1
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
2
|
Khalilian S, Mohajer Z, Ghafouri-Fard S. Factor VIII as a Novel Biomarker for Diagnosis, Prognosis, and Therapy Prediction in Human Cancer and Other Disorders. Avicenna J Med Biotechnol 2024; 16:68-80. [PMID: 38618505 PMCID: PMC11007370 DOI: 10.18502/ajmb.v16i2.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/28/2023] [Indexed: 04/16/2024] Open
Abstract
Coagulation factor VIII (FVIII) is an essential cofactor in the coagulation cascade, encoded by the F8 gene on the long arm of chromosome X (Xq28). FVIII is normally circulated in complex with Von Willebrand factor (VWF) and has relevant emerging extracoagulative functions. Dysregulation of FVIII is associated with tumor progression, and could be used as a novel biomarker for tumor screening and monitoring. In breast cancer, bladder cancer, colorectal carcinoma, esophageal carcinoma, hepatocellular carcinoma and lung cancer, F8 is regarded as an oncogene. In coronary heart disease, hemophilia A and liver disease, F8 dysregulation has been recognized as a potential biomarker for disease diagnosis and prognosis. However, the basis of these differential expression levels remains to be understood. In this review, which is a mixture of literature review and bioinformatics analysis we described the biological functions and characteristics of FVIII, and also its expression level in non-malignant disorders and various cancers.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mohajer
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ahirwar SS, Rizwan R, Sethi S, Shahid Z, Malviya S, Khandia R, Agarwal A, Kotnis A. Comparative Analysis of Published Database Predicting MicroRNA Binding in 3'UTR of mRNA in Diverse Species. Microrna 2024; 13:2-13. [PMID: 37929739 DOI: 10.2174/0122115366261005231018070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Micro-RNAs are endogenous non-coding RNA moieties of 22-27 nucleotides that play a crucial role in the regulation of various biological processes and make them useful prognostic and diagnostic biomarkers. Discovery and experimental validation of miRNA is a laborious and time-consuming process. For early prediction, multiple bioinformatics databases are available for miRNA target prediction; however, their utility can confuse amateur researchers in selecting the most appropriate tools for their study. OBJECTIVE This descriptive review aimed to analyse the usability of the existing database based on the following criteria: accessibility, efficiency, interpretability, updatability, and flexibility for miRNA target prediction of 3'UTR of mRNA in diverse species so that the researchers can utilize the database most appropriate to their research. METHODS A systematic literature search was performed in PubMed, Google Scholar and Scopus databases up to November 2022. ≥10,000 articles found online, including ⁓130 miRNA tools, which contain various information on miRNA. Out of them, 31 databases that provide information on validated 3'UTR miRNAs target databases were included and analysed in this review. RESULTS These miRNA database tools are being used in varied areas of biological research to select the most suitable miRNA for their experimental validation. These databases, updated until the year 2021, consist of miRNA-related data from humans, animals, mice, plants, viruses etc. They contain 525-29806351 data entries, and information from most databases is freely available on the online platform. CONCLUSION Reviewed databases provide significant information, but not all information is accurate or up-to-date. Therefore, Diana-TarBase and miRWalk are the most comprehensive and up-to-date databases.
