1
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10354-9. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Xiao Y, Xiao C, He X, Yang X, Tong Z, Wang Z, Sun Z, Qiu W. A Novel Non-Specific Lipid Transfer Protein Gene, CmnsLTP6.9, Enhanced Osmotic and Drought Tolerance by Regulating ROS Scavenging and Remodeling Lipid Profiles in Chinese Chestnut ( Castanea mollissima Blume). PLANTS (BASEL, SWITZERLAND) 2023; 12:3916. [PMID: 38005813 PMCID: PMC10675601 DOI: 10.3390/plants12223916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Chestnut (Castanea mollissima Blume) is an important economic tree owing to its tasty fruit and adaptability to environmental stresses, especially drought. Currently, there is limited information about non-specific lipid transfer protein (nsLTP) genes that respond to abiotic stress in chestnuts. Here, a chestnut nsLTP, named CmnsLTP6.9, was identified and analyzed. The results showed that the CmnsLTP6.9 protein localized in the extracellular matrix had two splicing variants (CmnsLTP6.9L and CmnsLTP6.9S). Compared with CmnsLTP6.9L, CmnsLTP6.9S had an 87 bp deletion in the 5'-terminal. Overexpression of CmnsLTP6.9L in Arabidopsis enhanced tolerance to osmotic and drought stress. Upon exposure to osmotic and drought treatment, CmnsLTP6.9L could increase reactive oxygen species (ROS)-scavenging enzyme activity, alleviating ROS damage. However, CmnsLTP6.9S-overexpressing lines showed no significant differences in phenotype, ROS content, and related enzyme activities compared with the wild type (WT) under osmotic and drought treatment. Moreover, lipid metabolism analysis confirmed that, unlike CmnsLTP6.9S, CmnsLTP6.9L mainly altered and upregulated many fatty acyls and glycerophospholipids, which implied that CmnsLTP6.9L and CmnsLTP6.9S played different roles in lipid transference in the chestnut. Taken together, we analyzed the functions of CmnsLTP6.9L and CmnsLTP6.9S, and demonstrated that CmnsLTP6.9L enhanced drought and osmotic stress tolerance through ROS scavenging and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.X.); (C.X.); (X.H.); (X.Y.); (Z.T.); (Z.W.); (Z.S.)
| |
Collapse
|
3
|
Wang D, Song J, Lin T, Yin Y, Mu J, Liu S, Wang Y, Kong D, Zhang Z. Identification of potato Lipid transfer protein gene family and expression verification of drought genes StLTP1 and StLTP7. PLANT DIRECT 2023; 7:e491. [PMID: 36993902 PMCID: PMC10041547 DOI: 10.1002/pld3.491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP. Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Jian Song
- Institute of Industrial CropsShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Tuanrong Lin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Yuhe Yin
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Junxiang Mu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Shuancheng Liu
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Yaqin Wang
- College of Life Sciences and TechnologyJining Normal UniversityUlanqabInner MongoliaChina
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| | - Zhicheng Zhang
- Wulanchabu Academy of Agricultural and Forestry Research SciencesWulanchabuInner MongoliaChina
| |
Collapse
|
4
|
A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize. Int J Mol Sci 2023; 24:ijms24021660. [PMID: 36675174 PMCID: PMC9864150 DOI: 10.3390/ijms24021660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize.
Collapse
|
5
|
Valoroso MC, Lucibelli F, Aceto S. Orchid NAC Transcription Factors: A Focused Analysis of CUPULIFORMIS Genes. Genes (Basel) 2022; 13:genes13122293. [PMID: 36553560 PMCID: PMC9777940 DOI: 10.3390/genes13122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Plant transcription factors are involved in different developmental pathways. NAC transcription factors (No Apical Meristem, Arabidopsis thaliana Activating Factor, Cup-shaped Cotyledon) act in various processes, e.g., plant organ formation, response to stress, and defense mechanisms. In Antirrhinum majus, the NAC transcription factor CUPULIFORMIS (CUP) plays a role in determining organ boundaries and lip formation, and the CUP homologs of Arabidopsis and Petunia are involved in flower organ formation. Orchidaceae is one of the most species-rich families of angiosperms, known for its extraordinary diversification of flower morphology. We conducted a transcriptome and genome-wide analysis of orchid NACs, focusing on the No Apical Meristem (NAM) subfamily and CUP genes. To check whether the CUP homologs could be involved in the perianth formation of orchids, we performed an expression analysis on the flower organs of the orchid Phalaenopsis aphrodite at different developmental stages. The expression patterns of the CUP genes of P. aphrodite suggest their possible role in flower development and symmetry establishment. In addition, as observed in other species, the orchid CUP1 and CUP2 genes seem to be regulated by the microRNA, miR164. Our results represent a preliminary study of NAC transcription factors in orchids to understand the role of these genes during orchid flower formation.
Collapse
Affiliation(s)
- Maria Carmen Valoroso
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici, Italy
- Correspondence: (M.C.V.); (S.A.)
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
- Correspondence: (M.C.V.); (S.A.)
| |
Collapse
|
6
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Amador VC, dos Santos-Silva CA, Vilela LMB, Oliveira-Lima M, de Santana Rêgo M, Roldan-Filho RS, de Oliveira-Silva RL, Lemos AB, de Oliveira WD, Ferreira-Neto JRC, Crovella S, Benko-Iseppon AM. Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity. Antibiotics (Basel) 2021; 10:1281. [PMID: 34827219 PMCID: PMC8615156 DOI: 10.3390/antibiotics10111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects. Traditionally, LTPs have been identified by their direct isolation by biochemical techniques, whereas omics data and bioinformatics deserve special attention for their potential to bring new insights. In this context, new possible functions have been identified revealing that LTPs are actually multipurpose, with many additional predicted roles. Despite some challenges due to the toxicity and allergenicity of LTPs, a systematic review and search in patent databases, indicate promising perspectives for the biotechnological use of LTPs in human health and also plant defense.
Collapse
Affiliation(s)
- Vinícius Costa Amador
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Carlos André dos Santos-Silva
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34100 Trieste, Italy;
| | - Lívia Maria Batista Vilela
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Marx Oliveira-Lima
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Mireli de Santana Rêgo
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Ricardo Salas Roldan-Filho
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Roberta Lane de Oliveira-Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil;
| | - Ayug Bezerra Lemos
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Wilson Dias de Oliveira
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - José Ribamar Costa Ferreira-Neto
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| | - Sérgio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha 1883, Qatar;
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil; (V.C.A.); (L.M.B.V.); (M.O.-L.); (M.d.S.R.); (R.S.R.-F.); (A.B.L.); (W.D.d.O.); (J.R.C.F.-N.)
| |
Collapse
|
8
|
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021; 12:genes12081256. [PMID: 34440430 PMCID: PMC8394574 DOI: 10.3390/genes12081256] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exploring the molecular foundation of the gene-regulatory systems underlying agronomic parameters or/and plant responses to both abiotic and biotic stresses is crucial for crop improvement. Thus, transcription factors, which alone or in combination directly regulated the targeted gene expression levels, are appropriate players for enlightening agronomic parameters through genetic engineering. In this regard, homeodomain leucine zipper (HD-ZIP) genes family concerned with enlightening plant growth and tolerance to environmental stresses are considered key players for crop improvement. This gene family containing HD and LZ domain belongs to the homeobox superfamily. It is further classified into four subfamilies, namely HD-ZIP I, HD-ZIP II, HD-ZIP III, and HD-ZIP IV. The first HD domain-containing gene was discovered in maize cells almost three decades ago. Since then, with advanced technologies, these genes were functionally characterized for their distinct roles in overall plant growth and development under adverse environmental conditions. This review summarized the different functions of HD-ZIP genes in plant growth and physiological-related activities from germination to fruit development. Additionally, the HD-ZIP genes also respond to various abiotic and biotic environmental stimuli by regulating defense response of plants. This review, therefore, highlighted the various significant aspects of this important gene family based on the recent findings. The practical application of HD-ZIP biomolecules in developing bioengineered plants will not only mitigate the negative effects of environmental stresses but also increase the overall production of crop plants.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agriculture Science (CAAS), Wuhan 430062, China
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China;
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.L.); (M.A.E.-E.)
| | - Enas M. El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Mohamed A. El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Correspondence: (Y.L.); (M.A.E.-E.)
| |
Collapse
|
9
|
Zhao J, Wang S, Qin J, Sun C, Liu F. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:756-769. [PMID: 31469486 PMCID: PMC7004919 DOI: 10.1111/pbi.13243] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) play critical roles in plant development and response to abiotic stresses. Here, we found that a rice lipid transfer protein, OsLTPL159, was associated with cold tolerance at the early seedling stage. Overexpression of an OsLTPL159IL112 allele from the cold-tolerant introgression line IL112 in either the japonica variety Zhonghua17 (ZH17) or the indica variety Teqing background dramatically enhanced cold tolerance. In addition, down-regulation of the expression of OsLTPL159 in the japonica variety ZH17 by RNA interference (RNAi) significantly decreased cold tolerance. Further transcriptomic, physiological and histological analysis showed that the OsLTPL159IL112 allele likely enhanced the cold tolerance of rice at the early seedling stage by decreasing the toxic effect of reactive oxygen species, enhancing cellulose deposition in the cell wall and promoting osmolyte accumulation, thereby maintaining the integrity of the chloroplasts. Notably, overexpression of another allele, OsLTPL159GC2 , from the recipient parent Guichao 2 (GC2), an indica variety, did not improve cold tolerance, indicating that the variations in the OsLTPL159 coding region of GC2 might disrupt its function for cold tolerance. Further sequence comparison found that all 22 japonica varieties surveyed had an OsLTPL159 haplotype identical to IL112 and were more cold-tolerant than the surveyed indica varieties, implying that the variations in OsLTPL159 might be associated with differential cold tolerance of japonica and indica rice. Therefore, our findings suggest that the OsLTPL159 allele of japonica rice could be used to improve cold tolerance of indica rice through a molecular breeding strategy.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Shanshan Wang
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingjing Qin
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 2019; 20:375. [PMID: 31088347 PMCID: PMC6518685 DOI: 10.1186/s12864-019-5698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that are abundant in higher plants. They have been reported to play an important role in various plant physiological processes, such as lipid transfer, signal transduction, and pathogen defense. To date, a comprehensive analysis of the potato nsLTP gene family is still lacking after the completion of potato (Solanum tuberosum L.) genome sequencing. A genome-wide characterization, classification and expression analysis of the StnsLTP gene family was performed in this study. RESULTS In this study, a total of 83 nsLTP genes were identified and categorized into eight types based on Boutrot's method. Multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, and cis-elements in the promoter sequences, were analyzed. The chromosome distribution and the collinearity analyses suggested that the expansion of the StnsLTP gene family was greatly enhanced by the tandem duplications. Ka/Ks analysis showed that 47 pairs of duplicated genes tended to undergo purifying selection during evolution. Moreover, the expression of StnsLTP genes in various tissues was analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the StnsLTP genes were mainly expressed in younger tissues. These results indicated that StnsLTPs may played significant and functionally varied roles in the development of different tissues. CONCLUSION In this study, we comprehensively analyzed nsLTPs in potato, providing valuable information to better understand the functions of StnsLTPs in different tissues and pathways, especially in response to abiotic stress.
Collapse
Affiliation(s)
- Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaxue Liu
- Innovation Experimental College, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yue Pei
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Minghui Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxi Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
11
|
Xu Y, Zheng X, Song Y, Zhu L, Yu Z, Gan L, Zhou S, Liu H, Wen F, Zhu C. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Sci Rep 2018; 8:8873. [PMID: 29891874 PMCID: PMC5995848 DOI: 10.1038/s41598-018-27274-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/25/2018] [Indexed: 11/08/2022] Open
Abstract
Lipid transfer proteins (LTPs), a class of small, ubiquitous proteins, play critical roles in various environmental stresses. However, their precise biological functions remain unknown. Here we isolated an extracellular matrix-localised LTP, NtLTP4, from Nicotiana tabacum. The overexpression of NtLTP4 in N. tabacum enhanced resistance to salt and drought stresses. Upon exposure to high salinity, NtLTP4-overexpressing lines (OE lines) accumulated low Na+ levels. Salt-responsive genes, including Na+/H+ exchangers (NHX1) and high-affinity K+ transporter1 (HKT1), were dramatically higher in OE lines than in wild-type lines. NtLTP4 might regulate transcription levels of NHX1 and HKT1 to alleviate the toxicity of Na+. Interestingly, OE lines enhanced the tolerance of N. tabacum to drought stress by reducing the transpiration rate. Moreover, NtLTP4 could increase reactive oxygen species (ROS)-scavenging enzyme activity and expression levels to scavenge excess ROS under drought and high salinity conditions. We used a two-hybrid yeast system and screened seven putative proteins that interact with NtLTP4 in tobacco. An MAPK member, wound-induced protein kinase, was confirmed to interact with NtLTP4 via co-immunoprecipitation and a firefly luciferase complementation imaging assay. Taken together, this is the first functional analysis of NtLTP4, and proves that NtLTP4 positively regulates salt and drought stresses in N. tabacum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Xinxin Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Lifei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Liming Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Hongmei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Fujiang Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China.
| |
Collapse
|
12
|
iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.). Int J Mol Sci 2017; 18:ijms18091984. [PMID: 28926933 PMCID: PMC5618633 DOI: 10.3390/ijms18091984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H2O2 and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H2O2 are closely related to premature leaf senescence in cotton.
Collapse
|
13
|
He F, Shen H, Lin C, Fu H, Sheteiwy MS, Guan Y, Huang Y, Hu J. Transcriptome Analysis of Chilling-Imbibed Embryo Revealed Membrane Recovery Related Genes in Maize. FRONTIERS IN PLANT SCIENCE 2017; 7:1978. [PMID: 28101090 PMCID: PMC5209358 DOI: 10.3389/fpls.2016.01978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 05/23/2023]
Abstract
The delayed seed germination and poor seedling growth caused by imbibitional chilling injury was common phenomenon in maize seedling establishment. In this study, RNA sequencing technology was used to comprehensively investigate the gene expressions in chilling-imbibed maize embryo and to reveal the underlying mechanism of chilling injury at molecular level. Imbibed seeds for 2 h at 5°C (LT2) were selected and transcriptomic comparative analysis was performed. Among 327 DEGs indentified between dry seed (CK0) and LT2, 15 specific genes with plasma membrane (PM) relevant functions belonging to lipid metabolism, stress, signaling and transport were characterized, and most of them showed down-regulation pattern under chilling stress. When transferred to 25°C for recovery (LT3), remarkable changes occurred in maize embryo. There were 873 DEGs including many PM related genes being identified between LT2 and LT3, some of which showing significant increase after 1 h recovery. Moreover, 15 genes encoding intracellular vesicular trafficking proteins were found to be exclusively differential expressed at recovery stage. It suggested that the intracellular vesicle trafficking might be essential for PM recovery through PM turnover. Furthermore, transcriptome analyses on imbibed embryos under normal condition (25°C) were also made as a contrast. A total of 651 DEGs were identified to mainly involved in protein metabolism, transcriptional regulation, signaling, and energy productions. Overall, the RNA-Seq results provided us a deep knowledge of imbibitional chilling injury on plasma membrane and a new view on PM repaired mechanism during early seed imbibition at transcriptional level. The DEGs identified in this work would be useful references in future seed germination research.
Collapse
Affiliation(s)
- Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hangqi Shen
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Cheng Lin
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hong Fu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Mohamed S. Sheteiwy
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Agronomy, Faculty of Agriculture, Mansoura UniversityMansoura, Egypt
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
14
|
Kimura S, Kawano T, Iwasaki T. Short polyhistidine peptides penetrate effectively into Nicotiana tabacum-cultured cells and Saccharomyces cerevisiae cells. Biosci Biotechnol Biochem 2017; 81:112-118. [PMID: 27885926 DOI: 10.1080/09168451.2016.1234925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
The polyhistidine peptides (PHPs) have been previously reported as novel cell-penetrating peptides and are efficiently internalized into mammal cells; however, penetration of PHPs into other cell types is unknown. In this study, the cellular uptake of PHPs in plant and yeast cells was found to be dependent on the number of histidines, and short PHPs (H6-H10 peptides) showed effective internalization. The H8 peptide showed the highest cell-penetrating capacity and localized to vacuoles in plant and yeast cells. Low-temperature conditions inhibited significantly the cellular uptake of short PHPs by both cells. However, net charge neutralization of PHPs also completely inhibited cellular uptake by plant cells, but not by yeast cells. These results indicate that short PHPs penetrate effectively into plant and yeast cells by similar mechanism with the exception of net charge dependency. The findings show the short PHPs are promising candidates for new delivery tools into plant and yeast cells.
Collapse
Affiliation(s)
- Sayaka Kimura
- a Department of Bioresource Science , Graduate School of Agricultural Sciences, Tottori University , Tottori , Japan
| | - Tsuyoshi Kawano
- a Department of Bioresource Science , Graduate School of Agricultural Sciences, Tottori University , Tottori , Japan
| | - Takashi Iwasaki
- a Department of Bioresource Science , Graduate School of Agricultural Sciences, Tottori University , Tottori , Japan
| |
Collapse
|
15
|
Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1228. [PMID: 27597854 PMCID: PMC4993012 DOI: 10.3389/fpls.2016.01228] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/02/2016] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes.
Collapse
Affiliation(s)
- Baniekal H. Gangadhar
- Department of Molecular Biotechnology, Konkuk UniversitySeoul, South Korea
- *Correspondence: Baniekal H. Gangadhar, Raghvendra K. Mishra, Ram Prasad,
| | - Kappachery Sajeesh
- School of Applied Biosciences, Kyungpook National UniversityDaegu. South Korea
| | - Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk UniversitySeoul, South Korea
| | - Venkidasamy Baskar
- Department of Molecular Biotechnology, Konkuk UniversitySeoul, South Korea
| | - Kumar Abhinandan
- Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| | - Jae W. Yu
- Department of Molecular Biotechnology, Konkuk UniversitySeoul, South Korea
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
- *Correspondence: Baniekal H. Gangadhar, Raghvendra K. Mishra, Ram Prasad,
| | - Raghvendra K. Mishra
- Amity Institute of Biotechnology, Amity UniversityGwalior, India
- *Correspondence: Baniekal H. Gangadhar, Raghvendra K. Mishra, Ram Prasad,
| |
Collapse
|
16
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
17
|
Wei K, Zhong X. Non-specific lipid transfer proteins in maize. BMC PLANT BIOLOGY 2014; 14:281. [PMID: 25348423 PMCID: PMC4226865 DOI: 10.1186/s12870-014-0281-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/09/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND In plant, non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that have been reported to be involved in numerous biological processes such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. To date, only a tiny fraction of plant nsLTPs have been functionally identified, and even fewer have been identified in maize [Zea mays (Zm)]. RESULTS In this study, we carried out a genome-wide analysis of nsLTP gene family in maize and identified 63 nsLTP genes, which can be divided into five types (1, 2, C, D and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. Gene duplication analysis indicated that both tandem and segmental duplication contribute to the diversification of this gene family. Additionally, the three-dimensional structures of representative nsLTPs were studied with homology modeling to understand their molecular functions. Gene ontology analysis was performed to obtain clues about biological function of the maize nsLTPs (ZmLTPs). The analyses of putative upstream regulatory elements showed both shared and distinct transcriptional regulation motifs of ZmLTPs, further indicating that ZmLTPs may play roles in diverse biological processes. The dynamic expression patterns of ZmLTPs family across the different developmental stages showed that several of them exhibit tissue-specific expression, indicative of their important roles in maize life cycle. Furthermore, we focused on the roles of maize nsLTPs in biotic and abiotic stress responses. Our analyses demonstrated that some ZmLTPs exhibited a delayed expression pattern after the infection of Ustilago maydis and differentially expressed under drought, salt and cold stresses, and these may be a great help for further studies to improve the stress resistance and tolerance in maize breeding. CONCLUSIONS Our results provide new insights into the phylogenetic relationships and characteristic functions of maize nsLTPs and will be useful in studies aimed at revealing the global regulatory network in maize development and stress responses, thereby contributing to the maize molecular breeding with enhanced quality traits.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| | - Xiaojun Zhong
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| |
Collapse
|
18
|
Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, Yao YY, Hu ZR, Sun QX, Peng HR. A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene 2014; 550:18-26. [PMID: 25106859 DOI: 10.1016/j.gene.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 07/21/2014] [Accepted: 08/04/2014] [Indexed: 11/27/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the major grain crops, and heat stress adversely affects wheat production in many regions of the world. Previously, we found a heat-responsive gene named Lipid Transfer Protein 3 (TaLTP3) in wheat. TaLTP3 was deduced to be regulated by cold, ABA, MeJA, Auxin and oxidative stress according to cis-acting motifs in its promoter sequences. In this study, we show that TaLTP3 is responsive to prolonged water deficit, salt or ABA treatment in wheat seedlings. Also, TaLTP3 accumulation was observed after the plant suffered from heat stress both at the seedling and the grain-filling stages. TaLTP3 protein was localized in the cell membrane and cytoplasm of tobacco epidermal cells. Overexpression of TaLTP3 in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic Arabidopsis plants engineered to overexpress TaLTP3 showed higher thermotolerance than control plants at the seedling stage. Further investigation indicated that transgenic lines decreased H₂O₂ accumulation and membrane injury under heat stress. Taken together, our results demonstrate that TaLTP3 confers heat stress tolerance possibly through reactive oxygen species (ROS) scavenging.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Xin-shan Zang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Muhammad Rezaul Kabir
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Ke-lu Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Zhen-shan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Zhong-fu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Ying-yin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Zhao-rong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Qi-xin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| | - Hui-ru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; National Plant Gene Research Centre (Beijing), Beijing 100193, China.
| |
Collapse
|