1
|
Nie L, Zheng Z, Chen R, Liang S, Fu P, Wu S, Liu Z, Wang C. Novel erythrocyte-shaped electrosprayed nanoparticles for co-delivery of paclitaxel and osimertinib: Preparation, characterization, and evaluation. Eur J Pharm Biopharm 2024; 200:114315. [PMID: 38789060 DOI: 10.1016/j.ejpb.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
In this work, novel erythrocyte-shaped electrosprayed nanoparticles (EENPs) were designed and constructed by tri-axial electrospraying technique with PEG as the outer layer, PLGA as the middle drugs (paclitaxel [PTX] and osimertinib [OSI]) carrier layer and air as the inner layer. The prepared EENP were characterized and evaluated based on their spectral and morphological attributes. After the PTX/OSI ratio and process optimization, the EENP has inspiring features, including nanoscale size, erythrocyte morphology with a concave disk shape, and satisfactory drug loading (DL) and encapsulation efficiency (EE). In vitro drug release showed that PTX and OSI in the formulation were released in the same ratio, and the cumulative release percentage at 24 h was close to 80 %. Furthermore, the TGIR in the EENP formulation group exceeded 90 %, approximately 3.8-fold higher than that in the free drug group. In summary, we developed an erythrocyte three-core-shell nanoparticle for the co-delivery of PTX and OSI, providing a potential chemotherapeutic delivery system for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lirong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ziwei Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruiqi Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shulong Liang
- Department of Biology, Naval Medical University, Shanghai 200433, China
| | - Pengkun Fu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Siqi Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhepeng Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Pengting Pharmaceutical Technology Co., Ltd., Room 501, Building26, Lane 129, Kongjiang Road, Shanghai 200093, China.
| | - Chao Wang
- Department of Biology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Kar A, Agarwal S, Singh A, Bajaj A, Dasgupta U. Insights into molecular mechanisms of chemotherapy resistance in cancer. Transl Oncol 2024; 42:101901. [PMID: 38341963 PMCID: PMC10867449 DOI: 10.1016/j.tranon.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024] Open
Abstract
Cancer heterogeneity poses a significant hurdle to the successful treatment of the disease, and is being influenced by genetic inheritance, cellular and tissue biology, disease development, and response to therapy. While chemotherapeutic drugs have demonstrated effectiveness, their efficacy is impeded by challenges such as presence of resilient cancer stem cells, absence of specific biomarkers, and development of drug resistance. Often chemotherapy leads to a myriad of epigenetic, transcriptional and post-transcriptional alterations in gene expression as well as changes in protein expression, thereby leading to massive metabolic reprogramming. This review seeks to provide a detailed account of various transcriptional regulations, proteomic changes, and metabolic reprogramming in various cancer models in response to three primary chemotherapeutic interventions, docetaxel, carboplatin, and doxorubicin. Discussing the molecular targets of some of these regulatory events and highlighting their contribution in sensitivity to chemotherapy will provide insights into drug resistance mechanisms and uncover novel perspectives in cancer treatment.
Collapse
Affiliation(s)
- Animesh Kar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Shivam Agarwal
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Agrata Singh
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India.
| |
Collapse
|
3
|
Dinić J, Podolski-Renić A, Dragoj M, Jovanović Stojanov S, Stepanović A, Lupšić E, Pajović M, Jovanović M, Petrović Rodić D, Marić D, Ercegovac M, Pešić M. Immunofluorescence-Based Assay for High-Throughput Analysis of Multidrug Resistance Markers in Non-Small Cell Lung Carcinoma Patient-Derived Cells. Diagnostics (Basel) 2023; 13:3617. [PMID: 38132201 PMCID: PMC10743086 DOI: 10.3390/diagnostics13243617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay's capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Sofija Jovanović Stojanov
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Ana Stepanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Ema Lupšić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Milica Pajović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| | - Dušica Petrović Rodić
- Department of Thoracic Pathology, Clinical Center of Serbia, Service of Pathohistology, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dragana Marić
- Clinic for Pulmonology, Faculty of Medicine, University of Belgrade, Dr Koste Todorovića 26, 11000 Belgrade, Serbia;
| | - Maja Ercegovac
- Clinic for Thoracic Surgery, Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia;
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (A.P.-R.); (M.D.); (S.J.S.); (A.S.); (E.L.); (M.P.); (M.J.)