Collapse
Affiliation(s)
- Sonu Singh Ahirwar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, AIIMS Bhopal, Saket Nagar, Bhopal, MP, India
| | - Rehma Rizwan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, AIIMS Bhopal, Saket Nagar, Bhopal, MP, India
| | - Samdish Sethi
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, AIIMS Bhopal, Saket Nagar, Bhopal, MP, India
| | - Zainab Shahid
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, AIIMS Bhopal, Saket Nagar, Bhopal, MP, India
| | - Shivani Malviya
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Amit Agarwal
- Department of Neurosurgery, All India Institute of Medical Sciences Bhopal, Bhopal MP, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, AIIMS Bhopal, Saket Nagar, Bhopal, MP, India
| |
Collapse
|
4
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Smutny T, Hyrsova L, Braeuning A, Ingelman-Sundberg M, Pavek P. Transcriptional and post-transcriptional regulation of the pregnane X receptor: a rationale for interindividual variability in drug metabolism. Arch Toxicol 2020; 95:11-25. [PMID: 33164107 DOI: 10.1007/s00204-020-02916-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The pregnane X receptor (PXR, encoded by the NR1I2 gene) is a ligand-regulated transcription factor originally described as a master regulator of xenobiotic detoxification. Later, however, PXR was also shown to interact with endogenous metabolism and to be further associated with various pathological states. This review focuses predominantly on such aspects, currently less covered in literature, as the control of PXR expression per se in the context of inter-individual differences in drug metabolism. There is growing evidence that non-coding RNAs post-transcriptionally regulate PXR. Effects on PXR have especially been reported for microRNAs (miRNAs), which include miR-148a, miR-18a-5p, miR-140-3p, miR-30c-1-3p and miR-877-5p. Likewise, miRNAs control the expression of both transcription factors involved in PXR expression and regulators of PXR function. The impact of NR1I2 genetic polymorphisms on miRNA-mediated PXR regulation is also discussed. As revealed recently, long non-coding RNAs (lncRNAs) appear to interfere with PXR expression. Reciprocally, PXR activation regulates non-coding RNA expression, thus comprising another level of PXR action in addition to the direct transactivation of protein-coding genes. PXR expression is further controlled by several transcription factors (cross-regulation) giving rise to different PXR transcript variants. Controversies remain regarding the suggested role of feedback regulation (auto-regulation) of PXR expression. In this review, we comprehensively summarize the miRNA-mediated, lncRNA-mediated and transcriptional regulation of PXR expression, and we propose that deciphering the precise mechanisms of PXR expression may bridge our knowledge gap in inter-individual differences in drug metabolism and toxicity.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Solna vägen 9, 17165, Stockholm, Sweden
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Ninsuwon J, Waiyamitra P, Roongsitthichai A, Surachetpong W. Expressions of miR-155 and miR-181 and predictions of their structures and targets in pigs ( Sus scrofa). Vet World 2020; 13:1667-1673. [PMID: 33061243 PMCID: PMC7522940 DOI: 10.14202/vetworld.2020.1667-1673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIM MicroRNAs (miRNAs) are responsible for gene expression control at the post-transcription level in many species. Several miRNAs are required in the regulation of immune responses, such as B-cell differentiation, T-cell receptor signaling pathway, CD4+ T cell selection, and so on. Studies on miRNAs have been extensively conducted in humans and mice; however, reports relevant to miRNAs, especially miR-155 and miR-181, in pigs are limited. Consequently, the present study aimed to investigate the structures, target genes, and expressions of miR-155 and miR-181 in various porcine cells and tissues. MATERIALS AND METHODS Five healthy male pigs from a porcine reproductive and respiratory syndrome virus-negative farm were studied. Before slaughter, blood samples were collected for peripheral blood mononuclear cell isolation. After slaughter, samples of spleen, lymph nodes, and forelimb muscles were collected. Both miR-155 and miR-181 were investigated for their structures with RNAfold web server, for their target genes from three online web servers, and for their expressions using polymerase chain reaction (PCR). RESULTS The structures of miR-155 and miR-181 contained hairpins with free energies of -35.27 and -35.29 kcal/mole, respectively. Target gene prediction revealed that miR-155 had perfect complementarity with Socs1 and Mapk3k14, while miR-181 had perfect complementarity with Ddx3x, Nfat5, Foxp1, and Mpp5. PCR showed that both miRNAs were detectable from all investigated cells and tissues. Moreover, the highest expression of both miRNAs was found from the lymph node of the pigs. CONCLUSION Both miR-155 and miR-181 might be involved with the regulation of porcine immune functions as both miRNAs were detected in several cells and tissues of the pigs. In addition, they had very high complementarities with the seed regions of several immune-related genes.
