; 96:310-317. [PMID: 37577021 PMCID: PMC10419680 DOI: 10.15386/mpr-2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 08/15/2023] Open
Abstract
Background/Aim Squamous cell carcinoma (SCC) is the most frequent cancer of the head and neck area in the oral cavity. Epigenetic alterations in oral and maxillofacial area cancers are urgently needed to be investigated, as the observed changes might have crucial diagnostic value for personalized medicine. Methods Our study aimed to identify the most frequently hypermethylated tumor suppressor gene promoters in OSCC, followed by correlation analysis with the patients' survival. We evaluated the methylation status of the promoters in a panel of 22 tumor suppressor genes in Romanian (n=9) and Bulgarian (n=12) patient groups suffering from oral and maxillofacial area cancers. The extracted DNA was further digested through EpiTect Methyl II PCR Array System containing methylation-sensitive and methylation-dependent restriction enzymes, followed by specific amplification of the products obtained by qPCR and data analysis using the online platform provided by the producer. Results Different methylation patterns were observed in the tumor suppressor genes' promoters. Among them, the methylation profile of Cccnd2, Chd1, Cdh13, Cdkn1c, Neurog1, Gstp1, and Runx3 genes further correlated with overall survival rates. Conclusions Our data emphasize that epigenetic alterations are responsible for the clinical heterogeneity of oral and maxillofacial area cancers and significantly impact on patient survival. Additional investigation on a larger patient cohort should validate these potential biomarkers.
Collapse
Affiliation(s)
- Ovidiu Aghiorghiesei
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Emilia Balint
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Maxillofacial Surgery, University Hospital St. George, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Ondine Lucaciu
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Campian
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Isola G, Santonocito S, Lupi SM, Polizzi A, Sclafani R, Patini R, Marchetti E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediators Inflamm 2023; 2023:9720947. [PMID: 37214190 PMCID: PMC10199803 DOI: 10.1155/2023/9720947] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/04/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
During recent years, considerable progress has been made in understanding the etiopathogenesis of periodontitis in its various forms and their interactions with the host. Furthermore, a number of reports have highlighted the importance of oral health and disease in systemic conditions, especially cardiovascular diseases and diabetes. In this regard, research has attempted to explain the role of periodontitis in promoting alteration in distant sites and organs. Recently, DNA sequencing studies have revealed how oral infections can occur in distant sites such as the colon, reproductive tissues, metabolic diseases, and atheromas. The objective of this review is to describe and update the emerging evidence and knowledge regarding the association between periodontitis and systemic disease and to analyse the evidence that has reported periodontitis as a risk factor for the development of various forms of systemic diseases in order to provide a better understanding of the possible shared etiopathogenetic pathways between periodontitis and the different forms of systemic diseases.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
10
|
Wang HC, Moi SH, Chan LP, Wu CC, Du JS, Liu PL, Chou MC, Wu CW, Huang CJ, Hsiao HH, Pan MR, Chen LT. The role of the genomic mutation signature and tumor mutation burden on relapse risk prediction in head and neck squamous cell carcinoma after concurrent chemoradiotherapy. Exp Mol Med 2023:10.1038/s12276-023-00984-4. [PMID: 37121970 DOI: 10.1038/s12276-023-00984-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Personalized genetic profiling has focused on improving treatment efficacy and predicting risk stratification by identifying mutated genes and selecting targeted agents according to genetic testing. Therefore, we evaluated the role of genetic profiling and tumor mutation burden (TMB) using next-generation sequencing in patients with head and neck squamous cell carcinoma (HNSC). The relapse mutation signature (RMS) and chromatin remodeling mutation signature (CRMS) were explored to predict the risk of relapse in patients with HNSC treated with concurrent chemoradiotherapy (CCRT) with platinum-based chemotherapy. Patients in the high RMS and CRMS groups showed significantly shorter relapse-free survival than those in the low RMS and CRMS groups, respectively (p < 0.001 and p = 0.006). Multivariate Cox regression analysis showed that extranodal extension, CCRT response, and three somatic mutation profiles (TMB, RMS, and CRMS) were independent risk predictors for HNSC relapse. The predictive nomogram showed satisfactory performance in predicting relapse-free survival in patients with HNSC treated with CCRT.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jeng-Shiun Du
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Pei-Lin Liu
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Meng-Chun Chou
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Che-Wei Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chih-Jen Huang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Hua Hsiao
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Li-Tzong Chen
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
11
|
Vatsa PP, Jindal Y, Bhadwalkar J, Chamoli A, Upadhyay V, Mandoli A. Role of epigenetics in OSCC: an understanding above genetics. Med Oncol 2023; 40:122. [PMID: 36941511 DOI: 10.1007/s12032-023-01992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023]
Abstract
Oral cavity cancer is categorized under head and neck cancer that frequently develops from squamous cells hence also known as oral squamous cell carcinoma (OSCC). Although molecular markers for oral cavity cancer are already known, epigenetic signatures for the same haven't been explored much. Epigenetic and genetic alterations were initially thought to be discrete mechanisms driving the tumour but the whole exome sequencing of various cancers has revealed the interdependency of epigenetics and genetic alterations. The reversible nature of these epigenetic changes makes them an alluring target for cancer therapeutics. The primary epigenetic alterations in cancer include DNA methylation and histone modifications. These alterations are useful for patient early detection and prognostication. This review summarizes the epigenetic perspective to understand the etiology, epigenetic biomarkers, and epi-drugs for better predictive diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Priyanka P Vatsa
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Yogita Jindal
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Janhavi Bhadwalkar
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ambika Chamoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vinal Upadhyay
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Amit Mandoli
- Department of Biotechnology, NIPER-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
12
|
Tanaka M, Harada H, Kimura H. The role of H3K9me3 in oral squamous cell carcinoma. Biochem Biophys Res Commun 2023; 640:56-63. [PMID: 36502632 DOI: 10.1016/j.bbrc.2022.11.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Carcinogenesis is often associated with alteration of epigenetic marks, including histone modifications. The global level and local distribution of specific histone modifications have been revealed to be prognostic factors in many cancers. However, the functional roles of histone modifications in oral squamous cell carcinoma (OSCC) remain unclear. This study investigates the levels of various histone modifications in 6 types of OSCC cell lines. We found that the level of H3K9me3 was significantly high in metastatic cell lines. In addition, the loss of H3K9me3 by SUV39H1 and SUV39H2 knockdown suppressed cell proliferation and cell migration. Our results indicate that a high level of H3K9me3 could be a marker of metastasis and possibly a therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Misako Tanaka
- Department of Oral and Maxillofacial Surgical Oncology, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan; School of Life Science and Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8510, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
13
|
Augustine D, Sowmya SV, Gujjar N, Pushpalatha C, Haragannavar VC. Role of Nanozymes in Oral Cancer the Road Ahead. Top Catal 2022; 65:1973-1983. [PMID: 36467708 PMCID: PMC9684919 DOI: 10.1007/s11244-022-01729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
Abstract
Oral cancer is a result of diverse interactions in the tumor microenvironment (TME), genetic alterations along with associated risk factors such as lifestyle and microbial infections. Various modalities are employed in the diagnosis and therapeutics of oral cancer. Nanozymes which are artificial enzymes have a great potential in the diagnostic and therapeutic approach of tumors. They have enormous advantages compared to natural enzymes and possess inherent biological and physical properties. A web-based search was performed via the Google scholar, PubMed database, Web of Science with keywords nanozymes, nanoparticles in cancer and oral cancer. The other keywords used were diagnosis, therapy, TME, microbiome, molecular alterations, biosensor, targeted therapy, imaging and tissue regeneration. Original research studies, reviews, case reports published from 2012 to 2022 were included to appraise different subsections. An absolute lack of literature on nanozymes was observed in oral cancer. The present review is the first attempt to describe the role and application of nanozymes in oral cancer by correlating its outcome in tumor biology and biomedical research. Rapid development of nanotechnology has created a paradigm shift in cancer diagnosis and therapeutics. Nanozymes with novel designs can be anticipated in the future in oral cancer management. Supplementary Information The online version contains supplementary material available at 10.1007/s11244-022-01729-9.