| |
Collapse
|
4
|
Phoo NLL, Dejkriengkraikul P, Khaw-On P, Yodkeeree S. Transcriptomic Profiling Reveals AKR1C1 and AKR1C3 Mediate Cisplatin Resistance in Signet Ring Cell Gastric Carcinoma via Autophagic Cell Death. Int J Mol Sci 2021; 22:ijms222212512. [PMID: 34830394 PMCID: PMC8623627 DOI: 10.3390/ijms222212512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells' viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patompong Khaw-On
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
5
|
A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications. Sci Rep 2021; 11:9804. [PMID: 33963232 PMCID: PMC8105370 DOI: 10.1038/s41598-021-89352-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is a leading cause of cancer death in both men and women worldwide. The high mortality rate in lung cancer is in part due to late-stage diagnostics as well as spread of cancer-cells to organs and tissues by metastasis. Automated lung cancer detection and its sub-types classification from cell’s images play a crucial role toward an early-stage cancer prognosis and more individualized therapy. The rapid development of machine learning techniques, especially deep learning algorithms, has attracted much interest in its application to medical image problems. In this study, to develop a reliable Computer-Aided Diagnosis (CAD) system for accurately distinguishing between cancer and healthy cells, we grew popular Non-Small Lung Cancer lines in a microfluidic chip followed by staining with Phalloidin and images were obtained by using an IX-81 inverted Olympus fluorescence microscope. We designed and tested a deep learning image analysis workflow for classification of lung cancer cell-line images into six classes, including five different cancer cell-lines (P-C9, SK-LU-1, H-1975, A-427, and A-549) and normal cell-line (16-HBE). Our results demonstrate that ResNet18, a residual learning convolutional neural network, is an efficient and promising method for lung cancer cell-lines categorization with a classification accuracy of 98.37% and F1-score of 97.29%. Our proposed workflow is also able to successfully distinguish normal versus cancerous cell-lines with a remarkable average accuracy of 99.77% and F1-score of 99.87%. The proposed CAD system completely eliminates the need for extensive user intervention, enabling the processing of large amounts of image data with robust and highly accurate results.
Collapse
|
6
|
Ding Y, Wang T, Chen T, Xie C, Zhang Q. Sesquiterpenoids isolated from the flower of Inula japonica as potential antitumor leads for intervention of paclitaxel-resistant non-small-cell lung cancer. Bioorg Chem 2020; 101:103973. [DOI: 10.1016/j.bioorg.2020.103973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
|
7
|
Kim J, Sestito LF, Im S, Kim WJ, Thomas SN. Poly(cyclodextrin)-Polydrug Nanocomplexes as Synthetic Oncolytic Virus for Locoregional Melanoma Chemoimmunotherapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908788. [PMID: 33071710 PMCID: PMC7566879 DOI: 10.1002/adfm.201908788] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 05/03/2023]
Abstract
Despite the approval of oncolytic virus therapy for advanced melanoma, its intrinsic limitations that include the risk of persistent viral infection and cost-intensive manufacturing motivate the development of analogous approaches that are free from the disadvantages of virus-based therapies. Herein, we report a nanoassembly comprised of multivalent host-guest interactions between polymerized paclitaxel (pPTX) and nitric oxide incorporated polymerized β-cyclodextrin (pCD-pSNO) that through its bioactive components and when used locoregionally recapitulates the therapeutic effects of oncolytic virus. The resultant pPTX/pCD-pSNO exhibits significantly enhanced cytotoxicity, immunogenic cell death, dendritic cell activation and T cell expansion in vitro compared to free agents alone or in combination. In vivo, intratumoral administration of pPTX/pCD-pSNO results in activation and expansion of dendritic cells systemically, but with a corresponding expansion of myeloid-derived suppressor cells and suppression of CD8+ T cell expansion. When combined with antibody targeting cytotoxic T lymphocyte antigen-4 that blunts this molecule's signaling effects on T cells, intratumoral pPTX/pCD-pSNO treatment elicits potent anticancer effects that significantly prolong animal survival. This formulation thus leverages the chemo- and immunotherapeutic synergies of paclitaxel and nitric oxide and suggests the potential for virus-free nanoformulations to mimic the therapeutic action and benefits of oncolytic viruses.