Collapse
Affiliation(s)
- Jirapat Ninsuwon
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Pitchaporn Waiyamitra
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Atthaporn Roongsitthichai
- Veterinary Clinic Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham, Thailand
- Office of Academic Affairs, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
Jankowska KI, McGill J, Pezeshkpoor B, Oldenburg J, Sauna ZE, Atreya CD. Further Evidence That MicroRNAs Can Play a Role in Hemophilia A Disease Manifestation: F8 Gene Downregulation by miR-19b-3p and miR-186-5p. Front Cell Dev Biol 2020; 8:669. [PMID: 32850803 PMCID: PMC7406646 DOI: 10.3389/fcell.2020.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hemophilia A (HA) is a F8 gene mutational disorder resulting in deficiency or dysfunctional FVIII protein. However, surprisingly, in few cases, HA is manifested even without mutations in F8. To understand this anomaly, we recently sequenced microRNAs (miRNAs) of two patients with mild and moderate HA with no F8 gene mutations and selected two highly expressing miRNAs, miR-374b-5p and miR-30c-5p, from the pool to explain the FVIII deficiency that could be mediated by miRNA-based F8/FVIII suppression. In this report, an established orthogonal in vivo RNA-affinity purification approach was utilized to directly identify a group of F8-interacting miRNAs and we tested them for F8/FVIII suppression. From this pool, two miRNAs, miR-19b-3p and miR-186-5p, were found to be upregulated in a severe HA patient with a mutation in the F8 coding sequence and two HA patients without mutations in the F8 coding sequence were selected to demonstrate their role in F8 gene expression regulation in mammalian cells. Overall, these results provide further evidence for the hypothesis that by targeting the 3′UTR of F8, miRNAs can modulate FVIII protein levels. This mechanism could either be the primary cause of HA in patients who lack F8 mutations or control the severity of the disease in patients with F8 mutations.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph McGill
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Zuben E Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Chintamani D Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
8
|
Wen M, Cong P, Zhang Z, Lu H, Li T. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics 2019; 34:3781-3787. [PMID: 29868708 DOI: 10.1093/bioinformatics/bty424] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Motivation MicroRNAs (miRNAs) are small non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression by targeting messenger RNAs (mRNAs). Because the underlying mechanisms associated with miRNA binding to mRNA are not fully understood, a major challenge of miRNA studies involves the identification of miRNA-target sites on mRNA. In silico prediction of miRNA-target sites can expedite costly and time-consuming experimental work by providing the most promising miRNA-target-site candidates. Results In this study, we reported the design and implementation of DeepMirTar, a deep-learning-based approach for accurately predicting human miRNA targets at the site level. The predicted miRNA-target sites are those having canonical or non-canonical seed, and features, including high-level expert-designed, low-level expert-designed and raw-data-level, were used to represent the miRNA-target site. Comparison with other state-of-the-art machine-learning methods and existing miRNA-target-prediction tools indicated that DeepMirTar improved overall predictive performance. Availability and implementation DeepMirTar is freely available at https://github.com/Bjoux2/DeepMirTar_SdA. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ming Wen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Peisheng Cong
- School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, People's Republic of China
| | - Tonghua Li
- School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Li X, Pan X, Fu X, Yang Y, Chen J, Lin W. MicroRNA-26a: An Emerging Regulator of Renal Biology and Disease. Kidney Blood Press Res 2019; 44:287-297. [PMID: 31163420 DOI: 10.1159/000499646] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that modulate many key biological processes by simultaneously suppressing multiple target genes. Among them, miR-26a, a conserved miRNA among vertebrates, is highly expressed in various tissues. Accumulating evidence demonstrates that miR-26a plays pivotal roles in cellular differentiation, cell growth, apoptosis, and metastasis, thereby participating in the initiation and development of various human diseases, such as metabolic disease and cancer. More recently, miR-26a was found as a versatile regulator of renal biology and disease. miR-26a is intensively involved in the maintenance of podocyte homeostasis and the actin cytoskeleton. It is also able to modulate the homeostasis and function of mesangial cells. In addition, miR-26a affects the expansion of regulatory T cells in the context of ischemia-reperfusion injury and autoimmune diabetes and thus protects the renal system from immune attack. These available data strongly suggest that renal miR-26a possesses critical pathological functions and represents a potential target for renal disease therapies. This review summarizes current knowledge of miR-26a in renal biology and disease, laying the foundation for exploring its previously unknown functions and mechanisms in the renal system.
