1
|
向 思, 刘 莘, 李 匡, 赵 同, 王 旭. [Functional study of amine oxidase copper-containing 1 (AOC1) in lipid metabolism]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:1019-1025. [PMID: 39462671 PMCID: PMC11527758 DOI: 10.7507/1001-5515.202407066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Indexed: 10/29/2024]
Abstract
Amine oxidase copper-containing 1 (AOC1) is a key member of copper amine oxidase family, which is responsible for deamination oxidation of histamine and putrescine. In recent years, AOC1 has been reported to be associated with various cancers, with its expression levels significantly elevated in certain cancer cells, suggesting its potential role in cancer progression. However, its function in lipid metabolism still remains unclear. Through genetic analysis, we have discovered a potential relationship between AOC1 and lipid metabolism. To further investigate, we generated Aoc1 -/- mice and characterized their metabolic phenotypes on both chow diet and high-fat diet (HFD) feeding conditions. On HFD feeding conditions, Aoc1 -/- mice exhibited significantly higher fat mass and impaired glucose sensitivity, and lipid accumulation in white adipose tissue and liver was also increased. This study uncovers the potential role of AOC1 in lipid metabolism and its implications in metabolic disorders such as obesity and type 2 diabetes, providing new targets and research directions for treating metabolic diseases.
Collapse
Affiliation(s)
- 思婷 向
- 复旦大学 代谢与整合生物学研究院(上海 200438)Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, P. R. China
| | - 莘颖 刘
- 复旦大学 代谢与整合生物学研究院(上海 200438)Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, P. R. China
| | - 匡政 李
- 复旦大学 代谢与整合生物学研究院(上海 200438)Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, P. R. China
| | - 同金 赵
- 复旦大学 代谢与整合生物学研究院(上海 200438)Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, P. R. China
| | - 旭 王
- 复旦大学 代谢与整合生物学研究院(上海 200438)Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
2
|
Strnad J, Soural M, Šebela M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules 2024; 29:4878. [PMID: 39459245 PMCID: PMC11509957 DOI: 10.3390/molecules29204878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Copper-containing diamine oxidases are ubiquitous enzymes that participate in many important biological processes. These processes include the regulation of cell growth and division, programmed cell death, and responses to environmental stressors. Natural substrates include, for example, putrescine, spermidine, and histamine. Enzymatic activity is typically assayed using spectrophotometric, electrochemical, or fluorometric methods. The aim of this study was to develop a method for measuring activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based on the intensity ratio of product to product-plus-substrate signals in the reaction mixtures. For this purpose, an enzyme purified to homogeneity from pea (Pisum sativum) seedlings was used. The method employed α-cyano-4-hydroxycinnamic acid as a matrix with the addition of cetrimonium bromide. Product signal intensities with pure compounds were evaluated in the presence of equal substrate amounts to determine intensity correction factors for data processing calculations. The kinetic parameters kcat and Km for the oxidative deamination of selected substrates were determined. These results were compared to parallel measurements using an established spectrophotometric method, which involved a coupled reaction of horseradish peroxidase and guaiacol, and were discussed in the context of data from the literature and the BRENDA database. It was found that the method provides accurate results that are well comparable with parallel spectrophotometry. This method offers advantages such as low sample consumption, rapid serial measurements, and potential applicability in assays where colored substances interfere with spectrophotometry.
Collapse
Affiliation(s)
- Jan Strnad
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic;
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic;
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic;
| |
Collapse
|
3
|
Zhu L, Kang X, Zhu S, Wang Y, Guo W, Zhu R. Cuproptosis-related DNA methylation signature predict prognosis and immune microenvironment in cutaneous melanoma. Discov Oncol 2024; 15:228. [PMID: 38874871 PMCID: PMC11178724 DOI: 10.1007/s12672-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The prognosis for Cutaneous Melanoma (CM), a skin malignant tumor that is extremely aggressive, is not good. A recently identified type of controlled cell death that is intimately related to immunotherapy and the development of cancer is called cuproptosis. Using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we developed and validated a DNA-methylation located in cuproptosis death-related gene prognostic signature (CRG-located DNA-methylation prognostic signature) to predict CM's prognosis. Kaplan-Meier analysis of our TCGA and GEO cohorts showed that high-risk patients had a shorter overall survival. The area under the curve (AUC) for the TCGA cohort was 0.742, while for the GEO cohort it was 0.733, according to the receiver operating characteristic (ROC) analysis. Furthermore, this signature was discovered as an independent prognostic indicator over CM patients based on Cox-regression analysis. Immunogenomic profiling indicated that majority immune-checkpoints got an opposite relationship with the signature, and patients in the group at low risk got higher immunophenoscore. Several immune pathways were enriched, according to functional enrichment analysis. In conclusion, a prognostic methylation signature for CM patients was established and confirmed. Because of its close relationship to the immune landscape, this signature may help clinicians make more accurate and individualized choices regarding therapy.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xudong Kang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Shuting Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanna Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.