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, Georgia 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, Georgia 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, Georgia 30332, USA and Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, Georgia 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, Georgia 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, Georgia 30332, USA and Emory University, 201 Dowman Drive, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Specific driving of the suicide E gene by the CEA promoter enhances the effects of paclitaxel in lung cancer. Cancer Gene Ther 2019; 27:657-668. [PMID: 31548657 DOI: 10.1038/s41417-019-0137-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 11/08/2022]
Abstract
Classical chemotherapy for lung cancer needs new strategies to enhance its antitumor effect. The cytotoxicity, nonspecificity, and low bioavailability of paclitaxel (PTX) limits their use in this type of cancer. Suicide gene therapy using tumor-specific promoters may increase treatment effectiveness. We used carcinoembryonic antigen (CEA) as a tumor-specific promoter to drive the bacteriophage E gene (pCEA-E) towards lung cancer cells (A-549 human and LL2 mice cell lines) but not normal lung cells (L132 human embryonic lung cell line), in association with PTX as a combined treatment. The study was carried out using cell cultures, tumor spheroid models (MTS), subcutaneous induced tumors and lung cancer stem cells (CSCs). pCEA-E induced significant inhibition of A-549 and LL2 cell proliferation in comparison to L132 cells, which have lower CEA expression levels. Moreover, pCEA-E induced an important decrease in volume growth of A-549 and LL2 MTS producing intense apoptosis, in comparison to L132 MTS. In addition, pCEA-E enhanced the antitumor effects of PTX when combined, showing a synergistic effect. This effect was also observed in A-549 CSCs, which have been related to the recurrence of cancer. The in vivo study corroborated the effectiveness of the pCEA-E-PTX combined therapy, inducing a greater decrease in tumor volume compared to PTX and pCEA-E alone. Our results suggest that the CEA promoter is an excellent candidate for directing E gene expression specifically towards lung cancer cells, and may be used to enhance the effectiveness of PTX against this type of tumor.
Collapse
|
9
|
Duan H, Yang Z, Liang L, Zhou X. CA916798 gene expression is associated with multidrug resistance and predicts progression-free survival in patients with lung cancer. Oncol Lett 2019; 18:1171-1178. [PMID: 31423177 PMCID: PMC6607038 DOI: 10.3892/ol.2019.10436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/03/2019] [Indexed: 11/06/2022] Open
Abstract
CA916798 has been identified as a novel multidrug resistance gene in lung cancer cells. However, the expression patterns of CA916798 in tumor tissues prior and subsequent to chemotherapy remain unclear. In the present study, CA916798 expression levels in tumor tissues prior and subsequent to chemotherapy were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry analysis. The prognostic significance of CA916798 expression in tumor tissues was explored by Kaplan-Meier survival analysis and Cox proportional hazards regression analysis. The messenger RNA (mRNA) and protein expression levels of CA916798 in tumor tissues were downregulated post-chemotherapy in chemotherapy-sensitive patients with lung cancer, but not in chemotherapy-resistant patients. Downregulation of CA916798 mRNA and protein expression post-chemotherapy was significantly associated with improved progression-free survival time. The findings from the present study suggest that platinum-based chemotherapy may induce the expression of CA916798, and CA916798 may be a promising biomarker to predict chemotherapy resistance and improve therapies for patients with lung cancer.