Collapse
Affiliation(s)
- Xiaoyan Li
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Pan
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China, .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
10
|
Wang TT, Lee CY, Lai LC, Tsai MH, Lu TP, Chuang EY. anamiR: integrated analysis of MicroRNA and gene expression profiling. BMC Bioinformatics 2019; 20:239. [PMID: 31088348 PMCID: PMC6518761 DOI: 10.1186/s12859-019-2870-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With advancements in high-throughput technologies, the cost of obtaining expression profiles of both mRNA and microRNA in the same individual has substantially decreased. Integrated analysis of these profiles can help to elucidate the functional effects of RNA expression in complex diseases, such as cancer. However, fundamental discrepancies are observed in the results from microRNA-mRNA target gene prediction algorithms, and few packages can be used to analyze microRNA and mRNA expression levels simultaneously. RESULTS To address these issues, an R package, anamiR, was developed. A total of 10 experimental/prediction databases were integrated. Two analytical functions are provided in anamiR, including the single marker test and functional gene set enrichment analysis, and several parameters can be changed by users. Here we demonstrate the potential application of the anamiR package to 2 publicly available microarray datasets. CONCLUSION The anamiR package is effective for an integrated analysis of both RNA and microRNA profiles. By characterizing biological functions and signaling pathways, this package helps identify dysregulated genes/miRNAs from biological and medical experiments. The source code and manual of the anamiR package are freely available at https://bioconductor.org/packages/release/bioc/html/anamiR.html .
Collapse
Affiliation(s)
- Ti-Tai Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, 10051, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 10055, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10672, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, 10672, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, 10055, Taiwan.
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 10055, Taiwan.
| |
Collapse
|
11
|
Abdul Hadi LH, Xuan Lin QX, Minh TT, Loh M, Ng HK, Salim A, Soong R, Benoukraf T. miREM: an expectation-maximization approach for prioritizing miRNAs associated with gene-set. BMC Bioinformatics 2018; 19:299. [PMID: 30097004 PMCID: PMC6086043 DOI: 10.1186/s12859-018-2292-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/19/2018] [Indexed: 01/12/2023] Open
Abstract
Background The knowledge of miRNAs regulating the expression of sets of mRNAs has led to novel insights into numerous and diverse cellular mechanisms. While a single miRNA may regulate many genes, one gene can be regulated by multiple miRNAs, presenting a complex relationship to model for accurate predictions. Results Here, we introduce miREM, a program that couples an expectation-maximization (EM) algorithm to the common approach of hypergeometric probability (HP), which improves the prediction and prioritization of miRNAs from gene-sets of interest. miREM has been made available through a web-server (https://bioinfo-csi.nus.edu.sg/mirem2/) that can be accessed through an intuitive graphical user interface. The program incorporates a large compendium of human/mouse miRNA-target prediction databases to enhance prediction. Users may upload their genes of interest in various formats as an input and select whether to consider non-conserved miRNAs, amongst filtering options. Results are reported in a rich graphical interface that allows users to: (i) prioritize predicted miRNAs through a scatterplot of HP p-values and EM scores; (ii) visualize the predicted miRNAs and corresponding genes through a heatmap; and (iii) identify and filter homologous or duplicated predictions by clustering them according to their seed sequences. Conclusion We tested miREM using RNAseq datasets from two single “spiked” knock-in miRNA experiments and two double knock-out miRNA experiments. miREM predicted these manipulated miRNAs as having high EM scores from the gene set signatures (i.e. top predictions for single knock-in and double knock-out miRNA experiments). Finally, we have demonstrated that miREM predictions are either similar or better than results provided by existing programs. Electronic supplementary material The online version of this article (10.1186/s12859-018-2292-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqman Hakim Abdul Hadi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Quy Xiao Xuan Lin
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Tri Tran Minh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hong Kiat Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Agus Salim
- Department of Mathematics and Statistics, School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore. .,Department of Pathology, National University of Singapore, Singapore, Singapore.
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore.
| |
Collapse
|
12
|
Zhu X, Chen S, Jiang Y, Xu Y, Zhao Y, Chen L, Li C, Zhou X. Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line. Gene 2018; 642:513-521. [DOI: 10.1016/j.gene.2017.11.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
|
13
|
Moriya N, Shibasaki S, Karasaki M, Iwasaki T. The Impact of MicroRNA-223-3p on IL-17 Receptor D Expression in Synovial Cells. PLoS One 2017; 12:e0169702. [PMID: 28056105 PMCID: PMC5215929 DOI: 10.1371/journal.pone.0169702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting joints. Elevated plasma levels of microRNA-223-3p (miR-223-3p) in patients with RA are implicated in the pathogenesis of the disease. This study aimed to analyze the functional role of miR-223-3p in the pathogenesis of RA by overexpressing miR-223-3p in synovial cell lines. METHODS Arthritis was induced in the RA model of SKG mice by injection of ß-glucan. The histopathologic features of joints were examined using hematoxylin and eosin and immunohistochemical staining. Plasma levels of miRNA were determined by panel real-time PCR analysis. Target genes of the differentially expressed miRNAs in SKG mice were analyzed using miRNA target prediction algorithms. The dual-luciferase reporter system was used to evaluate the relationship between miR-223-3p and IL-17 receptor D (IL-17RD). The activity of miR-223-3p was analyzed by transfection of plasmid vectors overexpressing miR-223-3p into IL-17RD-expressing NIH3T3 and MH7A cell lines. Il6 and Il17rd mRNA expression was analyzed by quantitative real-time PCR. IL-17RD protein expression was analyzed by western blot analysis. RESULTS We identified 17 upregulated miRNAs (fold change > 2.0) in plasma of SKG mice injected with ß-glucan relative to untreated SKG mice. Il17rd was identified as the candidate target gene of miR-223-3p using five miRNA target prediction algorithms. The transfection of plasmid vectors overexpressing miR-223-3p into NIH3T3 and MH7A cells resulted in the downregulation of Il17rd expression and upregulation of Il6 expression. Expression of miR-223-3p and Il6 mRNA in MH7A cells was upregulated; however, that of Il17rd mRNA was downregulated following TNF-α stimulation. IL-17RD expression in synovial tissues from SKG mice and RA patients was inversely correlated with the severity of arthritis. CONCLUSION This study is the first to demonstrate that miR-223-3p downregulates IL-17RD in both mouse and human cells; miR-223-3p may contribute to the pathogenesis of RA by downregulating the expression of IL-17RD and upregulating that of IL-6 in synovial cells.
Collapse
Affiliation(s)
- Nozomu Moriya
- Department of Biopharmaceutics, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-Ku, Kobe, Hyogo, Japan
| | - Seiji Shibasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan
| | - Miki Karasaki
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan
| | - Tsuyoshi Iwasaki
- Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1Mukogawa-cho, Nishinomiya, Hyogo, Japan
- Department of Pharmacotherapy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|
14
|
Amirkhah R, Meshkin HN, Farazmand A, Rasko JEJ, Schmitz U. Computational and Experimental Identification of Tissue-Specific MicroRNA Targets. Methods Mol Biol 2017; 1580:127-147. [PMID: 28439832 DOI: 10.1007/978-1-4939-6866-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this chapter we discuss computational methods for the prediction of microRNA (miRNA) targets. More specifically, we consider machine learning-based approaches and explain why these methods have been relatively unsuccessful in reducing the number of false positive predictions. Further we suggest approaches designed to improve their performance by considering tissue-specific target regulation. We argue that the miRNA targetome differs depending on the tissue type and introduce a novel algorithm that predicts miRNA targets specifically for colorectal cancer. We discuss features of miRNAs and target sites that affect target recognition, and how next-generation sequencing data can support the identification of novel miRNAs, differentially expressed miRNAs and their tissue-specific mRNA targets. In addition, we introduce some experimental approaches for the validation of miRNA targets as well as web-based resources sharing predicted and validated miRNA target interactions.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Reza Institute of Cancer Bioinformatics and Personalized Medicine, Mashhad, Iran
| | - Hojjat Naderi Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown; Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program, Centenary Institute, Camperdown; Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
15
|
Leclercq M, Diallo AB, Blanchette M. Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Res 2016; 45:556-566. [PMID: 27899600 PMCID: PMC5314757 DOI: 10.1093/nar/gkw1085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/26/2016] [Accepted: 11/13/2016] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNA) are short single-stranded RNA molecules derived from hairpin-forming precursors that play a crucial role as post-transcriptional regulators in eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have been identified experimentally. However, because of the high costs of experimental approaches, target genes databases remain incomplete. Although several target prediction programs have been developed in the recent years to identify MTGs in silico, their specificity and sensitivity remain low. Here, we propose a new approach called MirAncesTar, which uses ancestral genome reconstruction to boost the accuracy of existing MTGs prediction tools for human miRNAs. For each miRNA and each putative human target UTR, our algorithm makes uses of existing prediction tools to identify putative target sites in the human UTR, as well as in its mammalian orthologs and inferred ancestral sequences. It then evaluates evidence in support of selective pressure to maintain target site counts (rather than sequences), accounting for the possibility of target site turnover. It finally integrates this measure with several simpler ones using a logistic regression predictor. MirAncesTar improves the accuracy of existing MTG predictors by 26% to 157%. Source code and prediction results for human miRNAs, as well as supporting evolutionary data are available at http://cs.mcgill.ca/∼blanchem/mirancestar.
Collapse
Affiliation(s)
- Mickael Leclercq
- School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, H3A0E9, Canada
| | - Abdoulaye Baniré Diallo
- Laboratoire de bio-informatique du département informatique, Université du Québec à Montréal, Montréal, Québec H2X 3Y7, Canada
| | - Mathieu Blanchette
- School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, H3A0E9, Canada
| |
Collapse
|
16
|
Greenwood JM, Ezquerra AL, Behrens S, Branca A, Mallet L. Current analysis of host–parasite interactions with a focus on next generation sequencing data. ZOOLOGY 2016; 119:298-306. [DOI: 10.1016/j.zool.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/21/2023]
|
17
|
Sun X, Zhang J. Dysfunctional miRNA-Mediated Regulation in Chromophobe Renal Cell Carcinoma. PLoS One 2016; 11:e0156324. [PMID: 27258182 PMCID: PMC4892590 DOI: 10.1371/journal.pone.0156324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 01/05/2023] Open
Abstract
Past research on pathogenesis of a complex disease suggests that differentially expressed message RNAs (mRNAs) can be noted as biomarkers of a disease. However, significant miRNA-mediated regulation change might also be more deep underlying cause of a disease. In this study, a miRNA-mediated regulation module is defined based on GO terms (Gene Ontology terms) from which dysfunctional modules are identified as the suspected cause of a disease. A miRNA-mediated regulation module contains mRNAs annotated to a GO term and MicroRNAs (miRNAs) which regulate the mRNAs. Based on the miRNA-mediated regulation coefficients estimated from the expression profiles of the mRNA and the miRNAs, a SW (single regulation-weight) value is then designed to evaluate the miRNA-mediated regulation change of an mRNA, and the modules with significantly differential SW values are thus identified as dysfunctional modules. The approach is applied to Chromophobe renal cell carcinoma and it identifies 70 dysfunctional miRNA-mediated regulation modules from initial 4381 modules. The identified dysfunctional modules are detected to be comprehensive reflection of chromophobe renal cell carcinoma. The proposed approach suggests that accumulated alteration in miRNA-mediated regulation might cause functional alterations, which further cause a disease. Moreover, this approach can also be used to identify diffentially miRNA-mediated regulated mRNAs showing more comprehensive underlying association with a disease than differentially expressed mRNAs.
Collapse
Affiliation(s)
- Xiaohan Sun
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, P. R. China
- College of Mathematics and Information Science, Weinan Normal University, Weinan, Shaanxi, P. R. China
| | - Junying Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma XR. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics 2016; 17:423. [PMID: 27260799 PMCID: PMC4891822 DOI: 10.1186/s12864-016-2591-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated. RESULTS Here, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression. CONCLUSIONS Exogenous ABA application influences the composition and expression level of tomato miRNAs. ABA mainly down-regulates miRNAs that their target genes involve in abiotic stress adaption and disease resistance. ABA might increase expression of stress-related genes via miRNA-mediated posttranscriptional regulation, and our results indicate that ABA treatment has the potential to improve both abiotic stress tolerance and pathogen resistance. This study presents a comprehensive profile of ABA-regulated miRNAs in the tomato, and provides a robust database for further investigation of ABA regulatory mechanisms.
Collapse
Affiliation(s)
- Hai-Yang Cheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Yan-Fen Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
19
|
Moriya N, Kataoka H, Nishikawa JI, Kugawa F. Identification of Candidate Target Cyp Genes for microRNAs Whose Expression Is Altered by PCN and TCPOBOP, Representative Ligands of PXR and CAR. Biol Pharm Bull 2016; 39:1381-6. [PMID: 27237601 DOI: 10.1248/bpb.b16-00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mRNA post-transcriptional regulation. The deregulation of miRNAs affects the expression of drug-metabolizing enzymes, drug transporters, and nuclear receptors, all of which are important in regulating drug metabolism. miRNA expression can be altered by several endogenous or exogenous agents, such as steroid hormones, carcinogens, and therapeutic drugs. However, it is unclear whether hepatic miRNA expression is regulated by nuclear receptors, such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which are indispensable for the expression of the CYPs. Here we investigated the effects of the mouse PXR and CAR ligands pregnenolone-16α-carbonitrile (PCN) and 1,4-bis[(3,5-dichloropyridin-2-yl)oxy]benzene (TCPOBOP) on hepatic miRNA expression in mice. We found that the expression of 9 miRNAs was increased (>2-fold) and of 4 miRNAs was decreased (>50%) in response to PCN, while TCPOBOP treatment led to the up-regulation of 8 miRNAs and down-regulation of 6 miRNAs. Using several miRNA target prediction algorithms, we found that the predicted target genes included several lesser known Cyp genes (Cyp1a1, Cyp1b1, Cyp2b10, Cyp2c38, Cyp2u1, Cyp4a12a/b, Cyp4v3, Cyp17a1, Cyp39a1, and Cyp51). We analyzed the expression of these genes in response to PCN and TCPOBOP and found changes in their mRNA levels, some of which were negatively correlated with the expression of their corresponding miRNAs, suggesting that miRNAs may play a role in regulating Cyp enzyme expression. Further studies will be required to fully elucidate the miRNA regulatory mechanisms that contribute to modulating CYP expression.
Collapse
Affiliation(s)
- Nozomu Moriya
- Department of Biopharmaceutics, Hyogo University of Health Sciences
| | | | | | | |
Collapse
|
20
|
Amirkhah R, Farazmand A, Gupta SK, Ahmadi H, Wolkenhauer O, Schmitz U. Naïve Bayes classifier predicts functional microRNA target interactions in colorectal cancer. MOLECULAR BIOSYSTEMS 2016; 11:2126-34. [PMID: 26086375 DOI: 10.1039/c5mb00245a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alterations in the expression of miRNAs have been extensively characterized in several cancers, including human colorectal cancer (CRC). Recent publications provide evidence for tissue-specific miRNA target recognition. Several computational methods have been developed to predict miRNA targets; however, all of these methods assume a general pattern underlying these interactions and therefore tolerate reduced prediction accuracy and a significant number of false predictions. The motivation underlying the presented work was to unravel the relationship between miRNAs and their target mRNAs in CRC. We developed a novel computational algorithm for miRNA-target prediction in CRC using a Naïve Bayes classifier. The algorithm, which is referred to as CRCmiRTar, was trained with data from validated miRNA target interactions in CRC and other cancer entities. Furthermore, we identified a set of position-based, sequence, structural, and thermodynamic features that identify CRC-specific miRNA target interactions. Evaluation of the algorithm showed a significant improvement of performance with respect to AUC, and sensitivity, compared to other widely used algorithms based on machine learning. Based on miRNA and gene expression profiles in CRC tissues with similar clinical and pathological features, our classifier predicted 204 functional interactions, which involve 11 miRNAs and 41 mRNAs in this cancer entity. While the approach is here validated for CRC, the implementation of disease-specific miRNA target prediction algorithms can be easily adopted for other applications too. The identification of disease-specific miRNA target interactions may also facilitate the identification of potential drug targets.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
21
|
Computational functional genomics based analysis of pain-relevant micro-RNAs. Hum Genet 2015; 134:1221-38. [DOI: 10.1007/s00439-015-1600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
|
22
|
Georgiou DN, Karakasidis TE, Megaritis AC, Nieto JJ, Torres A. An extension of fuzzy topological approach for comparison of genetic sequences. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2015. [DOI: 10.3233/ifs-151701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- DN Georgiou
- Department of Mathematics, University of Patras, Patras, Greece
| | - TE Karakasidis
- Department of Civil Engineering, University of Thessaly, Volos, Greece
| | - AC Megaritis
- Technological Educational Institute of Western Greece, Department of Accounting and Finance, Messolonghi, Greece
| | - Juan J. Nieto
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Spain
| | - A Torres
- Departamento de Psiquiatría Radiología y Salud Pública, Facultad de Medicina, Universidad de Santiago de Compostela, Spain
| |
Collapse
|
23
|
Wang BD, Ceniccola K, Yang Q, Andrawis R, Patel V, Ji Y, Rhim J, Olender J, Popratiloff A, