1
|
Xu L, Li W, Chen SY, Deng XW, Deng WF, Liu G, Chen YJ, Cao Y. Oenothein B ameliorates hepatic injury in alcoholic liver disease mice by improving oxidative stress and inflammation and modulating the gut microbiota. Front Nutr 2022; 9:1053718. [PMID: 36579073 PMCID: PMC9792150 DOI: 10.3389/fnut.2022.1053718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Alcoholic liver disease (ALD) is a global health problem for which there is no current food and drug administration (FDA)-approved therapy. Oenothein B (OEB) is a macrocyclic dimer ellagic tannin that possesses abundant biological activities including antioxidant, anti-inflammation, antitumor, immunomodulatory, and antimicrobial properties. Materials and methods In this study, the hepatoprotective effect of OEB against ALD was investigated in vivo and in vitro. Results We found that OEB treatment dramatically reduced alcohol-induced hepatic injury, as evidenced by decreased levels of aminotransferases and inflammatory biomarkers and increased antioxidant capacity in OEB-treated groups. Discussion OEB treatment alleviated oxidative stress by upregulating the Keap1/Nrf2 signaling pathway and inhibited inflammation by downregulating the TLR4/NF-κB signaling pathway. Additionally, OEB treatment positively improved alcohol-induced intestinal microbial dysbiosis by modulating the structure and composition of gut microbiota. Interestingly, we observed the increasement of short-chain fatty acid (SCFA) producers (Muribaculaceae) and the decreasement of Gram-negative bacteria (Akkermansia) in the OEB treatment groups, which may contribute to the inhibition of hepatic oxidative stress and inflammation via the gut-liver axis. In summary, our findings indicate that OEB is a promising therapeutic strategy for preventing and treating ALD.
Collapse
Affiliation(s)
- Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wei Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Shu-yi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi-wen Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wei-feng Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yun-jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
3
|
Okuyama S, Yoshimura M, Amakura Y, Nakajima M, Furukawa Y. Activation of Extracellular Signal-Regulated Kinase 2 and cAMP Response Element-Binding Protein in Cultured Neurons by the Macrocyclic Ellagitannin Oenothein B. NEUROSCI 2022; 3:387-394. [PMID: 39483426 PMCID: PMC11523700 DOI: 10.3390/neurosci3030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2024] Open
Abstract
(1) Background: The findings of our recent in vivo study indicated that the oral administration of oenothein B, a unique macrocyclic ellagitannin, activated extracellular signal-regulated kinase (ERK) 2 and cAMP response element-binding protein (CREB) in the mouse brain. A large hydrophilic oenothein B is unable to reach the brain, suggesting that any metabolite(s) of oenothein B might function in the brain. (2) Results: The addition of oenothein B to the culture medium of rat cortical neurons induced the prompt and significant activation of ERK2 and CREB. (3) Conclusions: The activation of ERK2 and CREB is crucial for synaptic transmission and learning/memory formation in the brain. The present results suggest oenothein B exerts neurotrophic/neuroprotective effects in the brain through the modulation of neuronal signaling pathways, if it reaches the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.)
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.)
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| |
Collapse
|
4
|
Okuyama S, Furukawa Y, Yoshimura M, Amakura Y, Nakajima M, Yoshida T. Oenothein B, a Bioactive Ellagitannin, Activates the Extracellular Signal-Regulated Kinase 2 Signaling Pathway in the Mouse Brain. PLANTS 2021; 10:plants10051030. [PMID: 34065522 PMCID: PMC8161343 DOI: 10.3390/plants10051030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022]
Abstract
(1) Background: Oenothein B, a cyclic dimeric ellagitannin present in various medicinal plants, has been reported to exert diverse effects that are beneficial for the treatment and prevention of diseases, including cancer and infections. We recently showed that oenothein B also functions in the brain because its oral administration to systemic inflammatory model mice reduced inflammatory responses in the brain and suppressed abnormal behavior. (2) Results: The present in vivo results demonstrated that oenothein B activated extracellular signal-regulated kinase 2 and cAMP response element-binding protein in the brain, both of which play important roles in synaptic transmission and learning/memory in the central nervous system (CNS). (3) Conclusions: These results suggest that oenothein B exerts neuroprotective effects on the CNS by not only its anti-inflammatory activity but also by enhancing neuronal signaling pathways.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
- Correspondence: ; Tel.: +89-925-7111; Fax: +89-926-7162
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (S.O.); (M.N.)
| | - Takashi Yoshida
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan; (M.Y.); (Y.A.); (T.Y.)
- Department of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Li W, Li Z, Peng MJ, Zhang X, Chen Y, Yang YY, Zhai XX, Liu G, Cao Y. Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in Caenorhabditis elegans. Food Funct 2020; 11:9157-9167. [PMID: 33026384 DOI: 10.1039/d0fo01635g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oenothein B (OEB) has various biological functions, although few studies have focused on its effect on in vivo metabolic phenotypes. In the present study, the systematic antioxidant activity of OEB was evaluated both in vitro and in vivo, and the effect of OEB on metabolic pathways related to antioxidant capacity of Caenorhabditis elegans (C. elegans) was explored. Our findings indicate that OEB exhibits great antioxidant capacity and ability to scavenge free radicals and that OEB treatment can protect RAW 264.7 macrophages from oxidative damage by increasing superoxide dismutase (SOD) activity, catalase (CAT) activity and glutathione (GSH) content and the corresponding gene expression (sod2, cat, gpx1), while decreasing malonic dialdehyde (MDA) content. Moreover, OEB treatment significantly reduced ROS accumulation under oxidative stress conditions and increased glutathione peroxidase (GPx) activity and decreased MDA content in C. elegans. Metabolomics analysis revealed that sixteen out of forty-two significantly altered metabolites were selected as potential biomarkers related to alterations in the antioxidant status of worms, including metabolic pathways involved in amino acid metabolism, taurine and hypotaurine metabolism, lipid metabolism, and purine metabolism. Overall, our results provide new insights into the effects of OEB treatment on antioxidant capacity and metabolism that suggest that OEB could be a potentially good source of natural antioxidants.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Ziyin Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming-Jun Peng
- Guangzhou Inspection of Food Control, Guangzhou 511400, China
| | - Xiaoying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yu-Yu Yang
- Guangzhou Greencream Biotech Co., Ltd, Guangzhou 510663, China
| | | | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| |
Collapse
|
6
|
Pharmacological properties of fireweed (Epilobium angustifolium L.) and bioavailability of ellagitannins. A review. HERBA POLONICA 2020. [DOI: 10.2478/hepo-2020-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Summary
Fireweed (Epilobium angustifolium L.) is a well-known medicinal plant traditionally used in the treatment of urogenital diseases, stomach and liver disorders, skin problems, etc. E. angustifolium extracts show anti-androgenic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial activities. The unique combination of biological properties demonstrated by the results of some studies indicates that fireweed has a positive effect in benign prostatic hyperplasia (BPH) and potentially in the prostate cancer chemoprevention. However, the efficacy of E. angustifolium phytotherapy is still poorly tested in clinical trials, while numerous beneficial effects of extracts have been documented in the in vitro and in vivo tests. Fireweed is rich in polyphenolic compounds, particularly ellagitannins. Currently, polyphenols are considered to be modulators of beneficial gut microbiota. The literature data support the use of ellagitannins in the prostate cancer chemoprevention, but caution is advised due to the highly variable production of urolithins by the individual microbiota. A better understanding of the microbiota’s role and the mechanisms of its action are crucial for an optimal therapeutic effect. This paper aims to summarize and discuss experimental data concerning pharmacological properties of E. angustifolium and bioavailability of ellagitannins – important bioactive compounds of this plant.
Collapse
|
7
|
Gahramanova M. THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Liu Z, Wang L, Shi L, Chen X, Chang Y, Cao Y, Zhao L. Investigation on the Interaction Behavior Between Oenothein B and Pepsin by Isothermal Titration Calorimetry and Spectral Studies. J Food Sci 2019; 84:2412-2420. [PMID: 31429484 DOI: 10.1111/1750-3841.14678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 01/17/2023]
Abstract
Oenothein B (OeB) is a dimeric macrocyclic ellagitannin isolated from Herbs and fruits that have a variety of biological activities. In order to better understand the effect of OeB on the activity of the digestive enzyme pepsin, interactions between OeB and pepsin were investigated in vitro under simulated physiological conditions based on enzyme inhibition studies, fluorescence, isothermal titration calorimetry, CD, and molecular docking. It was found OeB is an effective inhibitor of pepsin, likely acting in a reversible manner through both competitive and noncompetitive inhibition. Fluorescence quenching of pepsin by OeB was a static quenching. CD spectra showed the addition of OeB causes the main chain of pepsin to loosen and expand and the partial β-sheet structure to be converted to a disordered structure. Isothermal titration calorimetry and docking studies revealed the main binding mechanism of OeB and pepsin was through noncovalent interactions, hydrophobic interactions with OeB and the internal hydrophobic group of pepsin, and then hydrogen bonding between OeB and the Val243 and Asp77 residues of pepsin. Noncovalent bonds between OeB and pepsin change the polarity and structure of enzymes, decreasing enzymatic activity. Compared with small molecular polyphenols, OeB has a weaker hydrophobic interaction with pepsin and less effect on the secondary structure of pepsin. These findings are the first direct elucidation of the interactions between the oligomer ellagitannin OeB and pepsin, further contributing to understanding binding between oligomer ellagitannins and digestive enzymes. PRACTICAL APPLICATION: The results of this study indicate that the interaction between OeB and pepsin has a certain inhibitory effect on pepsin. In order to reduce the impact of OeB on human digestion and its own activities, nano-encapsulation technology can be used in the future to protect oligomeric ellagitannin such as OeB.
Collapse
Affiliation(s)
- Zitao Liu
- College of Food Science, South China Agricultural Univ., Guangzhou, Guangdong, 510642, PR China
| | - Li Wang
- College of Food Science, South China Agricultural Univ., Guangzhou, Guangdong, 510642, PR China.,Inst. of Food Safety and Nutrition, Jinan Univ., Guangzhou, Guangdong, 510632, PR China
| | - Lei Shi
- Inst. of Food Safety and Nutrition, Jinan Univ., Guangzhou, Guangdong, 510632, PR China
| | - Xun Chen
- Inst. of Food Safety and Nutrition, Jinan Univ., Guangzhou, Guangdong, 510632, PR China
| | - Yanlei Chang
- Inst. of Food Safety and Nutrition, Jinan Univ., Guangzhou, Guangdong, 510632, PR China
| | - Yong Cao
- College of Food Science, South China Agricultural Univ., Guangzhou, Guangdong, 510642, PR China
| | - Lichao Zhao
- College of Food Science, South China Agricultural Univ., Guangzhou, Guangdong, 510642, PR China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, Guangdong, 510640, PR China
| |
Collapse
|
9
|
Effect of Massoia ( Massoia aromatica Becc.) Bark on the Phagocytic Activity of Wistar Rat Macrophages. Sci Pharm 2018; 86:scipharm86020019. [PMID: 29748470 PMCID: PMC6027675 DOI: 10.3390/scipharm86020019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022] Open
Abstract
The essential oil of Massoia (Massoia aromatica Becc., Lauraceae) bark is a potential immunomodulator in vitro. This study evaluated the potential immunomodulatory effects of Massoia bark infusion on the nonspecific immune response (phagocytosis) of Wistar rats. For the in vitro assay, macrophages were treated with the freeze-dried infusion at the concentrations of 2.5, 5, 10, 20, or 40 µg/mL media. For the in vivo assay, two-month-old male Wistar rats were divided into five groups. The baseline group received distilled water at the dose of 1 mL/100 g body weight (BW), with the herbal product containing Phyllanthus niruri extract that was administered as the positive control at the dose of 0.54 mL/rat. The treatment groups received the infusion at a dose of 100, 300, or 500 mg/100 g BW. Treatments were given orally every day for 14 days. The ability of macrophage cells to phagocyte latex was determined as phagocytic index (PI), and it was observed under microscopy with 300 macrophages. The in vitro study revealed that the phagocytic activity of the infusion-treated macrophages significantly increased in comparison with that of the control macrophages in a concentration-dependent manner. Among all of the treatment concentrations, the concentration of 40 µg/mL provided the highest activity with a PI value of 70.51 ± 1.11%. The results of the in vivo assay confirmed those of the in vitro assay. The results of the present study indicate that Massoia bark can increase the phagocytic activity of rat macrophage cells.