Collapse
Affiliation(s)
- Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S.Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, Karnataka 560054 India
| | - S. V. Sowmya
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S.Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, Karnataka 560054 India
| | - Neethi Gujjar
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S.Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, Karnataka 560054 India
| | - C. Pushpalatha
- Department of Pedodontics & Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, Karnataka 560054 India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S.Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, Karnataka 560054 India
| |
Collapse
|
14
|
Espinosa RCG, Costa ARGF, Garcia Júnior MA, Ribeiro RIMDA, Cardoso SV, de Faria PR, Loyola AM. Correlation of H3K9ac and H4K12ac With Cell Proliferation Marker Ki-67 in Oral Leukoplakia: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2022; 30:566-572. [PMID: 35960013 DOI: 10.1097/pai.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to analyze the immunohistochemical expression of H3K9ac and H4K12ac in oral leukoplakia (OL) and its association with cell proliferation marker Ki-67 and clinicopathologic data. Paraffin-embedded, formalin-fixed tissue samples from 50 OLs and 15 fragments of the normal oral mucosa (NOM) were submitted to immunohistochemical assay using the streptavidin-biotin-peroxidase method. Quantitative analysis of the antigen-antibody reaction was performed by obtaining integrated optical density (IOD) and the percentage of positive nuclei (PPN) with ImageJ software. OL samples presented higher PPN ( P =0.02) and lower IOD values ( P =0.007) for H4K12ac in comparison to NOM. The area under the receiver operating characteristic curve for PPN and IOD values of H4K12ac immunostaining were 0.70 ( P =0.02) and 0.73 ( P =0.007), respectively. No differences were found between OL and NOM for H3K9ac. Cell proliferation marker Ki-67 had a positive correlation with PPN ( P <0.0001) and IOD ( P =0.0007) for H3K9ac expression and with IOD values ( P =0.002) for H4K12ac expression. The present findings suggest that alterations in the acetylation pattern of H4K12 occur in the early stages of oral carcinogenesis and that both H3K9ac and H4K12ac might have a role in the regulation of epithelial cell proliferation of OL.
Collapse
Affiliation(s)
- Roberta C G Espinosa
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | - Anaíra R G F Costa
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | | | - Rosy I M de A Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei, Divinópolis, Minas Gerais, Brazil
| | - Sérgio V Cardoso
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| | - Paulo R de Faria
- Department of Morphology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia
| | - Adriano M Loyola
- Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia
| |
Collapse
|
15
|
Wang W, Li W, Zhang H. An Overview of DNA Methylation Indicators for the Course of Oral Precancer. Appl Bionics Biomech 2022; 2022:6468773. [PMID: 36060560 PMCID: PMC9439927 DOI: 10.1155/2022/6468773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a physiologically epigenetic alteration that happens when a methyl group is introduced to a CpG dinucleotide in the gene-regulating sequence of DNA. However, the majority of oral cancers have a well-defined precancerous stage; there are few clinical and morphological parameters for detecting and signalling the progression of precancerous to malignant tumours. DNA methylation forms are dynamic and reversible, allowing them to adjust to environmental or therapeutic changes. We did an extensive investigation to compile the data supporting aberrant DNA methylation forms as a possible biomarker for prediction. According to two longitudinal studies, p16 hypermethylation was considerably higher in precancerous lesions that progressed to cancer than in lesions that shrank. Most of the studies examined for this study were tiny cross-sectional research with scant validation and inadequately specified control groups. Existing evidence suggests that DNA methylation sequences can be relevant as a diagnostic biomarker for OPS development; however, sample size and research design restrictions make it difficult to draw definitive conclusions. Strong studies, including extensive epigenome-wide methylation scans of OPS with longitudinal monitoring, are necessary in this study in order to corroborate the recently discovered signals and discover new risk loci and disease progression molecular pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Wei Li
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Hongyi Zhang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
16
|
Pokorna Z, Hrabal V, Tichy V, Vojtesek B, Coates PJ. DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma. Front Oncol 2022; 12:924354. [PMID: 35912167 PMCID: PMC9331744 DOI: 10.3389/fonc.2022.924354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
The TP63 gene encodes two major protein variants; TAp63 contains a p53-like transcription domain and consequently has tumor suppressor activities whereas ΔNp63 lacks this domain and acts as an oncogene. The two variants show distinct expression patterns in normal tissues and tumors, with lymphocytes and lymphomas/leukemias expressing TAp63, and basal epithelial cells and some carcinomas expressing high levels of ΔNp63, most notably squamous cell carcinomas (SCC). Whilst the transcriptional functions of TAp63 and ΔNp63 isoforms are known, the mechanisms involved in their regulation are poorly understood. Using squamous epithelial cells that contain high levels of ΔNp63 and low/undetectable TAp63, the DNA demethylating agent decitabine (5-aza-2’-deoxycytidine, 5-dAza) caused a dose-dependent increase in TAp63, with a simultaneous reduction in ΔNp63, indicating DNA methylation-dependent regulation at the isoform-specific promoters. The basal cytokeratin KRT5, a direct ΔNp63 transcriptional target, was also reduced, confirming functional alteration of p63 activity after DNA demethylation. We also showed high level methylation of three CpG sites in the TAP63 promoter in these cells, which was reduced by decitabine. DNMT1 depletion using inducible shRNAs partially replicated these effects, including an increase in the ratio of TAP63:ΔNP63 mRNAs, a reduction in ΔNp63 protein and reduced KRT5 mRNA levels. Finally, high DNA methylation levels were found at the TAP63 promoter in clinical SCC samples and matched normal tissues. We conclude that DNA methylation at the TAP63 promoter normally silences transcription in squamous epithelial cells, indicating DNA methylation as a therapeutic approach to induce this tumor suppressor in cancer. That decitabine simultaneously reduced the oncogenic activity of ΔNp63 provides a “double whammy” for SCC and other p63-positive carcinomas. Whilst a variety of mechanisms may be involved in producing the opposite effects of DNA demethylation on TAp63 and ΔNp63, we propose an “either or” mechanism in which TAP63 transcription physically interferes with the ability to initiate transcription from the downstream ΔNP63 promoter on the same DNA strand. This mechanism can explain the observed inverse expression of p63 isoforms in normal cells and cancer.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Vaclav Hrabal
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vlastimil Tichy
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Philip J. Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- *Correspondence: Philip J. Coates,
| |
Collapse
|
17
|
Gabusi A, Gissi DB, Grillini S, Stefanini M, Tarsitano A, Marchetti C, Foschini MP, Montebugnoli L, Morandi L. Shared epigenetic alterations between oral cancer and periodontitis: a preliminary study. Oral Dis 2022. [PMID: 35567390 DOI: 10.1111/odi.14251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We recently developed a non-invasive sampling procedure for oral squamous cell carcinoma (OSCC) detection based on DNA methylation analysis of a panel of 13 genes. Oral cancer, as well as acute and chronic inflammatory diseases, may influence the methylation level of several genes in the oral cavity. In the present study, we evaluated the presence of periodontal disease(PD) and the methylation status using our 13-gene panel. METHODS Oral brushing specimens were collected from three different patient groups: 23 gingival OSCC patients, 15 patients affected by PD, and 15 healthy volunteers lacking evidence of PD. DNA methylation analysis was performed and each sample was determined to be positive or negative based on a predefined cut-off value. RESULTS Positive results were found for 23/23 OSCC patients, 3/15 PD patients and 0/15 samples from healthy volunteers. The GP1BB and MIR193 genes in the PD group exhibited mean methylation levels similar to OSCC patients. ZAP70 showed different methylation levels among three groups. CONCLUSION Preliminary data identified shared epigenetic alterations between PD and OSCC patients in two inflammatory genes(GP1BB and MIR193). This study may help identify potential links between the two diseases and serve as a starting point for future research focused on pathogenesis.