Collapse
Affiliation(s)
- Hailing Duan
- Department of Respiratory Disease, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zaixing Yang
- Department of Respiratory Disease, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Lan Liang
- Department of Respiratory Disease, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Xiangdong Zhou
- Department of Respiratory Disease, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
10
|
Sissung TM, Rajan A, Blumenthal GM, Liewehr DJ, Steinberg SM, Berman A, Giaccone G, Figg WD. Reproducibility of pharmacogenetics findings for paclitaxel in a heterogeneous population of patients with lung cancer. PLoS One 2019; 14:e0212097. [PMID: 30817750 PMCID: PMC6394902 DOI: 10.1371/journal.pone.0212097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pharmacogenetics studies have identified several allelic variants with the potential to reduce toxicity and improve treatment outcome. The present study was designed to determine if such findings are reproducible in a heterogenous population of patients with lung cancer undergoing therapy with paclitaxel. We designed a prospective multi-institutional study that recruited n = 103 patients receiving paclitaxel therapy with a 5-year follow up. All patients were genotyped using the Drug Metabolizing Enzymes and Transporters (DMET) platform, which ascertains 1931 genotypes in 235 genes. Progression-free survival (PFS) of paclitaxel therapy and clinically-significant paclitaxel toxicities were classified and compared according to genotype. Initial screening revealed eleven variants that are associated with PFS. Of these, seven variants in ABCB11 (rs4148768), ABCC3 (rs1051640), ABCG1 (rs1541290), CYP8B1 (rs735320), NR3C1 (rs6169), FMO6P (rs7889839), and GSTM3 (rs7483) were associated with paclitaxel PFS in a multivariate analysis accounting for clinical covariates. Multivariate analysis revealed four SNPs in VKORC1 (rs2884737), SLC22A14 (rs4679028), GSTA2 (rs6577), and DCK (rs4643786) were associated with paclitaxel toxicities. With the exception of a variant in VKORC1, the present study did not find the same genetic outcome associations of other published research on pharmacogenetics variants that affect paclitaxel outcomes. This finding suggests that prior pharmacogenomics research findings may not be reproduced in the most frequently-diagnosed malignancy, lung cancer.
Collapse
Affiliation(s)
- Tristan M. Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arun Rajan
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gideon M. Blumenthal
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Liewehr
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arlene Berman
- Office of Research Nursing in the Office of the Clinical Director, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States of America
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - William D. Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Wu X, Li X, Li Z, Yu Y, You Q, Zhang X. Discovery of Nonquinone Substrates for NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as Effective Intracellular ROS Generators for the Treatment of Drug-Resistant Non-Small-Cell Lung Cancer. J Med Chem 2018; 61:11280-11297. [PMID: 30508483 DOI: 10.1021/acs.jmedchem.8b01424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The elevation of oxidative stress preferentially in cancer cells by efficient NQO1 substrates, which promote ROS generation through redox cycling, has emerged as an effective strategy for cancer therapy, even for treating drug-resistant cancers. Here, we described the identification and structural optimization studies of the hit compound 1, a new chemotype of nonquinone substrate for NQO1 as an efficient ROS generator. Further structure-activity relationship studies resulted in the most active compound 20k, a tricyclic 2,3-dicyano indenopyrazinone, which selectively inhibited the proliferation of NQO1-overexpressing A549 and A549/Taxol cancer cells. Furthermore, 20k dramatically elevated the intracellular ROS levels through NQO1-catalyzed redox cycling and induced PARP-1-mediated cell apoptosis in A549/Taxol cells. In addition, 20k significantly suppressed the growth of A549/Taxol xenograft tumors in mice with no apparent toxicity observed in vivo. Together, 20k acts as an efficient NQO1 substrate and may be a new option for the treatment of NQO1-overexpresssing drug-resistant NSCLC.
Collapse
Affiliation(s)
- Xingsen Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xiang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Pharmaceutical Engineering , China Pharmaceutical University , Nanjing , 211198 , China
| | - Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Yancheng Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , 210009 , China.,Department of Chemistry, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| |
Collapse
|
13
|
Fang L, Sheng H, Wan D, Zhu C, Jiang R, Sun X, Feng J. Prognostic role of multidrug resistance-associated protein 1 expression and platelet count in operable non-small cell lung cancer. Oncol Lett 2018; 16:1123-1132. [PMID: 30061938 PMCID: PMC6063026 DOI: 10.3892/ol.2018.8763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
The overall survival rate of patients with non-small cell lung cancer (NSCLC) following resection remains poor due to the high rates of recurrence and metastasis. The investigation of novel biomarkers is clinically necessary to improve treatment strategies. Multidrug resistance-associated protein 1 (MRP1) and platelet count are linked to a poor prognosis in various types of cancer. However, it is unknown whether MRP1 or platelet count is a suitable prognostic indicator of NSCLC. In the present study, 427 patients with operable NSCLC were enlisted. The association of MRP1 expression and platelet count with clinical pathological factors and patient outcome was evaluated. MRP1 expression was found to be significantly associated with sex, histological type and tumor differentiation, while platelet count was significantly associated with smoking behavior, histological type and clinical stage. Platelet count was significantly higher in patients with negative MRP1 expression than in those with positive MRP1 expression. Survival analysis indicated that there was no association between MRP1 expression and disease-free survival (DFS) or overall survival (OS) time. In the patients with no lymph node metastasis, the OS time was significantly longer in patients with positive MRP1 expression than in those with negative expression. However, in the patients with lymph node metastasis, the DFS time was significantly shorter in patients with positive MRP1 expression than in those with negative expression. There was an association between the platelet count and DFS and OS times, which were significantly longer in patients with a normal platelet count than in those with thrombocytosis. In conclusion, MRP1 expression and platelet count are valuable independent prognostic biomarkers for survival in operable NSCLC.