Collapse
|
10
|
Yoshida T, Yoshimura M, Amakura Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018; 23:E552. [PMID: 29498647 PMCID: PMC6017083 DOI: 10.3390/molecules23030552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric-heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.
Collapse
Affiliation(s)
- Takashi Yoshida
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
- Okayama University, Okayama 701-1152, Japan.
| | - Morio Yoshimura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiaki Amakura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
11
|
Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytother Res 2016; 30:1287-97. [PMID: 27215200 DOI: 10.1002/ptr.5648] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/27/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, antibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew G Ramstead
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
12
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
13
|
Yoshimura M. [Structure elucidation of antioxidative polyphenols and their biological properties]. YAKUGAKU ZASSHI 2015; 134:957-64. [PMID: 25174366 DOI: 10.1248/yakushi.14-00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tannins and related polyphenols have been reported to produce diverse biological effects that indicate their therapeutic potential, including antioxidative, antibacterial, and antiviral activities. In an exploratory study of natural antioxidants with biological effects, we investigated the tannin constituents of myrtaceous plants reported to be rich in polyphenols. We isolated 16 new compounds from five species of the Melaleuca, Eucalyptus, Syzygium, Pimenta, and Myrtus genera. Among the new polyphenols, nine were isolated from Melaleuca squarrosa and characterized as C-glucosidic ellagitannin monomers and oligomers. The structures of the other new polyphenols from myrtaceous plants and a novel compound obtained from the berries of Pyracantha coccinea (Rosaceae) were also elucidated based on spectroscopic and chemical evidence. The antioxidative activity of isolates in the present study was estimated by measuring 1,1-diphenyl-2-picrylhydrazyl radical (DPPH)-scavenging activity and in the oxygen radical absorbance capacity (ORAC) test. We found that oenothein B, a macrocyclic ellagitannin dimer, is widely distributed in the genus Eucalyptus and produces a significant immunomodulatory effect on human dendritic cells (DCs). In a survey of natural ligands that bind to the aryl hydrocarbon receptor (AhR), nepitrin, a flavonoid glycoside, and other polyphenols were revealed to be promising therapeutic candidates.
Collapse
|
14
|
Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): a review. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:316-346. [PMID: 25196824 DOI: 10.1016/j.jep.2014.08.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Epilobium genus (willowherb) comprises of ca. 200 species of herbaceous plants distributed around the world. Infusions prepared form willowherbs have been traditionally used externally in skin and mucosa infections and in the treatment of benign prostate hyperplasia. Nowadays extracts from different Epilobium species are widely used by patients, however the lack of clinical studies does not allow to fully establish their efficacy. The present review summarizes published data on phytochemistry, ethnopharmacological use and pharmacological studies concerning willowherb species investigated throughout past few decades. MATERIALS AND METHODS Literature survey was performed using Scopus, PubMed, Web of Science and Reaxys databases looking for papers and patents focused on chemical composition and bioactivity of Epilobium species. Systematic research in ethnopharmacological literature in digitalized sources of academic libraries was also carried out. RESULT The chemical composition of different Epilobium species and their bioactivities are described. The detailed information on constituents isolated and detected by chromatographic methods is given. The studies show that polyphenols are main compounds occurring in Epilobium herb among which flavonoids, phenolic acids and tannins (oenothein B and oenothein A) are dominating constituents. The extracts and some isolated compounds from Epilobium sp. were shown to possess antimicrobial, anti-proliferative, anti-inflammatory, analgesic and antioxidative activities. Because many studies suggest that oenothein B as dominating constituent may be responsible for Epilobium sp. pharmacological effects, its documented bioactivities were also described. CONCLUSIONS The pharmacological studies performed on Epilobium justify the traditional use of this species in external and in gastrointestinal inflammations. As far as the treatment of benign prostate hyperplasia (BPH) is considered, in the literature, there are some reports indicating that Epilobium extracts have a beneficial effect for this disorder, but the number of in vitro studies is not sufficient and the in vivo studies are not conclusive or too preliminary to draw a final conclusion about the efficacy of Epilobium preparations. More in vitro, in vivo and clinical studies to confirm this mode of action are strongly needed. Epilobium's extracts have also documented antioxidative and potential anti-inflammatory properties. Oenothein B can be considered as responsible for some of Epilobium pharmacological properties. Because of the lack of clinical data further studies are needed to provide an evidence base for traditional uses of plant materials belonging to the Epilobium genus.
Collapse
Affiliation(s)
- Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Jakub P Piwowarski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
15
|
Karimi MH, Ebrahimnezhad S, Namayandeh M, Amirghofran Z. The effects of cichorium intybus extract on the maturation and activity of dendritic cells. ACTA ACUST UNITED AC 2014; 22:28. [PMID: 24564889 PMCID: PMC3936942 DOI: 10.1186/2008-2231-22-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cichorium intybus is a medicinal plant commonly used in traditional medicine for its benefits in immune-madiated disorders. There are several evidences showing that C. intybus can modulate immune responses. In the present study we have investigated the effects of the ethanolic root extract of this plant on the immune system by targeting dendritic cells (DCs). For this purpose, phenotypic and functional maturity of murine DCs after treatment with the extract was analyzed by flow cytometry and mixed lymphocyte reaction (MLR) assay. RESULTS C. intybus did not change the expression of CD40, CD86 and MHC-II molecules as important co-stimulatory markers on DCs compared to the control, indicating that it could not promote DCs phenotypic maturation. Treatment of DCs with lower concentrations of the extract resulted in an increased production of IL-12 by these cells with no change in IL-10 release. The capacity of treated DCs to stimulate allogenic T cells proliferation and cytokines secretion was examined in the co-cuture of these cells with T cells in MLR. C. intybus at higher concentrations inhibited proliferation of allogenic T cells and in lower concentrations changed the level of cytokines such that IL-4 decreased and IFN-γ increased. CONCLUSIONS These results indicated that C. intybus extract at higher concentrations can inhibit T cell stimulating activity of DCs, whereas at lower concentrations can modulate cytokine secretion toward a Th1 pattern. These data may in part explain the traditional use of this plant in treatment of immune-mediated disorders.
Collapse
Affiliation(s)
| | | | | | - Zahra Amirghofran
- Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Oenothein B suppresses lipopolysaccharide (LPS)-induced inflammation in the mouse brain. Int J Mol Sci 2013; 14:9767-78. [PMID: 23652834 PMCID: PMC3676811 DOI: 10.3390/ijms14059767] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/28/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023] Open
Abstract
Oenothein B has been recently evaluated for its ability to affect inflammatory responses in peripheral tissues. In this study, we examined its effect on the damage to the central nervous system due to systemic inflammation. For this purpose, ICR mice were injected with an intraperitoneal (i.p.) dose of lipopolysaccharide (LPS; 1 mg/kg mouse). When oenothein B was administered per os (p.o.), it suppressed (1) LPS-induced abnormal behavior in open field; (2) LPS-induced microglial activation in the hippocampus and striatum; and (3) LPS-induced cyclooxygenase (COX)-2 production in the hippocampus and striatum of these mice. These results suggest that oenothein B had the ability to reduce neuroinflammation in the brain during systemic inflammation.
Collapse
|