| | - Rui Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Ravnik V, Jukič M, Bren U. Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach. J Chem Inf Model 2023; 63:5204-5219. [PMID: 37557084 PMCID: PMC10466382 DOI: 10.1021/acs.jcim.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/11/2023]
Abstract
In order to identify the locations of metal ions in the binding sites of proteins, we have developed a method named the MADE (MAcromolecular DEnsity and Structure Analysis) approach. The MADE approach represents an evolution of our previous toolset, the ProBiS H2O (MD) methodology, for the identification of conserved water molecules. Our method uses experimental structures of proteins homologous to a query, which are subsequently superimposed upon it. Areas with a particular species present in a similar location among many homologous protein structures are identified using a clustering algorithm. Dense clusters likely represent positions containing species important to the query protein structure or function. We analyze well-characterized apo protein structures and show that the MADE approach can identify clusters corresponding to the expected positions of metal ions in their binding sites. The greatest advantage of our method lies in its generality. It can in principle be applied to any species found in protein records; it is not only limited to metal ions. We additionally demonstrate that the MADE approach can be successfully applied to predict the location of cofactors in computer-modeled structures, e.g., via AlphaFold. We also conduct a careful protein superposition method comparison and find our methodology robust and the results largely independent of the selected protein superposition algorithm. We postulate that with increasing structural data availability, additional applications of the MADE approach will be possible such as non-protein systems, water network identification, protein binding site elaboration, and analysis of binding events, all in a dynamic manner. We have implemented the MADE approach as a plugin for the PyMOL molecular visualization tool. The MADE plugin is available free of charge at https://gitlab.com/Jukic/made_software.
Collapse
Affiliation(s)
- Vid Ravnik
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
| | - Marko Jukič
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| | - Urban Bren
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| |
Collapse
|
5
|
Li Y, Handunneththige S, Xiong J, Guo Y, Talipov MR, Wang D. Direct Activation of the C(sp 3)-NH 2 Bond of Primary Aliphatic Alkylamines by a High-Valent Co III,IV2(μ-O) 2 Diamond Core Complex. J Am Chem Soc 2023; 145:2690-2697. [PMID: 36689463 PMCID: PMC9976198 DOI: 10.1021/jacs.2c13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aliphatic alkylamines are abundant feedstock and versatile building blocks for many organic transformations. While remarkable progress has been made to construct C-N bonds on aliphatic and aromatic carbon centers, the activation and functionalization of C(sp3)-NH2 bonds in primary alkylamines remain a challenging process. In the present work, we discovered an unprecedented method to directly activate the C(sp3)-NH2 bond of primary alkylamines by a high-valent dinuclear CoIII,IV2(μ-O)2 diamond core complex. This reaction results in the installation of other functional groups such as halides and alkenes onto the α-carbon center concomitant with the 2-e- oxidation of the nitrogen atom on the amino group to form NH2OH. These results shed light on future development enabling versatile functionalization of primary alkylamines based on the dinuclear cobalt system. Moreover, our work suggests that a related high-valent copper-oxo intermediate is likely generated in the ammonia monooxygenase catalytic cycle to affect the oxidation of NH3 to NH2OH.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana; Missoula, MT 59812, United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry, New Mexico State University; Las Cruces, NM 88003, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University; Pittsburgh, PA 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University; Pittsburgh, PA 15213, United States,Corresponding Author:; ;
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University; Las Cruces, NM 88003, United States,Corresponding Author:; ;
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana; Missoula, MT 59812, United States,Corresponding Author:; ;
| |
Collapse
|
6
|
Meier AA, Moon HJ, Sabuncu S, Singh P, Ronnebaum TA, Ou S, Douglas JT, Jackson TA, Moënne-Loccoz P, Mure M. Insight into the Spatial Arrangement of the Lysine Tyrosylquinone and Cu 2+ in the Active Site of Lysyl Oxidase-like 2. Int J Mol Sci 2022; 23:ijms232213966. [PMID: 36430446 PMCID: PMC9694262 DOI: 10.3390/ijms232213966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.
Collapse
Affiliation(s)
- Alex A. Meier
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Sinan Sabuncu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Priya Singh
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey A. Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Siyu Ou
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Justin T. Douglas
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Timothy A. Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
7
|
Ragno R, Minarini A, Proia E, Lorenzo A, Milelli A, Tumiatti V, Fiore M, Fino P, Rutigliano L, Fioravanti R, Tahara T, Pacella E, Greco A, Canettieri G, Di Paolo ML, Agostinelli E. Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. J Chem Inf Model 2022; 62:3910-3927. [PMID: 35948439 DOI: 10.1021/acs.jcim.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Antonini Lorenzo
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Marco Fiore
- Department Institute of Biochemistry and Cell Biology, IBBC-CNR, Via E. Ramarini, 32, Monterotondo Scalo Rome 00015, Italy
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, Rome I-00161, Italy
| | - Lavinia Rutigliano
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University Padua, Via G. Colombo 3, Padova 35131, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy.,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, Rome I-00159, Italy
| |
Collapse
|
8
|
Murakawa T, Kurihara K, Adachi M, Kusaka K, Tanizawa K, Okajima T. Re-evaluation of protein neutron crystallography with and without X-ray/neutron joint refinement. IUCRJ 2022; 9:342-348. [PMID: 35546796 PMCID: PMC9067118 DOI: 10.1107/s2052252522003657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Protein neutron crystallography is a powerful technique to determine the positions of H atoms, providing crucial biochemical information such as the protonation states of catalytic groups and the geometry of hydrogen bonds. Recently, the crystal structure of a bacterial copper amine oxidase was determined by joint refinement using X-ray and neutron diffraction data sets at resolutions of 1.14 and 1.72 Å, respectively [Murakawa et al. (2020 ▸). Proc. Natl Acad. Sci. USA, 117, 10818-10824]. While joint refinement is effective for the determination of the accurate positions of heavy atoms on the basis of the electron density, the structural information on light atoms (hydrogen and deuterium) derived from the neutron diffraction data might be affected by the X-ray data. To unravel the information included in the neutron diffraction data, the structure determination was conducted again using only the neutron diffraction data at 1.72 Å resolution and the results were compared with those obtained in the previous study. Most H and D atoms were identified at essentially the same positions in both the neutron-only and the X-ray/neutron joint refinements. Nevertheless, neutron-only refinement was found to be less effective than joint refinement in providing very accurate heavy-atom coordinates that lead to significant improvement of the neutron scattering length density map, especially for the active-site cofactor. Consequently, it was confirmed that X-ray/neutron joint refinement is crucial for determination of the real chemical structure of the catalytic site of the enzyme.
Collapse
Affiliation(s)
- Takeshi Murakawa
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Katsuyuki Tanizawa
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
9
|
Symmetric versus Asymmetric Features of Homologous Homodimeric Amine Oxidases: When Water and Cavities Make the Difference. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Symmetry is an intrinsic property of homo-oligomers. Amine oxidases are multidomain homodimeric enzymes that contain one catalytic site per subunit, and that share a high homology degree. In this paper, we investigated, by fluorescence spectroscopy measurements, the conformational dynamics and resiliency in solutions of two amine oxidases, one from lentil seedlings, and one from Euphorbia characias latex, of which the crystallographic structure is still unknown. The data demonstrate that slight but significant differences exist at the level of the local tridimensional structure, which arise from the presence of large internal cavities, which are characterized by different hydration extents. Molecular dynamics and a contact network methodology were also used to further explore, in silico, the structural features of the two proteins. The analysis demonstrates that the two proteins show similar long-range symmetrical connectivities, but that they differ in their local (intra-subunit) contact networks, which appear mostly asymmetric. These features have been interpreted to suggest a new rationale for the functioning of amino oxidases as obligate homodimers.
Collapse
|
10
|
Shoji M, Murakawa T, Nakanishi S, Boero M, Shigeta Y, Hayashi H, Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem Sci 2022; 13:10923-10938. [PMID: 36320691 PMCID: PMC9491219 DOI: 10.1039/d2sc01356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the “state-specific” reaction sheds new light on a drastic environmental transformation around the catalytic center. The large conformational change of topaquinone in bacterial copper amine oxidase occurs through the TPQ ring rotation and slide, which are essential to stabilize the semiquinone form.![]()
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Saitama Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Shota Nakanishi
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504 23 rue du Loess F-67034 France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| |
Collapse
|
11
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
12
|
Huang JP, Wang YJ, Tian T, Wang L, Yan Y, Huang SX. Tropane alkaloid biosynthesis: a centennial review. Nat Prod Rep 2021; 38:1634-1658. [PMID: 33533391 DOI: 10.1039/d0np00076k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1917 to 2020Tropane alkaloids (TAs) are a remarkable class of plant secondary metabolites, which are characterized by an 8-azabicyclo[3.2.1]octane (nortropane) ring. Members of this class, such as hyoscyamine, scopolamine, and cocaine, are well known for their long history as poisons, hallucinogens, and anaesthetic agents. Since the structure of the tropane ring system was first elucidated in 1901, organic chemists and biochemists have been interested in how these mysterious tropane alkaloids are assembled in vitro and in vivo. However, it was only in 2020 that the complete biosynthetic route of hyoscyamine and scopolamine was clarified, and their de novo production in yeast was also achieved. The aim of this review is to present the innovative ideas and results in exploring the story of tropane alkaloid biosynthesis in plants from 1917 to 2020. This review also highlights that Robinson's classic synthesis of tropinone, which is one hundred years old, is biomimetic, and underscores the importance of total synthesis in the study of natural product biosynthesis.
Collapse
Affiliation(s)
- Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Tian Tian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China. and State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
13
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Lopes de Carvalho L, Bligt-Lindén E, Ramaiah A, Johnson MS, Salminen TA. Evolution and functional classification of mammalian copper amine oxidases. Mol Phylogenet Evol 2019; 139:106571. [PMID: 31351182 DOI: 10.1016/j.ympev.2019.106571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Mammalian copper-containing amine oxidases (CAOs), encoded by four genes (AOC1-4) and catalyzing the oxidation of primary amines to aldehydes, regulate many biological processes and are linked to various diseases including inflammatory conditions and histamine intolerance. Despite the known differences in their substrate preferences, CAOs are currently classified based on their preference for either primary monoamines (EC 1.4.3.21) or diamines (EC 1.4.3.22). Here, we present the first extensive phylogenetic study of CAOs that, combined with structural analyses of the CAO active sites, provides in-depth knowledge of their relationships and guidelines for classification of mammalian CAOs into AOC1-4 sub-families. The phylogenetic results show that CAOs can be classified based on two residues, X1 and X2, from the active site motif: T/S-X1-X2-N-Y-D. Residue X2 discriminates among the AOC1 (Tyr), AOC2 (Gly), and AOC3/AOC4 (Leu) proteins, while residue X1 further classifies the AOC3 (Leu) and AOC4 (Met) proteins that so far have been poorly identified and annotated. Residues X1 and X2 conserved within each sub-family and located in the catalytic site seem to be the key determinants for the unique substrate preference of each CAO sub-family. Furthermore, one residue located at 10 Å distance from the catalytic site is different between the sub-families but highly conserved within each sub-family (Asp in AOC1, His in AOC2, Thr in AOC3 and Asn in AOC4) and likely contributes to substrate selectivity. Altogether, our results will benefit the design of new sub-family specific inhibitors and the design of in vitro tests to detect individual CAO levels for diagnostic purposes.
Collapse
Affiliation(s)
- Leonor Lopes de Carvalho
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eva Bligt-Lindén
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Arunachalam Ramaiah
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Reid MJ, Eyre R, Podoll T. Oxidative Deamination of Emixustat by Human Vascular Adhesion Protein-1/Semicarbazide-Sensitive Amine Oxidase. Drug Metab Dispos 2019; 47:504-515. [PMID: 30787099 DOI: 10.1124/dmd.118.085811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022] Open
Abstract
Emixustat potently inhibits the visual cycle isomerase retinal pigment epithelium protein 65 (RPE65) to reduce the accumulation of toxic bisretinoid by-products that lead to various retinopathies. Orally administered emixustat is cleared rapidly from the plasma, with little excreted unchanged. The hydroxypropylamine moiety that is critical in emixustat's inhibition of RPE65 is oxidatively deaminated to three major carboxylic acid metabolites that appear rapidly in plasma. These metabolites greatly exceed the plasma concentrations of emixustat and demonstrate formation-rate-limited metabolite kinetics. This study investigated in vitro deamination of emixustat in human vascular membrane fractions, plasma, and recombinant human vascular adhesion protein-1 (VAP-1), demonstrating single-enzyme kinetics for the formation of a stable aldehyde intermediate (ACU-5201) in all in vitro systems. The in vitro systems used herein established sequential formation of the major metabolites with addition of assay components for aldehyde dehydrogenase and cytochrome P450. Reaction phenotyping experiments using selective chemical inhibitors and recombinant enzymes of monoamine oxidase, VAP-1, and lysyl oxidase showed that only VAP-1 deaminated emixustat. In individually derived human vascular membranes from umbilical cord and aorta, rates of emixustat deamination were highly correlated to VAP-1 marker substrate activity (benzylamine) and VAP-1 levels measured by enzyme-linked immunosorbent assay. In donor-matched plasma samples, soluble VAP-1 activity and levels were lower than in aorta membranes. A variety of potential comedications did not strongly inhibit emixustat deamination in vitro.
Collapse
Affiliation(s)
- Michael J Reid
- Acucela Inc., Seattle, Washington (M.J.R.); MavuPharma, Kirkland, Washington (R.E.); and IV-PO, LLC, Seattle, Washington (T.P.)
| | - Russell Eyre
- Acucela Inc., Seattle, Washington (M.J.R.); MavuPharma, Kirkland, Washington (R.E.); and IV-PO, LLC, Seattle, Washington (T.P.)
| | - Terry Podoll
- Acucela Inc., Seattle, Washington (M.J.R.); MavuPharma, Kirkland, Washington (R.E.); and IV-PO, LLC, Seattle, Washington (T.P.)
| |
Collapse
|
16
|
In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase. Proc Natl Acad Sci U S A 2018; 116:135-140. [PMID: 30563857 DOI: 10.1073/pnas.1811837116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography.
Collapse
|
17
|
Barayeu U, Lange M, Méndez L, Arnhold J, Shadyro OI, Fedorova M, Flemmig J. Cytochrome c autocatalyzed carbonylation in the presence of hydrogen peroxide and cardiolipins. J Biol Chem 2018; 294:1816-1830. [PMID: 30541920 DOI: 10.1074/jbc.ra118.004110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c (cyt c) is a small hemoprotein involved in electron shuttling in the mitochondrial respiratory chain and is now also recognized as an important mediator of apoptotic cell death. Its role in inducing programmed cell death is closely associated with the formation of a complex with the mitochondrion-specific phospholipid cardiolipin (CL), leading to a gain of peroxidase activity. However, the molecular mechanisms behind this gain and eventual cyt c autoinactivation via its release from mitochondrial membranes remain largely unknown. Here, we examined the kinetics of the H2O2-mediated peroxidase activity of cyt c both in the presence and absence of tetraoleoyl cardiolipin (TOCL)- and tetralinoleoyl cardiolipin (TLCL)-containing liposomes to evaluate the role of cyt c-CL complex formation in the induction and stimulation of cyt c peroxidase activity. Moreover, we examined peroxide-mediated cyt c heme degradation to gain insights into the mechanisms by which cyt c self-limits its peroxidase activity. Bottom-up proteomics revealed >50 oxidative modifications on cyt c upon peroxide reduction. Of note, one of these by-products was the Tyr-based "cofactor" trihydroxyphenylalanine quinone (TPQ) capable of inducing deamination of Lys ϵ-amino groups and formation of the carbonylated product aminoadipic semialdehyde. In view of these results, we propose that autoinduced carbonylation, and thus removal of a positive charge in Lys, abrogates binding of cyt c to negatively charged CL. The proposed mechanism may be responsible for release of cyt c from mitochondrial membranes and ensuing inactivation of its peroxidase activity.
Collapse
Affiliation(s)
- Uladzimir Barayeu
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, and.,Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany.,Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany
| | - Mike Lange
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, and.,Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Lucía Méndez
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, and.,Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany.,Institute of Marine Research, Spanish Council for Scientific Research (IIM-CSIC), 36208 Vigo, Spain, and
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany
| | - Oleg I Shadyro
- Department of Chemistry, Belarusian State University, 220030 Minsk, Belarus
| | - Maria Fedorova
- From the Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, and .,Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany,
| |
Collapse
|
18
|
|
19
|
|
20
|
Hajdú I, Kardos J, Major B, Fabó G, Lőrincz Z, Cseh S, Dormán G. Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorg Med Chem Lett 2018; 28:3113-3118. [PMID: 30098867 DOI: 10.1016/j.bmcl.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Lysyl oxidase (LOX) enzymes as potential drug targets maintain constant attention in the therapy of fibrosis, cancer and metastasis. In order to measure the inhibitory activity of small molecules on the LOX enzyme family members a fluorometric activity screening method was developed. During assay validation, previously reported non-selective small inhibitor molecules (BAPN, MCP-1, thiram, disulfiram) were investigated on all of the major LOX enzymes. We confirmed that MCP-1, thiram, disulfiram are in fact pan-inhibitors, while BAPN inhibits only LOX-like enzymes (preferably LOX-like-protein-2, LOXL2) in contrast to the previous reports. We measured the LOX inhibitory profile of a small targeted library generated by 2D ligand-based chemoinformatics methods. Ten hits (10.4% hit rate) were identified, and the compounds showed distinct activity profiles. Potential inhibitors were also identified for LOX-like-protein-3 (LOXL3) and LOX-like-protein-4 (LOXL4), that are considered as emerging drug targets in the therapy of melanoma and gastric cancer.
Collapse
Affiliation(s)
- István Hajdú
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Balázs Major
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gabriella Fabó
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - Sándor Cseh
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary
| | - György Dormán
- TargetEx Ltd., Madách Imre utca 31/2, H-2120 Dunakeszi, Hungary.
| |
Collapse
|
21
|
Maršavelski A, Petrović D, Bauer P, Vianello R, Kamerlin SCL. Empirical Valence Bond Simulations Suggest a Direct Hydride Transfer Mechanism for Human Diamine Oxidase. ACS OMEGA 2018; 3:3665-3674. [PMID: 30023875 PMCID: PMC6044848 DOI: 10.1021/acsomega.8b00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Diamine oxidase (DAO) is an enzyme involved in the regulation of cell proliferation and the immune response. This enzyme performs oxidative deamination in the catabolism of biogenic amines, including, among others, histamine, putrescine, spermidine, and spermine. The mechanistic details underlying the reductive half-reaction of the DAO-catalyzed oxidative deamination which leads to the reduced enzyme cofactor and the aldehyde product are, however, still under debate. The catalytic mechanism was proposed to involve a prototropic shift from the substrate-Schiff base to the product-Schiff base, which includes the rate-limiting cleavage of the Cα-H bond by the conserved catalytic aspartate. Our detailed mechanistic study, performed using a combined quantum chemical cluster approach with empirical valence bond simulations, suggests that the rate-limiting cleavage of the Cα-H bond involves direct hydride transfer to the topaquinone cofactor-a mechanism that does not involve the formation of a Schiff base. Additional investigation of the D373E and D373N variants supported the hypothesis that the conserved catalytic aspartate is indeed essential for the reaction; however, it does not appear to serve as the catalytic base, as previously suggested. Rather, the electrostatic contributions of the most significant residues (including D373), together with the proximity of the Cu2+ cation to the reaction site, lower the activation barrier to drive the chemical reaction.
Collapse
Affiliation(s)
- Aleksandra Maršavelski
- Computational
Organic Chemistry and Biochemistry Group, Division of Organic Chemistry
and Biochemistry, Ruđer Bošković
Institute, Bijenička
cesta 54, 10000 Zagreb, Croatia
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, 10000 Zagreb, Croatia
- Department
of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Dušan Petrović
- Department
of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Paul Bauer
- Department
of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
- Department
of Biophysics, SciLifeLab, KTH Royal Institute
of Technology, S-10691 Stockholm, Sweden
| | - Robert Vianello
- Computational
Organic Chemistry and Biochemistry Group, Division of Organic Chemistry
and Biochemistry, Ruđer Bošković
Institute, Bijenička
cesta 54, 10000 Zagreb, Croatia
| | | |
Collapse
|
22
|
Abstract
Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure-function relationship of LOX proteins and will facilitate LOX-targeting drug discovery.
Collapse
|
23
|
Papanikolaou MG, Hadjithoma S, Chatzikypraiou DS, Papaioannou D, Drouza C, Tsipis AC, Miras HN, Keramidas AD, Kabanos TA. Investigation of dioxygen activation by copper(ii)–iminate/aminate complexes. Dalton Trans 2018; 47:16242-16254. [DOI: 10.1039/c8dt03137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CuII amidate/iminate complexes activate dioxygen by a ligated to CuII, –HCN– moiety.
Collapse
Affiliation(s)
- Michael G. Papanikolaou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | - Dimitra S. Chatzikypraiou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | - Dionysios Papaioannou
- Laboratory of Synthetic Organic Chemistry
- Department of Chemistry
- University of Patras
- GR-26504 Patras
- Greece
| | - Chryssoula Drouza
- Department of Agricultural Sciences
- Biotechnology and Food Science
- Cyprus University of Technology
- Limassol 3036
- Cyprus
| | - Athanassios C. Tsipis
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| | | | | | - Themistoklis A. Kabanos
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina 45110
- Greece
| |
Collapse
|
24
|
Hutchinson JH, Rowbottom MW, Lonergan D, Darlington J, Prodanovich P, King CD, Evans JF, Bain G. Small Molecule Lysyl Oxidase-like 2 (LOXL2) Inhibitors: The Identification of an Inhibitor Selective for LOXL2 over LOX. ACS Med Chem Lett 2017; 8:423-427. [PMID: 28435530 DOI: 10.1021/acsmedchemlett.7b00014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022] Open
Abstract
Two series of novel LOXL2 enzyme inhibitors are described: benzylamines substituted with electron withdrawing groups at the para-position and 2-substituted pyridine-4-ylmethanamines. The most potent compound, (2-chloropyridin-4-yl)methanamine 20 (hLOXL2 IC50 = 126 nM), was shown to be selective for LOXL2 over LOX and three other amine oxidases (MAO-A, MAO-B, and SSAO). Compound 20 is the first published small molecule inhibitor selective for LOXL2 over LOX.
Collapse
Affiliation(s)
- John H. Hutchinson
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Martin W. Rowbottom
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - David Lonergan
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Janice Darlington
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Pat Prodanovich
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Christopher D. King
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Jilly F. Evans
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Gretchen Bain
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| |
Collapse
|
25
|
Yang H, Peng S, Zhang Z, Yan R, Wang Y, Zhan J, Zhu D. Molecular cloning, expression, and functional analysis of the copper amine oxidase gene in the endophytic fungus Shiraia sp. Slf14 from Huperzia serrata. Protein Expr Purif 2016; 128:8-13. [PMID: 27476120 DOI: 10.1016/j.pep.2016.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is a drug used for the treatment of Alzheimer's disease. However, the biosynthesis of this medicinally important compound is not well understood. The HupA biosynthetic pathway is thought to be initiated by the decarboxylation of lysine to form cadaverine, which is then converted to 5-aminopentanal by copper amine oxidase (CAO). In this study, we cloned and expressed an SsCAO gene from a HupA-producing endophytic fungus, Shiraia sp. Slf14. Analysis of the deduced protein amino acid sequence showed that it contained the Asp catalytic base, conserved motif Asn-Tyr-Asp/Glu, and three copper-binding histidines. The cDNA of SsCAO was amplified and expressed in Escherichia coli BL21(DE3), from which a 76 kDa protein was obtained. The activity of this enzyme was tested, which provided more information about the SsCAO gene in the endophytic fungus. Gas Chromatograph-Mass Spectrometry (GC-MS) revealed that this SsCAO could accept cadaverine as a substrate to produce 5-aminopentanal, the precursor of HupA. Phylogenetic tree analysis indicated that the SsCAO from Shiraia sp. Slf14 was closely related to Stemphylium lycopersici CAO. This is the first report on the cloning and expression of a CAO gene from HupA-producing endophytic fungi. Functional characterization of this enzyme provides new insights into the biosynthesis of the HupA an anti-Alzheimer's drug.
Collapse
Affiliation(s)
- Huilin Yang
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China; Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Silu Peng
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Riming Yan
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ya Wang
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Du Zhu
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, 330013, China; Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
26
|
Ji X, Liu WQ, Yuan S, Yin Y, Ding W, Zhang Q. Mechanistic study of the radical SAM-dependent amine dehydrogenation reactions. Chem Commun (Camb) 2016; 52:10555-8. [DOI: 10.1039/c6cc05661j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radical SAM-dependent amine dehydrogenation of tryptophan andl–tyrosine has resulted from the 5′-deoxyadenosyl radical-mediated hydrogen abstraction from the Cα of the substrates.
Collapse
Affiliation(s)
- Xinjian Ji
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Wan-Qiu Liu
- Department of Chemistry
- Fudan University
- Shanghai
- China
- School of Life Sciences
| | - Shuguang Yuan
- Institute of Chemical Sciences and Engineering
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Lausanne
- Switzerland
| | - Yue Yin
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Wei Ding
- Department of Chemistry
- Fudan University
- Shanghai
- China
- School of Life Sciences
| | - Qi Zhang
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|
27
|
Murakawa T, Hamaguchi A, Nakanishi S, Kataoka M, Nakai T, Kawano Y, Yamaguchi H, Hayashi H, Tanizawa K, Okajima T. Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions. J Biol Chem 2015; 290:23094-109. [PMID: 26269595 DOI: 10.1074/jbc.m115.662726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.
Collapse
Affiliation(s)
- Takeshi Murakawa
- From the Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akio Hamaguchi
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Shota Nakanishi
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Misumi Kataoka
- the School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan, the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Tadashi Nakai
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Yoshiaki Kawano
- the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Yamaguchi
- the School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan, the Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideyuki Hayashi
- the Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan, and
| | - Katsuyuki Tanizawa
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, the Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Toshihide Okajima
- the Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan, the Department of Chemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan, and
| |
Collapse
|
28
|
Stylianou M, Drouza C, Giapintzakis J, Athanasopoulos GI, Keramidas AD. Aerial Oxidation of a V(IV)-Iminopyridine Hydroquinonate Complex: A Trap for the V(IV)-Semiquinonate Radical Intermediate. Inorg Chem 2015. [PMID: 26200893 DOI: 10.1021/acs.inorgchem.5b00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reaction of 2,5-bis[N,N'-bis(2-pyridyl-aminomethyl)aminomethyl]-p-hydroquinone (H2bpymah) with VO(2+) salts in acetonitrile or water at a low pH (2.2-3.5) results in the isolation of [{V(IV)(O)(Cl)}2(μ-bpymah)], the p-semiquinonate complex [{V(IV)(O)(Cl)}2(μ-bpymas)](OH), the cyclic mixed-valent hexanuclear compound [{V(V)(O)(μ-O)V(IV)(O)}(μ-bpymah)]3, and [(V(V)O2)2(μ-bpymah)]. [{V(IV)(O)(Cl)}2(μ-bpymas)](OH) is an intermediate of the radical-mediated oxidation of [{V(IV)(O)(Cl)}2(μ-bpymah)] from O2. At lower pH values (2.2), a reversible intramolecular electron transfer from the metal to the ligand of [{V(IV)(O)(Cl)}2(μ-bpymas)](OH) is induced with the concurrent substitution of chlorine atoms by the oxygen-bridging atoms, resulting in the formation of [{V(V)(O)(μ-O)V(IV)(O)}(μ-bpymah)]3. The metal complexes were fully characterized by X-ray crystallography, infrared (IR) spectroscopy, and magnetic measurements in the solid state, as well as by conductivity measurements, UV-vis spectroscopy, and electrochemical measurements in solution. The oxidation states of the metal ions and ligands were determined by the crystallographic data. The [{V(IV)(O)(Cl)}2(μ-bpymah)]-[{V(IV)(O)(Cl)}2(μ-bpymas)](OH) redox process is electrochemically reversible. The V(IV) ion in the semiquinonate compound exhibits a surprisingly low oxophilicity, resulting in the stabilization of OH(-) counterions at acidic pH values. An investigation of the mechanism of this reaction reveals that these complexes induce the reduction of O2 to H2O2, mimicking the activity of enzymes incorporating two redox-active centers (metal-organic) in the active site.
Collapse
Affiliation(s)
- Marios Stylianou
- †Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - Chryssoula Drouza
- ‡ Department of Agriculture Production, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limasol, Cyprus
| | - John Giapintzakis
- §Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| | | | | |
Collapse
|
29
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1170] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
30
|
Naconsie M, Kato K, Shoji T, Hashimoto T. Molecular evolution of N-methylputrescine oxidase in tobacco. PLANT & CELL PHYSIOLOGY 2014; 55:436-44. [PMID: 24287136 DOI: 10.1093/pcp/pct179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biosynthesis of nicotine in tobacco requires N-methylputrescine oxidase (MPO), which belongs to the copper-containing amine oxidase superfamily. Previous studies identified tobacco MPO1 and its close homolog NtDAO1 (formerly called MPO2), of which MPO1 has been shown preferentially to oxidize N-methylated amines. We show here that NtDAO1, as well as a homologous Arabidopsis diamine oxidase (DAO), accept non-N-methylated amines more efficiently than their corresponding N-methylated amines. MPO1 is coordinately regulated with other nicotine biosynthesis genes with regard to COI1-MYC2-dependent jasmonate induction and its dependence on nicotine-specific ERF transcription factors, whereas NtDAO1 is constitutively expressed at low basal levels in tobacco plants. Both MPO1 and NtDAO1 are targeted to peroxisomes by their C-terminal motifs, and the peroxisomal localization of MPO1 is required for it to function in nicotine biosynthesis in jasmonate-elicited cultured tobacco cells. Restricted occurrence of the MPO subfamily in Nicotiana and Solanum indicates that, during the formation of the Solanaceae, MPO has evolved from a DAO, which functions in polyamine catabolism within peroxisomes, by optimizing substrate preference and gene expression patterns to be suitable for alkaloid formation.
Collapse
Affiliation(s)
- Maliwan Naconsie
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | | | | | | |
Collapse
|
31
|
Finney J, Moon HJ, Ronnebaum T, Lantz M, Mure M. Human copper-dependent amine oxidases. Arch Biochem Biophys 2014; 546:19-32. [PMID: 24407025 DOI: 10.1016/j.abb.2013.12.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 12/11/2022]
Abstract
Copper amine oxidases (CAOs) are a class of enzymes that contain Cu(2+) and a tyrosine-derived quinone cofactor, catalyze the conversion of a primary amine functional group to an aldehyde, and generate hydrogen peroxide and ammonia as byproducts. These enzymes can be classified into two non-homologous families: 2,4,5-trihydroxyphenylalanine quinone (TPQ)-dependent CAOs and the lysine tyrosylquinone (LTQ)-dependent lysyl oxidase (LOX) family of proteins. In this review, we will focus on recent developments in the field of research concerning human CAOs and the LOX family of proteins. The aberrant expression of these enzymes is linked to inflammation, fibrosis, tumor metastasis/invasion and other diseases. Consequently, there is a critical need to understand the functions of these proteins at the molecular level, so that strategies targeting these enzymes can be developed to combat human diseases.
Collapse
Affiliation(s)
- Joel Finney
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Mason Lantz
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
32
|
Murakawa T, Hayashi H, Sunami T, Kurihara K, Tamada T, Kuroki R, Suzuki M, Tanizawa K, Okajima T. High-resolution crystal structure of copper amine oxidase fromArthrobacter globiformis: assignment of bound diatomic molecules as O2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2483-94. [DOI: 10.1107/s0907444913023196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of a copper amine oxidase fromArthrobacter globiformiswas determined at 1.08 Å resolution with the use of low-molecular-weight polyethylene glycol (LMW PEG; average molecular weight ∼200) as a cryoprotectant. The final crystallographicRfactor andRfreewere 13.0 and 15.0%, respectively. Several molecules of LMW PEG were found to occupy cavities in the protein interior, including the active site, which resulted in a marked reduction in the overallBfactor and consequently led to a subatomic resolution structure for a relatively large protein with a monomer molecular weight of ∼70 000. About 40% of the presumed H atoms were observed as clear electron densities in theFo−Fcdifference map. Multiple minor conformers were also identified for many residues. Anisotropic displacement fluctuations were evaluated in the active site, which contains a post-translationally derived quinone cofactor and a Cu atom. Furthermore, diatomic molecules, most likely to be molecular oxygen, are bound to the protein, one of which is located in a region that had previously been proposed as an entry route for the dioxygen substrate from the central cavity of the dimer interface to the active site.
Collapse
|
33
|
Klema VJ, Solheid CJ, Klinman JP, Wilmot CM. Structural analysis of aliphatic versus aromatic substrate specificity in a copper amine oxidase from Hansenula polymorpha. Biochemistry 2013; 52:2291-301. [PMID: 23452079 DOI: 10.1021/bi3016845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper amine oxidases (CAOs) are responsible for the oxidative deamination of primary amines to their corresponding aldehydes. The CAO catalytic mechanism can be divided into two half-reactions: a reductive half-reaction in which a primary amine substrate is oxidized to its corresponding aldehyde with the concomitant reduction of the organic cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) and an oxidative half-reaction in which reduced TPQ is reoxidized with the reduction of molecular oxygen to hydrogen peroxide. The reductive half-reaction proceeds via Schiff base chemistry, in which the primary amine substrate first attacks the C5 carbonyl of TPQ, forming a series of covalent Schiff base intermediates. The X-ray crystal structures of copper amine oxidase-1 from the yeast Hansenula polymorpha (HPAO-1) in complex with ethylamine and benzylamine have been determined to resolutions of 2.18 and 2.25 Å, respectively. These structures reveal the two amine substrates bound at the back of the active site coincident with TPQ in its two-electron-reduced aminoquinol form. Rearrangements of particular amino acid side chains within the substrate channel and specific protein-substrate interactions provide insight into the substrate specificity of HPAO-1. These changes begin to account for this CAO's kinetic preference for small, aliphatic amines over the aromatic amines or whole peptides preferred by some of its homologues.
Collapse
Affiliation(s)
- Valerie J Klema
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|