Collapse
Affiliation(s)
- Linming Fang
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Huaying Sheng
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Danying Wan
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chihong Zhu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ruibin Jiang
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojiang Sun
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, P.R. China
| | - Jianguo Feng
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
14
|
Severi L, Losi L, Fonda S, Taddia L, Gozzi G, Marverti G, Magni F, Chinello C, Stella M, Sheouli J, Braicu EI, Genovese F, Lauriola A, Marraccini C, Gualandi A, D'Arca D, Ferrari S, Costi MP. Proteomic and Bioinformatic Studies for the Characterization of Response to Pemetrexed in Platinum Drug Resistant Ovarian Cancer. Front Pharmacol 2018; 9:454. [PMID: 29867465 PMCID: PMC5952181 DOI: 10.3389/fphar.2018.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Collapse
Affiliation(s)
- Leda Severi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Fonda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Taddia
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaia Gozzi
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Jalid Sheouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Modena, Italy
| | - Angela Lauriola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marraccini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Gualandi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico D'Arca
- Department of Biomedical Science, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria P Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Shen X, Zhi Q, Wang Y, Li Z, Zhou J, Huang J. Hypoxia Induces Multidrug Resistance via Enhancement of Epidermal Growth Factor-Like Domain 7 Expression in Non-Small Lung Cancer Cells. Chemotherapy 2017; 62:172-180. [PMID: 28351036 DOI: 10.1159/000456066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
Chemotherapy is widely used in non-small cell lung cancer (NSCLC) treatment, yet multidrug resistance (MDR) is a major chemotherapeutic obstacle in both resectable and advanced NSCLC. Epidermal growth factor-like domain 7 (EGFL7), also known as vascular endothelial stain, is an endothelial cell-derived secreted factor that regulates vascular tube formulation. The aim of this study was to investigate the potential relationships between EGFL7 and MDR in NSCLC cells. We first obtained the CDDP-based MDR phenotype cell line A549/CDDP by repeated exposure to a proper concentration of CDDP (cisplatin) from original A549 cells. These A549/CDDP cells, which maintained relative high levels of EGFL7 and P-glycoprotein (P-gp), were resistant to other chemotherapy drugs, such as carboplatin (CBP), paclitaxel (TAX), and gemcitabine (GEM) (p < 0.05). We also found that hypoxia significantly reduced the chemosensitivity of NSCLC cells, and hypoxia-induced MDR was mediated by P-gp and EGFL7 (p < 0.05). EGFL7 was veryy relevant to NSCLC cell MDR, and downregulation of EGFL7 could significantly increase the chemosensitivity of NSCLC cells (p < 0.05). Thus, our findings first indicate that hypoxia induced NSCLC cell MDR at least partly by enhancing the expression of EGFL7 protein. EGFL7 might be a feasible target for reversing hypoxia-mediated MDR in NSCLC cells and a promising biomarker for predicting the development of MDR in NSCLC patients on chemotherapy.
Collapse
Affiliation(s)
- Xiaochun Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
Chen Y, Huang W, Chen F, Hu G, Li F, Li J, Xuan A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med 2016; 5:3564-3571. [PMID: 27878971 PMCID: PMC5224856 DOI: 10.1002/cam4.960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 2C8 (CYP2C8) is one of the enzymes that primarily participate in producing metabolisms of medications and P‐glycoprotein (P‐gp) has been regarded as one of the important molecules in chemotherapeutically induced multidrug resistance (MDR). In addition, the pregnane X receptor (PXR) is involved in regulating both CYP2C8 and P‐gp. We aim to research the effect of PXR on Taxol‐resistant non–small‐cell lung cancer (NSCLC cells) via regulating CYP2C8 and P‐gp. NSCLC cells were treated with SR12813, LY335979, or PXR siRNA. Cell counting kit (CCK‐8) assay was used to detect cell vitality. Colony formation assay was used to observe cell proliferation. Western blotting, real‐time polymerase chain reaction (RT‐PCR), and immunofluorescence staining were conducted to analyze the expressions of PXR, CYP2C8, and P‐gp. Taxol and its metabolic products were detected by high‐performance liquid chromatography (HPLC). The expression of PXR in A549 cell line was higher than that in other cell lines. The accumulation of PXR was observed in the nucleus after cells were treated with SR12813. Besides, SR12813 induced higher expressions of CYP2C8 and P‐gp proteins. We also discovered that pretreatment with SR12813 reversed the inhibition of cell viability and proliferation after the Taxol treatment in comparison to the SR12813 untreated group. Furthermore, the hydroxylation products of Taxol analyzed by HPLC were increased in comparison to the SR12813 untreated group, indicating that high expressions of CYP2C8 and P‐gp enhanced the resistance of A549 cells to Taxol. For cells treated with PXR siRNA, cell viability, cell proliferation, and Taxol metabolites were significantly reduced after the Taxol treatment in comparison to the siRNA‐negative group. The cell viability, cell proliferation, and Taxol metabolites were regulated by the expressions of PXR, P‐gp, and CYP2C8. That is, PXR expression has an important effect on the resistance of NSCLC cells to Taxol via upregulating P‐gp and CYP2C8.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Wandan Huang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Feiyu Chen
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guoping Hu
- Department of Respiratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Fenglei Li
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Jianhua Li
- Department of Physiology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Aiguo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
17
|
Kong Q, Han Z, Zuo X, Wei H, Huang W. Co-expression of pregnane X receptor and ATP-binding cassette sub-family B member 1 in peripheral blood: A prospective indicator for drug resistance prediction in non-small cell lung cancer. Oncol Lett 2016; 11:3033-3039. [PMID: 27123059 PMCID: PMC4840610 DOI: 10.3892/ol.2016.4369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protein expression profiling of pregnane X receptor (PXR) and ATP-binding cassette sub-family B member 1 (ABCB1; also known as MDR1 or P-gp), present in the peripheral blood mononuclear cells (PBMCs) and cancerous tissues of cases of non-small cell lung cancer (NSCLC). Furthermore, the study aimed to assess the feasibility of predicting drug resistance through the medium of PBMCs. Of the subjects included in the study, 37 were histopathologically diagnosed with NSCLC and 17 were control patients without cancer. ThinPrep liquid-based smears with cytosine were applied in the examination of the PBMCs and proved quite effective in preserving the morphology and surface antigens of the lymphocytes. Measurements of expression levels in the PBMCs and cancerous tissues were obtained by immunohistochemical means. The results showed that, with the exception of the selective PXR expression in the normal lung tissues, the two types of proteins existed extensively throughout the PBMCs, normal tissues and tumors. Among the cancer patients, prior to chemotherapy, a significant rise in ABCB1 expression could be observed in the PBMCs, together with a similar rise in ABCB1 and PXR expression in the tumor specimens. Marked upregulation of the two proteins was detected in the PBMCs following 1 cycle of first-line chemotherapy. ABCB1 expression, correlated with PXR, persisted mostly in the PBMCs and tissue samples. When bound to and activated by ligands, PXR translocates from the cytoplasm to the nucleus of the cells. PXR subsequently binds to its DNA response elements as a heterodimer with the retinoid X receptor. A PXR translocation of moderate or low differentiation was identified in 3 cases of adenocarcinoma, which were co-expressing the two genes in the PBMCs prior to chemotherapy. During follow-up visits, tumor recurrence was observed within 3 months in 5 cases, which were characterized by PXR translocation. These findings indicate that the combined expression of PXR and ABCB1 in PBMCs may be used as a prospective indicator in diagnosis prior to histopathological diagnosis, and therefore may function as a novel biomarker for the prediction of drug resistance.
Collapse
Affiliation(s)
- Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zenglei Han
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoli Zuo
- Department of Pathology, Qingdao Hiser Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hongjun Wei
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
18
|
Kim HJ, Lee KY, Kim YW, Choi YJ, Lee JE, Choi CM, Baek IJ, Rho JK, Lee JC. P-glycoprotein confers acquired resistance to 17-DMAG in lung cancers with an ALK rearrangement. BMC Cancer 2015. [PMID: 26219569 PMCID: PMC4517346 DOI: 10.1186/s12885-015-1543-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Because anaplastic lymphoma kinase (ALK) is dependent on Hsp90 for protein stability, Hsp90 inhibitors are effective in controlling growth of lung cancer cells with ALK rearrangement. We investigated the mechanism of acquired resistance to 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a geldanamycin analogue Hsp90 inhibitor, in H3122 and H2228 non-small cell lung cancer cell lines with ALK rearrangement. METHODS Resistant cell lines (H3122/DR-1, H3122/DR-2 and H2228/DR) were established by repeated exposure to increasing concentrations of 17-DMAG. Mechanisms for resistance by either NAD(P)H/quinone oxidoreductase 1 (NQO1), previously known as a factor related to 17-DMAG resistance, or P-glycoprotein (P-gp; ABCB1/MDR1) were queried using RT-PCR, western blot analysis, chemical inhibitors, the MTT cell proliferation/survival assay, and cellular efflux of rhodamine 123. RESULTS The resistant cells showed no cross-resistance to AUY922 or ALK inhibitors, suggesting that ALK dependency persists in cells with acquired resistance to 17-DMAG. Although expression of NQO1 was decreased in H3122/DR-1 and H3122/DR-2, NQO1 inhibition by dicumarol did not affect the response of parental cells (H2228 and H3122) to 17-DMAG. Interestingly, all resistant cells showed the induction of P-gp at the protein and RNA levels, which was associated with an increased efflux of the P-gp substrate rhodamine 123 (Rho123). Transfection with siRNA directed against P-gp or treatment with verapamil, an inhibitor of P-gp, restored the sensitivity to the drug in all cells with acquired resistance to 17-DMAG. Furthermore, we also observed that the growth-inhibitory effect of 17-DMAG was decreased in A549/PR and H460/PR cells generated to over-express P-gp by long-term exposure to paclitaxel, and these cells recovered their sensitivity to 17-DMAG through the inhibition of P-gp. CONCLUSION P-gp over-expression is a possible mechanism of acquired resistance to 17-DMAG in cells with ALK rearrangement.
Collapse
Affiliation(s)
- Hee Joung Kim
- Department of Internal Medicine, Konkuk University Medical Center, Seoul, South Korea.
| | - Kye Young Lee
- Department of Internal Medicine, Konkuk University Medical Center, Seoul, South Korea.
| | - Young Whan Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Yun Jung Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Jung-Eun Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Chang Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea. .,Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeongwon-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Jin Kyung Rho
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea. .,Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeongwon-gil, Songpa-gu, Seoul, 138-736, South Korea.
| |
Collapse
|
19
|
Zhu DQ, Zou Q, Hu CH, Su JL, Zhou GH, Liu P. XRCC1 genetic polymorphism acts a potential biomarker for lung cancer. Tumour Biol 2015; 36:3745-50. [PMID: 25563194 DOI: 10.1007/s13277-014-3014-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is one of the most common but serious cancers in the world. Both the X-ray repair cross-complementing group 1 (XRCC1) gene and the human multidrug resistance 1 (MDR1) gene are important candidate genes influencing the susceptibility to various diseases, including lung cancer. This study aimed to assess the correlation of genetic polymorphisms in XRCC1 and MDR1 with the susceptibility to lung cancer. In this study, a total of 320 lung cancer patients and 346 cancer-free controls in Chinese population were enrolled in this study. Data about the clinical characteristics and related risk factors of lung cancer were collected by questionnaires. The single-nucleotide polymorphisms (SNPs) of XRCC1 and MDR1 genes were genotyped by created restriction site-polymerase chain reaction method. Our data showed that the risk for lung cancer increased significantly among the variant Arg194Trp (C > T, rs1799782) and Arg399Gln (G > A, rs25487) of XRCC1, but there are no significant differences in the allelic and genotypic frequencies of c.1564A > T and c.3073A > C of MDR1 between lung cancer patients and cancer-free controls. In conclusion, these preliminary results suggest that the C > T, rs1799782 and C > T, rs25487 of XRCC1 genetic variants might be used as molecular markers for detecting lung cancer susceptibility.
Collapse
Affiliation(s)
- Dao-Qi Zhu
- Department of Oncology, Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road Avenue, Changsha, Hunan, 410011, China
| | | | | | | | | | | |
Collapse
|