Collapse
Affiliation(s)
- Andrea Gabusi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Davide B Gissi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sara Grillini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Martina Stefanini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Achille Tarsitano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,Oral and Maxillo-facial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,Oral and Maxillo-facial Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Maria Pia Foschini
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Montebugnoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Comprehensive Review on Development of Early Diagnostics on Oral Cancer with a Special Focus on Biomarkers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the most frequent head and neck cancers is oral cancer, with less than half of those diagnosed surviving five years. Despite breakthroughs in the treatment of many other cancers, the prognosis for people with OSCC remains dismal. The conventional methods of detection include a thorough clinical examination, biochemical investigations, and invasive biopsies. Early identification and treatment are important for a better chance of extending a patient’s life. Early diagnosis may be possible by identifying biomarkers in biological fluids. Currently, the primary method for diagnosing oral lesions is a visual oral examination; however, such a technique has certain drawbacks, as individuals are recognized after their cancer has advanced to a severe degree. The first section of this review discusses several diagnostic techniques for cancer detection, while the second section discusses the present state of knowledge about known existing predictive markers for the timely identification of malignant lesions, as well as disease activity tracking. The aim of the paper is to conduct a critical review of existing oral cancer diagnostic processes and to consider the possible application of innovative technology for early detection. This might broaden our diagnostic choices and enhance our capacity to identify and treat oral malignant tumors more effectively.
Collapse
|
19
|
Hurník P, Chyra Z, Ševčíková T, Štembírek J, Trtková KS, Gaykalova DA, Buchtová M, Hrubá E. Epigenetic Regulations of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848557. [PMID: 35571032 PMCID: PMC9091179 DOI: 10.3389/fgene.2022.848557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Pavel Hurník
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Kateřina Smešný Trtková
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and University Hospital Olomouc, Olomouc, Czechia
| | - Daria A. Gaykalova
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
20
|
Lima DG, do Amaral GCLS, Planello AC, Borgato GB, Guimarães GN, de Souza AP. Combined therapy with cisplatin and 5-AZA-2CdR modifies methylation and expression of DNA repair genes in oral squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:131-144. [PMID: 35414841 PMCID: PMC8986466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The methylation and expression of DNA repair system genes has been studied in several tumor types. These genes have been associated with resistance to chemotherapy treatments by epigenetic regulation. Studies have yet to show the effects of combined therapy using an epigenetic drug (5-aza-2CdR) and cisplatin (CDDP) on DNA repair genes in oral squamous cell carcinoma (OSCC). This study proposed to investigate the effects of CDDP in combination with 5-aza-2CdR on the methylation of MGMT and MLH1 genes in oral cancer cells. Oral squamous cell carcinoma cell lineages (SCC-9, SCC-15, and SCC-25) were submitted to 72 hours of treatment: 0.1 μM CDDP (or 4.44 μM SCC-9), 0.1 μM and 0.3 μM 5-aza-2CdR (or 1 μM and 3 μM SCC-9), and the drugs in combination. Cell viability was assessed by MTT, DNA methylation of MGMT and MLH1 genes by Methylation Sensitivity High-Resolution Melting (MS-HRM), and the relative expression of the genes by RT-qPCR. The results show that all treatments reduced cell viability; however, in SCC-15 and SCC-9 (IC50 value), 5-aza-2CdR promotes cell sensitization to cytotoxic effect of cisplatin. The MGMT promoter region was 100% demethylated in the SCC-15 and SCC-25 cells but partially (50%) methylated in SCC-9 before drug treatment. Treatment with IC50 CDDP value kept the methylation status and decreased MGMT expression in SCC-9; MGMT gene in SCC-15 and SCC-25 cells became downregulated after treatment with 5-aza-2CdR. MLH1 was demethylated, but the treatments with low-doses and combined drugs decreased the expression in SCC-9 and SCC-25; however high doses of 5-aza-2CdR and drug combination with IC50 value CDDP increased expression of MLH1 in SCC-9. The data presented suggest that epigenetic drugs associated with chemotherapy have clinical translational potential as a therapy strategy to avoid or reverse cancer resistance, requiring further investigation.
Collapse
Affiliation(s)
- Dieila Giomo Lima
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | | | - Aline Cristiane Planello
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Gabriell Bonifacio Borgato
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| | - Ana Paula de Souza
- Department of Bioscience, Piracicaba Dental School, University of Campinas Piracicaba, São Paulo, Brazil
| |
Collapse
|
21
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
22
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
23
|
Dharman S, Azima Hanin SM, Smiline Girija AS. Association of salivary microbes with oral mucositis among patients undergoing chemoradiotherapy in head and neck cancer: A hospital-based prospective study. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_161_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Huang YZ, Jin Z, Wang ZM, Qi LB, Song S, Zhu BW, Dong XP. Marine Bioactive Compounds as Nutraceutical and Functional Food Ingredients for Potential Oral Health. Front Nutr 2021; 8:686663. [PMID: 34926539 PMCID: PMC8675007 DOI: 10.3389/fnut.2021.686663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Oral diseases have received considerable attention worldwide as one of the major global public health problems. The development of oral diseases is influenced by socioeconomic, physiological, traumatic, biological, dietary and hygienic practices factors. Currently, the main prevention strategy for oral diseases is to inhibit the growth of biofilm-producing plaque bacteria. Tooth brushing is the most common method of cleaning plaque, aided by mouthwash and sugar-free chewing gum in the daily routine. As the global nutraceutical market grows, marine bioactive compounds are becoming increasingly popular among consumers for their antibacterial, anti-inflammatory and antitumor properties. However, to date, few systematic summaries and studies on the application of marine bioactive compounds in oral health exist. This review provides a comprehensive overview of different marine-sourced bioactive compounds and their health benefits in dental caries, gingivitis, periodontitis, halitosis, oral cancer, and their potential use as functional food ingredients for oral health. In addition, limitations and challenges of the application of these active ingredients are discussed and some observations on current work and future trends are presented in the conclusion section.
Collapse
Affiliation(s)
- Yi-Zhen Huang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zheng Jin
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhe-Ming Wang
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Li-Bo Qi
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiu-Ping Dong
- School of Food Science and Technology, Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
25
|
Zhou S, Yang S, Li F, Hou J, Chang H. P-element Induced WImpy protein-like RNA-mediated gene silencing 2 regulates tumor cell progression, apoptosis, and metastasis in oral squamous cell carcinoma. J Int Med Res 2021; 49:3000605211053158. [PMID: 34738477 PMCID: PMC8573518 DOI: 10.1177/03000605211053158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective P-element Induced WImpy protein-like RNA-mediated gene silencing 2 (PIWIL2) is a reported oncogene strongly associated with tumorigenesis and cancer progression. However, the potential function of PIWIL2 in oral cancer is still largely unclear. Methods In this study, we investigated the clinical significance of PIWIL2 expression in human oral squamous cell carcinoma (OSCC) cell lines and tissues. We also examined its function in OSCC pathogenesis by knocking down PIWIL2 expression with short hairpin RNAs, followed by phenotypic experiments focused on cell migration, invasion, proliferation, and apoptosis rates. Results We found that PIWIL2 was overexpressed in OSCC cell lines and tissues and significantly correlated with the malignancy stage. Furthermore, knockdown of PIWIL2 in a human OSCC cell line Tca8113 induced cell cycle arrest and apoptosis. Silencing PIWIL2 expression also significantly suppressed the migration and invasion abilities of Tca8113 cells. Conclusions Collectively, our results suggest a functional role of PIWIL2 in regulating OSCC pathogenesis. Our data imply that PIWIL2 could serve as a potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Sen Zhou
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Song Yang
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Fang Li
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Jingying Hou
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong Chang
- Department of Plastic and Maxillofacial Surgery, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
26
|
Detection of CAF-1/p60 in peripheral blood as a potential biomarker of HNSCC tumors. Oral Oncol 2021; 120:105367. [PMID: 34237585 DOI: 10.1016/j.oraloncology.2021.105367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
To date, a very small number of serum biomarkers have been identified for clinical use in squamous carcinomas of the head and neck region. Chromatin Assembly Factor-1 (CAF-1) heterotrimeric complex subunit CAF1/p60 expression levels have been reported to be of prognostic value in Oral Squamous Cell Carcinoma (OSCC), as well as in other human solid tumors. Here our aim was to detect and quantify CAF1/p60 in the peripheral blood of Head and Neck Squamous Cell Carcinoma (HNSCC) patients, and to investigate the possible associations between serum concentration of CAF-1/p60 and HNSCC tumors. A total of 63 HNSCC patients (51 OSCC, 8 OPSCC, 3 laryngeal SCC, and 1 rhinopharynx SCC) and 30 healthy controls were enrolled. The serum levels of CAF-1/p60 were measured by ELISA assay before and after surgery. Serum CAF-1/p60 concentration resulted significantly higher in cancer patients, compared with healthy controls, in pre-surgery samples (P < 0.05). Serum levels of CAF-1/p60 significantly decreased in serum samples taken after surgery (P < 0.05). Our results demonstrated that CAF-1/p60 may be detected in serum, suggesting a role for CAF-1/p60 as potential soluble biomarkers in HNSCC tumors.
Collapse
|
27
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
28
|
Lv Y, Lu J, Liu X, Miao S, Mao X, Li B, Pei R, Xiang C. Histone deacetylase 1 regulates the malignancy of oral cancer cells via miR-154-5p/PCNA axis. Biol Chem 2021; 401:1273-1281. [PMID: 32549181 DOI: 10.1515/hsz-2020-0189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) can regulate the progression of various cancers, while their roles in oral cancer cells are not well known. Our present study found that the HDAC1 was over expressed in oral squamous cell carcinoma (OSCC) cells and tissues. Targeted inhibition of HDAC1 via its specific inhibitor PCI24781 or siRNA can inhibit the proliferation of OSCC cells and increase their sensitivity to the chemo-sensitivity such as doxorubicin treatment. HDAC1 can regulate the expression of proliferating cell nuclear antigen (PCNA) via decreasing its mRNA stability. While over expression of PCNA can attenuate HDAC1 inhibition induced suppression of cell proliferation. We checked the expression of various miRNAs which can target the 3'UTR of PCNA. Results showed that HDAC1 can negative regulate the expression of miR-154-5p, inhibitor of miR-154-5p can attenuate PCI24781 treatment decreased PCNA expression and cell proliferation. Collectively, our present study suggested that HDAC1 can promote the growth and progression of OSCC via regulation of miR-154-5p/PCNA signals.
Collapse
Affiliation(s)
- Yuanjing Lv
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Jinle Lu
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Hebei, Cangzhou 061000, China
| | - Xin Liu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Baojun Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Rong Pei
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Cheng Xiang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China
| |
Collapse
|
29
|
Kavarthapu A, Gurumoorthy K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol 2021; 121:105375. [PMID: 34140233 DOI: 10.1016/j.oraloncology.2021.105375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
The aim of this article is to survey the accessible writing on the pathogenetic systems engaged with the relationship between oral malignancy and periodontitis. Gingival tissue contains multiple microbiota, which can induce inflammatory reactions. This reaction plays a crucial role in assessing the susceptibility of patients to periodontal diseases. The link between chronic periodontitis and the risk of malignancy through this inflammation of the affected epithelium have been studied thoroughly. Many studies have reported that, chronic periodontitis has systemic influence which has high risk of developing different types of cancers. Also, various confounding factors such as consumption of alcohol, smoking, diet, age and gender have been found to be associated with both chronic periodontitis and oral cancer. An online quest for a wide range of articles distributed was started utilizing MEDLINE/PubMed, with the keywords, for example, 'oral squamous cell carcinoma (OSCC)', 'oral microbiota,' 'microorganisms and malignancy and Porphyromonas gingivalis. This review aimed to study the current literature linking chronic periodontitis and oral cancer.
Collapse
Affiliation(s)
- Avinash Kavarthapu
- Department of Periodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences. Chennai, India.
| | - Kaarthikeyan Gurumoorthy
- Department of Periodontics and Implantology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences. Chennai, India.
| |
Collapse
|
30
|
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a frequently occurring type of cancer leading loss of huge number of lives. Folic acid (FA) conjugated solid lipid nanoparticle (SLN) loaded paclitaxel (PTX) and ascorbic acid (AA) has been used as a novel approach in this study. METHODS The FA conjugated SLN were prepared by following high speed homogenization and ultrasonication methods. FA conjugated SLN were used alone and in combination to evaluate their efficacy against OSCC induced animal model. FA conjugated PTX and FA conjugated AA loaded SLN were further subjected to pharmacokinetic and biodistribution. RESULTS The FA conjugated SLN showed a biphasic drug release behavior both in in vitro as well as in vivo system. FA conjugated PTX loaded SLN and FA conjugated AA loaded SLN shows high efficiency when used in combination as compared to when used individually in vivo. FA conjugated SLN shows a better therapeutic efficacy as compared to normal drug as depicted by the observation of pharmacokinetic and biodistribution studies. CONCLUSION The in vitro and in vivo evaluation of the FA conjugated SLN concluded with a remark that, these SLN can be effectively used in the treatment of OSCC.
Collapse
Affiliation(s)
- Rituraj Bharadwaj
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University, Guwahati, India
| | - Subhash Medhi
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University, Guwahati, India
| |
Collapse
|
31
|
Emfietzoglou R, Pachymanolis E, Piperi C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr Med Chem 2021; 28:1091-1103. [PMID: 31942842 DOI: 10.2174/0929867327666200114114802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible character may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets. METHODS We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overexpression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine production. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytokines, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations. CONCLUSION Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health.
Collapse
Affiliation(s)
- Rodopi Emfietzoglou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Evangelos Pachymanolis
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias street, 115 27 Athens, Greece
| |
Collapse
|
32
|
Renzi A, Morandi L, Bellei E, Marconato L, Rigillo A, Aralla M, Lenzi J, Bettini G, Tinto D, Sabattini S. Validation of oral brushing as a non-invasive technique for the identification of feline oral squamous cell carcinoma by DNA methylation and TP53 mutation analysis. Vet Comp Oncol 2021; 19:501-509. [PMID: 33624422 DOI: 10.1111/vco.12688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022]
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a frequent and progressively invasive tumour. Early lesions are difficult to recognize based on the sole clinical examination and may be misinterpreted as non-neoplastic. Mutations of TP53 and epigenetic alterations of specific genes are present in FOSCC and may be early detected. Aim of this prospective study was to investigate the DNA methylation pattern of a 17-gene panel and TP53 mutational status of FOSCC cytological samples obtained by oral brushing. Results were compared with a control group, in order to validate this non-invasive procedure for the screening of FOSCC. In FOSCC, the same analyses were carried out on the corresponding histological sample, if available. Thirty-five FOSCC and 60 controls were included. Mutations of TP53 were detected in 17 FOSCC brushings (48%) and in none of the controls (P < .001). Six genes (ZAP70, FLI1, MiR124-1, KIF1A, MAGEC2 and MiR363) were differentially methylated in FOSCC and were included in a methylation score. An algorithm based on TP53 mutational status and methylation score allowed to differentiate FOSCC from controls with a 69% sensitivity and a 97% specificity (accuracy, 86%). In 19 FOSCC histological samples, TP53 mutational status was fully concordant with brushings and a positive methylation score was observed in all cases. These results are promising for the identification of FOSCC by oral brushing, although some factors may limit the accuracy of this technique and further studies are required to assess its reproducibility in clinical practice.
Collapse
Affiliation(s)
- Andrea Renzi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, Functional MR Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Emma Bellei
- Ospedale Veterinario "I Portoni Rossi", Bologna, Italy
| | - Laura Marconato
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Antonella Rigillo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Jacopo Lenzi
- Department of Biomedical and Neuromotor Sciences, Section of Hygiene, Public Health and Medical Statistics, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Debora Tinto
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Singhal J, Verma S, Kumar S, Mehrotra D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 2021; 63:339-362. [PMID: 33638110 DOI: 10.1007/s12033-021-00306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Saurabh Verma
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Divya Mehrotra
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India. .,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
34
|
Cortés-Gutiérrez EI, Garza Molina JG, Dávila-Rodríguez MI, Zapata Benavides P, Faz Eguía JM, Cerda-Flores RM. DBD-FISH, an effective marker for detecting genotoxicity in buccal mucosa exfoliated cells of patients with oral cancer. Toxicol Mech Methods 2021; 31:343-348. [PMID: 33297797 DOI: 10.1080/15376516.2020.1862379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is characterized by increased genetic instability as an essential variable of event of neoplastic transformation. The aim of this study was to evaluate genomic instability in exfoliated cells from the buccal mucosa of patients with OSCC vs. the control group, using DNA Breakage Detection/Fluorescence In Situ hybridization (DBD-FISH). Exfoliated cells from the buccal mucosa were obtained from 38 patients with oral cancer (case group) and from 10 individuals without oral lesions (control group). DNA damage was evaluated by DBD-FISH using the whole-genome DNA probe and digital imaging analysis. Collaterally, HPV infection was determined utilizing the INNO-LiPA HPV kit. Patients with OSCC showed an increase in the hybridization signal five times more intense than that of the baseline level of DNA damage detected in control individuals. The best cutoff value for predicting oral squamous cell carcinoma was 67.46, and an Odds Ratio (OR) value of 87. HPV detection analysis revealed than one patient with OSCC (2.6%) was positive for HPV. All controls were negative HPV. In conclusion, DBD-FISH permitted the clear visualization of level high of DNA damage in the buccal epithelial cells of patients with OSSC respect to control group. Chromosome instability in oral mucosa may be an individual marker of malignant transformation in OSCC.
Collapse
Affiliation(s)
| | - Jorge G Garza Molina
- Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Monterrey, México
| | | | | | - José M Faz Eguía
- Instituto Mexicano del Seguro Social Medical Unit of Specialty High No. 25 (UMAE-25), Monterrey, México
| | | |
Collapse
|
35
|
Kshirsagar A, Tata N, Nangare N. Characterization of genetic polymorphisms in oral cancer-related genes pertaining to oxidative stress, carcinogen detoxifying, and DNA repair: A case–control study. J Cancer Res Ther 2021; 18:1023-1029. [DOI: 10.4103/jcrt.jcrt_1057_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Gissi DB, Fabbri VP, Gabusi A, Lenzi J, Morandi L, Melotti S, Asioli S, Tarsitano A, Balbi T, Marchetti C, Montebugnoli L. Pre-Operative Evaluation of DNA Methylation Profile in Oral Squamous Cell Carcinoma Can Predict Tumor Aggressive Potential. Int J Mol Sci 2020; 21:ijms21186691. [PMID: 32937734 PMCID: PMC7555204 DOI: 10.3390/ijms21186691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prognosis of oral squamous cell carcinoma (OSCC) is difficult to exactly assess on pre-operative biopsies. Since OSCC DNA methylation profile has proved to be a useful pre-operative diagnostic tool, the aim of the present study was to evaluate the prognostic impact of DNA methylation profile to discriminate OSCC with high and low aggressive potential. METHODS 36 OSCC cases underwent neoplastic cells collection by gentle brushing of the lesion, before performing a pre-operative biopsy. The CpG islands methylation status of 13 gene (ZAP70, ITGA4, KIF1A, PARP15, EPHX3, NTM, LRRTM1, FLI1, MiR193, LINC00599, MiR296, TERT, GP1BB) was studied by bisulfite Next Generation Sequencing (NGS). A Cox proportional hazards model via likelihood-based component-wise boosting was used to evaluate the prognostic power of the CpG sites. RESULTS The boosting estimation identified five CpGs with prognostic significance: EPHX3-24, EPHX3-26, ITGA4-3, ITGA4-4, and MiR193-3. The combination of significant CpGs provided promising results for adverse events prediction (Brier score = 0.080, C-index = 0.802 and AUC = 0.850). ITGA4 had a strong prognostic power in patients with early OSCC. CONCLUSIONS These data confirm that the study of methylation profile provides new insights into the molecular mechanisms of OSCC and can allow a better OSCC prognostic stratification even before surgery.
Collapse
Affiliation(s)
- Davide B. Gissi
- Section of Oral Science, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (D.B.G.); (A.G.); (L.M.)
| | - Viscardo P. Fabbri
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy; (V.P.F.); (S.M.); (S.A.)
| | - Andrea Gabusi
- Section of Oral Science, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (D.B.G.); (A.G.); (L.M.)
| | - Jacopo Lenzi
- Section of Hygiene, Public Health and Medical Statistics, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Luca Morandi
- Functional MR Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Correspondence:
| | - Sofia Melotti
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy; (V.P.F.); (S.M.); (S.A.)
| | - Sofia Asioli
- Section of Anatomic Pathology at Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy; (V.P.F.); (S.M.); (S.A.)
| | - Achille Tarsitano
- Unit of Oral and Maxillofacial Surgery, Azienda Ospedaliero-Universitaria di Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (A.T.); (C.M.)
| | - Tiziana Balbi
- Unit of Anatomic Pathology, S. Orsola Hospital, 40138 Bologna, Italy;
| | - Claudio Marchetti
- Unit of Oral and Maxillofacial Surgery, Azienda Ospedaliero-Universitaria di Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy; (A.T.); (C.M.)
| | - Lucio Montebugnoli
- Section of Oral Science, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40159 Bologna, Italy; (D.B.G.); (A.G.); (L.M.)
| |
Collapse
|
37
|
Kakabadze MZ, Paresishvili T, Karalashvili L, Chakhunashvili D, Kakabadze Z. Oral microbiota and oral cancer: Review. Oncol Rev 2020; 14:476. [PMID: 32676172 PMCID: PMC7358985 DOI: 10.4081/oncol.2020.476] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
In this review, we draw attention and discuss the risk factors and causes of the development of oral squamous cell carcinoma (OSCC) focusing on oral microbiota. Recently, a breakthrough in the study of cancer has been the discovery of the relationship between the presence of certain types of bacteria and the development of cancer in the human body. Studies have shown that, Porphyromonas gingivalis (P. gingivalis) bacteria that is responsible for the destructive processes in the oral cavity, could play an important role in the development of OSCC. In our continuing search for bacteria that causes oral squamous cell carcinoma, we came across the Pseudomona aeruginosa, which due to its metabolite properties, may play important role in carcinogenesis of oral cancer. One possible mechanism is the ability of Pseudomonas to synthesize nitric oxide (NO) that modulates different cancer-related appearances such as apoptosis, cell cycle, angiogenesis, invasion, and metastasis. We think that P. aeruginosa increases the concentration of NO by converting salivary nitrite to nitric oxide, and this is how it contributes to NO-related carcinogenesis. Early diagnosis and treatment of periodontitis are very important not only for patients' oral health, but also for the prevention of OSCC development. Screening test for OSCC based on determination of salivary NO levels could be appealing and may prove to be useful assay for diagnosis and early detection of disease progression in oral cancer.
Collapse
Affiliation(s)
| | | | - Lia Karalashvili
- Ivane Javakhishvili Tbilisi State University
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | |
Collapse
|
38
|
Khongsti S, Shunyu BN, Ghosh S. Promoter-associated DNA methylation & expression profiling of genes ( FLT 3, EPB41L3 & SFN) in patients with oral squamous cell carcinoma in the Khasi & Jaintia population of Meghalaya, India. Indian J Med Res 2020; 150:584-591. [PMID: 32048621 PMCID: PMC7038811 DOI: 10.4103/ijmr.ijmr_620_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background & objectives: Oral squamous cell carcinoma is one of the most lethal forms of cancer, and its aetiology has been attributed to both genetic and epigenetic factors working in liaison to contribute to the disease. Epigenetic changes especially DNA methylation is involved in the activation or repression of gene functions. The aim of this study was to investigate the DNA methylation pattern and expression profiling of the promoter regions of FMS-related tyrosine kinase 3 (FLT3), erythrocyte membrane protein band 4.1-like 3 (EPB41L3) and stratifin (SFN) genes in oral cancer within the Khasi and Jaintia tribal population of Meghalaya in North East India. Methods: Quantitative methylation analyses of the selected genes were carried out by MassARRAY platform System, and the relative expression profiling was carried out by real-time polymerase chain reaction. Results: Quantitative methylation results indicated that the level of methylation was significantly higher (hypermethylated) for FLT3 and EPB41L3 and significantly lower (hypomethylated) for SFN in tumour tissues as compared to the adjacent paired normal tissue. Expression profiling was in concurrence with the methylation data whereby hypermethylated genes showed low mRNA level and vice versa for the hypomethylated gene. Interpretation & conclusions: The findings show that hyper- and hypomethylation of the selected genes play a potential role in oral carcinogenesis in the selected Khasi and Jaintia tribal population of Meghalaya. The methylation status of these genes has not been reported in oral cancer, so these genes may serve as promising biomarkers for oral cancer diagnosis as well as in disease monitoring.
Collapse
Affiliation(s)
- Shngainlang Khongsti
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, India
| | - Brian Neizekhotuo Shunyu
- Department of Otorhinolaryngology, North East Indira Gandhi Regional Institute for Health & Medical Sciences, Shillong, Meghalaya, India
| | - Srimoyee Ghosh
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
39
|
Luo W, Liu RS, E LL, Bai Y, Kong XP, Liu HW, Wu H, Liu HC. Identification, characterization and microRNA expression profiling of side population cells in human oral squamous cell carcinoma Tca8113 cell lines. Mol Med Rep 2020; 22:286-296. [PMID: 32319646 PMCID: PMC7248475 DOI: 10.3892/mmr.2020.11073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 11/15/2022] Open
Abstract
The present study aimed to evaluate the stem cell markers, characteristics and biological functions of cancer stem-like side population (SP) cells in human oral cancer. SP cells were isolated from the human oral squamous cell carcinoma Tca8113 cell line by Hoechst 33342 fluorescence dye and flow cytometry. The colony forming and proliferative capability of SP and non-SP cells were detected using a live-cell analysis system in vitro. The number of cells expressing stem cell markers was compared between SP cells and non-SP cells by flow cytometry. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of stem cell genes, respectively. Differential expression of microRNAs (miRNAs) in SP and non-SP cells was determined by microarray hybridization and an miRNA regulation network was produced. With regard to the proliferation capability, SP cells reached 60.0% confluence after 40 h of growth compared with 35.1% confluence for non-SP cells (P<0.05). The number of colonies in SP cells was 43.1±9.2 compared with 33.0±8.2 of non-SP cells (P<0.05). The aldehyde dehydrogenase-1 (ALDH1)-positive cell number in the SP cells was increased by 10 times compared with the non-SP cells (P<0.01). The mRNA and protein expression levels of ALDH1, SRY-box 2, POU class 5 homeobox 1 and Nanog homeobox in SP cells were significantly higher compared with non-SP cells (P<0.05). Microarray hybridization demonstrated that 21 miRNAs were upregulated and 13 miRNAs were downregulated in SP cells compared with non-SP cells. SP cells in Tca8113 demonstrated greater capability of proliferation and colony formation compared with non-SP cells in vitro. Stem cell markers were overexpressed in SP cells compared with non-SP cells.
Collapse
Affiliation(s)
- Wei Luo
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Rong-Sen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Ling-Ling E
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yang Bai
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiang-Pan Kong
- Department of Oral and Maxillofacial‑Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hua-Wei Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hao Wu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Chen Liu
- Institute and Department of Stomatology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
40
|
Song H, Lai L, Liu M, Wang X, Zhang J, Zhang S. Investigating the role and mechanism of microRNA-196a in oral squamous cell carcinoma by targeting FOXO1. Exp Ther Med 2020; 19:3707-3715. [PMID: 32346435 PMCID: PMC7185189 DOI: 10.3892/etm.2020.8614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancies worldwide. MicroRNAs (miRNAs or miRs) serve crucial roles in the development of OSCC. miR-196a is upregulated in various tumors; however, the role of miR-196a in OSCC remains unclear. This present study aimed to determine the role and underlying mechanism of miR-196a in OSCC cells. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure miR-196a levels in OSCC cells. MTT assays were also performed to determine cell proliferation. Cell migration was detected using wound healing assays and transwell assays, and cell apoptosis was analyzed via flow cytometry. The results indicated that the expression of miR-196a was increased in OSCC cells compared with normal oral squamous cells. TargetScan and luciferase reporter assays also confirmed that forkhead box O1 (FOXO1) was a target gene of miR-196a. It was demonstrated that FOXO1 small interfering RNA significantly promoted SCC9 cell proliferation and migration, and inhibited cell apoptosis. Furthermore, inhibition of miR-196a suppressed SCC9 cell proliferation and migration, and induced cell apoptosis. However, all effects of the miR-196a inhibitor were reversed following FOXO1 inhibition. Western blotting and RT-qPCR were subsequently performed to determine the effect of miR-196a on the PI3K/Akt signaling pathway. In the present study, transfection of miR-196a inhibitor suppressed the expression of phosphorylated (p)-PI3K and p-Akt, and enhanced the levels of FOXO1, while inhibition of FOXO1 exerted the opposite effects. Furthermore, it was demonstrated that miR-196a mimic significantly enhanced SCC9 cell proliferation and migration, and inhibited cell apoptosis. In conclusion, the results indicated that miR-196a serve as an oncogene in OSCCs. Downregulation of miR-196a inhibited the malignant biological processes of OSCC cells by targeting FOXO1. The current results may provide a novel therapeutic strategy for the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Hongning Song
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China.,Department of Stomatology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, P.R. China
| | - Linfeng Lai
- Department of Oral and Maxillofacial Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Min Liu
- Department of Stomatology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, P.R. China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Shanyong Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China.,Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
41
|
Németh CG, Röcken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. Recurrent chromosomal and epigenetic alterations in oral squamous cell carcinoma and its putative premalignant condition oral lichen planus. PLoS One 2019; 14:e0215055. [PMID: 30964915 PMCID: PMC6456184 DOI: 10.1371/journal.pone.0215055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects about 700.000 individuals per year worldwide with oral squamous cell carcinoma (OSCC) as a major subcategory. Despite a comprehensive treatment concept including surgery, radiation, and chemotherapy the 5-year survival rate is still only about 50 percent. Chronic inflammation is one of the hallmarks of carcinogenesis. Until now, little is known about the premalignant status of oral lichen planus (OLP) and molecular alterations in OLP are still poorly characterized. Our study aims to delineate differential DNA methylation patterns in OLP, OSCC, and normal oral mucosa. By applying a bead chip approach, we identified altered chromosomal patterns characteristic for OSCC while finding no recurrent alterations in OLP. In contrast, we identified numerous alterations in the DNA methylation pattern in OLP, as compared to normal controls, that were also present in OSCC. Our data support the hypothesis that OLP is a precursor lesion of OSCC sharing multiple epigenetic alterations with OSCC.
Collapse
Affiliation(s)
- Christopher G Németh
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Kiel, Germany.,Institute of Human Genetics, University Medical Centre, Ulm, Germany
| | - Volker Gassling
- Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
42
|
Molecular Biomarkers Related to Oral Carcinoma: Clinical Trial Outcome Evaluation in a Literature Review. DISEASE MARKERS 2019; 2019:8040361. [PMID: 31019584 PMCID: PMC6452537 DOI: 10.1155/2019/8040361] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Backgrounds The objective of the present research was to systematically revise the international literature about the genetic biomarkers related to oral cancer (OC) evaluating the recent findings in clinical studies. Methods A comprehensive review of the current literature was conducted according to the PRISMA guidelines by accessing the NCBI PubMed database. The authors conducted the search of articles in the English language published from 2008 to 2018. The present systematic review included only papers with significant results about correlation between wound healing, genetic alteration, and OC. Prognostic capacity of genetic markers was not evaluated in vivo. Results The first analysis with filters recorded about 1884 published papers. Beyond reading and consideration of suitability, only 20 and then 8 papers, with case report exclusion, were recorded for the revision. Conclusion All the researches recorded the proteomic and genetic alterations in OC human biopsy cells. The gene modification level in the different studies, compared with samples of healthy tissues, has always been statistically significant, but it is not possible to associate publications with each other because each job is based on the measurement of different biomarkers and gene targets. Further investigations should be required in order to state scientific evidence about a clear advantage of using these biomarkers for diagnostic purpose.
Collapse
|
43
|
MEHP promotes the proliferation of oral cancer cells via down regulation of miR-27b-5p and miR-372-5p. Toxicol In Vitro 2019; 58:35-41. [PMID: 30858031 DOI: 10.1016/j.tiv.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
Mono-2-ethyhexyl phthalate (MEHP), an environmental xenoestrogen, is widely used in the production of polyvinyl chloride materials and can be easily accumulated into human body. Emerging evidences showed that MEHP can regulate the progression of various cancers. Oral cancer cells could be directly exposed to MEHP during food and water digestion, while the roles of MEHP on the progression of oral cancer were rarely investigated. Our present study found that MEHP can trigger the proliferation of oral squamous cell carcinoma (OSCC) cells and increase the expression of proliferating cell nuclear antigen (PCNA). We checked the expression of various miRNAs which can target the 3'UTR of PCNA. Specifically, MEHP can decrease the expression of miR-27b-5p and miR-372-5p, which can directly bind with the 3'UTR of PCNA to inhibit its expression. Over expression of miR-27b-5p and miR-372-5p can abolish MEHP induced cell proliferation and expression of PCNA in OSCC cells. Further, MEHP can induce the expression of c-Myc, which can suppress the transcription of miR-27b-5p in OSCC cells. In vivo xenograft study on the basis of SCC-4 cells confirmed that MEHP can trigger the growth of OSCC and suppress the expression of miR-27b-5p and miR-372-5p. Collectively, our present study suggested that MEHP can promote the growth and progression of OSCC via down regulation of miR-27b-5p and miR-372-5p.
Collapse
|
44
|
Wang H, Wu B, Wang H. Alpha-hederin induces the apoptosis of oral cancer SCC-25 cells by regulating PI3K/Akt/mTOR signaling pathway. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
do Amaral GCLS, Planello AC, Borgato G, de Lima DG, Guimarães GN, Marques MR, de Souza AP. 5-Aza-CdR promotes partial MGMT demethylation and modifies expression of different genes in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:425-432. [PMID: 30827853 DOI: 10.1016/j.oooo.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Treatment strategies for oral squamous cell carcinoma (OSCC) vary, depending on the stage of diagnosis. Surgery and radiotherapy are options for localized lesions for stage I patients, whereas chemotherapy is the main treatment for metastatic OSCC. However, aggressive tumors can relapse, frequently causing death. In an attempt to address this, novel treatment protocols using drugs that alter the epigenetic profile have emerged as an alternative to control tumor growth and metastasis. Therefore, the objective in this study was to investigate the effect of the demethylating drug 5-aza-CdR in SCC9 OSCC cells. STUDY DESIGN SCC9 cells were treated with 5-Aza-CdR at concentrations of 0.3μM and 2μM for 24hours and 48hours. DNA methylation of the MGMT, BRCA1, APC, c-MYC, and hTERT genes were investigated by using the methylation-specific high-resolution melting technique. Real time-polymerase chain reaction and quantitative polymerase chain reaction were performed to analyze gene expression. RESULTS 5-Aza-CdR promoted demethylation of MGMT and modified the transcription of all analyzed genes. Curiously, 5-aza-CdR at the concentration of 0.3μM was more efficient than 2μM in SCC9 cells. CONCLUSIONS We observed that 5-aza-CdR led to MGMT demethylation, upregulated the transcription of 3 important tumor suppressor genes, and promoted the downregulation of c-Myc.
Collapse
Affiliation(s)
- Guilherme C L S do Amaral
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Aline C Planello
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Gabriell Borgato
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Dieila Giomo de Lima
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Gustavo N Guimarães
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Marcelo Rocha Marques
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil
| | - Ana Paula de Souza
- Laboratory of Molecular Biology, Department of Morphology, Piracicaba Dental School, FOP, State University of Campinas, UNICAMP, Piracicaba-SP, Brazil.
| |
Collapse
|
46
|
Dwivedi D, Kasetty S, Tijare MS, Kallianpur S, Prabhakar N, Ragavendra RT, Desai A. Effect of Conventional and Microwave Tissue Processing Technique on DNA Integrity: A Comparative Molecular Analysis. Ethiop J Health Sci 2019; 28:615-624. [PMID: 30607077 PMCID: PMC6308768 DOI: 10.4314/ejhs.v28i5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Methods of diagnostic molecular biology are routinely applied on formalin-fixed, paraffin-embedded tissues processed via conventional method. Recently, there has been a growing interest to use microwave technology in histopathology laboratories to overcome the deficiencies of the conventional processing method. Thefore, this study was aimed to compare and analyze the quality and quantity of DNA obtained from tissues processed by conventional and microwave tissue processing techniques and to further ascertain the applicability of the latter for PCR (polymerase chain reaction based research). Methods Thirty fresh tissues of oral squamous cell carcinoma (OSCC) were included, and each sample was cut into two equivalent halves. One tissue half was processed by conventional manual method whereas the other half was processed using a domestic microwave oven. DNA was obtained from all the tissues which were then subjected to Polymerase chain reaction (PCR) to evaluate GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) gene expression. Results The results revealed better DNA yield from microwave processed tissue while the quality of the DNA was alike from both the techniques. Conclusion On the basis of the results obtained, it can be concluded that DNA produced by microwave processed tissues was similar to that obtained by conventional processing technique in terms of quantity and quality. Thus, microwave processed tissue samples can be successfully used for further molecular studies and researches.
Collapse
Affiliation(s)
- Dhara Dwivedi
- Department of Oral Pathology Dentistry Unit, Ayder Referral Hospital-College of Health Sciences Mekelle University, Ethiopia
| | - Sowmya Kasetty
- Oral pathology Division, Oral Basic and Clinical Sciences, College of Dentistry, Qassim Private College, Buraidah, KSA
| | | | | | - Nitin Prabhakar
- Dept of Oral Maxillofacial Surgery, Ayder Referral Hospital-College of Health Sciences, Mekelle University, Ethiopia
| | - Raju T Ragavendra
- Oral pathology Division, Oral Basic and Clinical Sciences, College of Dentistry, Qassim Private College, Buraidah, KSA
| | - Ami Desai
- People's College of Dental Sciences and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
47
|
Liu PF, Chang HW, Cheng JS, Lee HP, Yen CY, Tsai WL, Cheng JT, Li YJ, Huang WC, Lee CH, Ger LP, Shu CW. Map1lc3b and Sqstm1 Modulated Autophagy for Tumorigenesis and Prognosis in Certain Subsites of Oral Squamous Cell Carcinoma. J Clin Med 2018; 7:jcm7120478. [PMID: 30477228 PMCID: PMC6306869 DOI: 10.3390/jcm7120478] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancer types worldwide and can be divided into three major subsites: buccal mucosal SCC (BMSCC), tongue SCC (TSCC), and lip SCC (LSCC). The autophagy marker microtubule-associated protein light chain 3B (MAP1LC3B) and adaptor sequestosome 1(SQSTM1) are widely used proteins to evaluate autophagy in tumor tissues. However, the role of MAP1LC3B and SQSTM1 in OSCC is not fully understood, particularly in certain subsites. With a tissue microarray comprised of 498 OSCC patients, including 181 BMSCC, 244 TSCC, and 73 LSCC patients, we found that the expression levels of MAP1LC3B and cytoplasmic SQSTM1 were elevated in the tumor tissues of three subsites compared with those in adjacent normal tissues. MAP1LC3B was associated with a poor prognosis only in TSCC. SQSTM1 was associated with poor differentiation in three subsites, while the association with lymph node invasion was only observed in BMSCC. Interestingly, MAP1LC3B was positively correlated with SQSTM1 in the tumor tissues of BMSCC, whereas it showed no correlation with SQSTM1 in adjacent normal tissue. The coexpression of higher MAP1LC3B and SQSTM1 demonstrated a significantly worse disease-specific survival (DSS) and disease-free survival (DFS) in patients with BMSCC and LSCC, but not TSCC. The knockdown of MAP1LC3B and SQSTM1 reduced autophagy, cell proliferation, invasion and tumorspheres of BMSCC cells. Additionally, silencing both MAP1LC3B and SQSTM1 enhanced the cytotoxic effects of paclitaxel in the tumorspheres of BMSCC cells. Taken together, MAP1LC3B and SQSTM1 might modulate autophagy to facilitate tumorigenesis and chemoresistance in OSCC, particularly in BMSCC.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jin-Shiung Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Huai-Pao Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan.
| | - Ching-Yu Yen
- Oral and Maxillofacial Surgery Section, Chi Mei Medical Center, Tainan 71004, Taiwan.
- Department of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Jiin-Tsuey Cheng
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yi-Jing Li
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Hsin Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Luo-Pin Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung 82445, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
48
|
Li JM, Tseng CW, Lin CC, Law CH, Chien YA, Kuo WH, Chou HC, Wang WC, Chan HL. Upregulation of LGALS1 is associated with oral cancer metastasis. Ther Adv Med Oncol 2018; 10:1758835918794622. [PMID: 30159048 PMCID: PMC6109855 DOI: 10.1177/1758835918794622] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background Oral cancer metastasis is a devastating process that contributes to poor prognosis and high mortality, yet its detailed underlying mechanisms remain unclear. Here, we aimed to evaluate metastasis-specific markers in oral cancer and to provide comprehensive recognition concerning functional roles of the specific target in oral cancer metastasis. Methods Lectin, galactoside-binding, soluble, 1 (LGALS1) was identified by secretomic analysis. LGALS1 expression of patient samples with oral cancer on the tissue microarray were examined by immunochemical (IHC) staining. Small interfering RNA (siRNA)-mediated knockdown of LGALS1 revealed the role of LGALS1 in oral cancer metastasis in vitro and in vivo. Results LGALS1 was observed to be upregulated in highly invasive oral cancer cells, and elevated LGALS1 expression was correlated with cancer progression and lymph node metastasis in oral cancer tissue specimens. Functionally, silencing LGALS1 resulted in suppressed cell growth, wound healing, cell migration, and cell invasion in oral cancer cells in vitro. Knockdown of LGALS1 in highly invasive oral cancer cells dramatically inhibited lung metastasis in an in vivo mouse model. Mechanistic studies suggested p38 mitogen-activated protein kinase (MAPK) phosphorylation, upregulated MMP-9, and mesenchymal phenotypes of epithelial-mesenchymal transition (EMT) in highly invasive oral cancer cells, whereas siRNA against LGALS1 resulted in the inactivation of p38 MAPK pathway, downregulated MMP-9, and EMT inhibition. Conclusions These findings demonstrate that elevated LGALS1 is strongly correlated with oral cancer progression and metastasis, and that it could potentially serve as a prognostic biomarker and an innovative target for oral cancer therapy.
Collapse
Affiliation(s)
- Ji-Min Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wei Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chi-Chen Lin
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsuan Law
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chien
- Department of Applied Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, No. 101, Kuang-Fu Rd. Sec. 2, Hsinchu, 30013, Taiwan
| |
Collapse
|
49
|
Russo D, Merolla F, Varricchio S, Salzano G, Zarrilli G, Mascolo M, Strazzullo V, Di Crescenzo RM, Celetti A, Ilardi G. Epigenetics of oral and oropharyngeal cancers. Biomed Rep 2018; 9:275-283. [PMID: 30233779 DOI: 10.3892/br.2018.1136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral and oropharyngeal cancers represent the two most common malignancies of the head and neck region. The major risk factors for these cancers include alcohol consumption, tobacco use (via smoking or chewing) and high-risk human papillomavirus infection. The transition from normal epithelium to premalignant tissue and finally carcinoma is in part caused by a summation of genetic and epigenetic modifications. Epigenetic refers to modifications in the way the genome is expressed in cells. The most common examples of epigenetic control of gene expression are DNA methylation, histone modification and regulation by small non-coding RNAs. The aim of the current paper was to review the recent studies on the main epigenetic changes that have been suggested to serve a role in the carcinogenesis process and progression of oral and oropharyngeal cancers. Furthermore, it is discussed how the epigenetic changes may be used as potential predictive biomarkers and how recent findings in the field may impact the personalized cancer therapy approach for these tumors.
Collapse
Affiliation(s)
- Daniela Russo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Ι-86100 Campobasso, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Giovanni Salzano
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Operative Unit of Maxillofacial Surgery, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Giovanni Zarrilli
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Ι-86100 Campobasso, Italy
| | - Massimo Mascolo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Viviana Strazzullo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Rosa Maria Di Crescenzo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology Gaetano Salvatore, Italian National Council of Research, Ι-80131 Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| |
Collapse
|
50
|
Di Domenico M, Giovane G, Kouidhi S, Iorio R, Romano M, De Francesco F, Feola A, Siciliano C, Califano L, Giordano A. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers. Cancer Biol Ther 2018; 19:850-857. [PMID: 28362190 DOI: 10.1080/15384047.2017.1310349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.
Collapse
Affiliation(s)
- Marina Di Domenico
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy.,b IRCCS Institute of Women's Health Malzoni Clinic , Avellino , Italy.,c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| | - Giancarlo Giovane
- d Department of Experimental Medicine , Section of Hygiene, Occupational Medicine and Forensic Medicine, University of Campania "Luigi Vanvitelli" , Italy
| | - Soumaya Kouidhi
- e Laboratory BVBGR, LR11ES31, ISBST, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba , Tunis , Tunisia.,f Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis
| | - Rosamaria Iorio
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Maurizio Romano
- g Hepatobiliary and Liver Transplantation Unit, Azienda Ospedaliera , Padova , Italy.,h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Francesco De Francesco
- h Department of Surgical , Gastrointestinal and Oncological Sciences (DiSCOG), University of Padova , Padova ( PD ), Italy
| | - Antonia Feola
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Camilla Siciliano
- a Department of Biochemistry , Biophysics and General Pathology, University of Campania "Luigi Vanvitelli" , Italy
| | - Luigi Califano
- i Department of Maxillofacial Surgery , University of Naples "Federico II" , Naples , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA.,j Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|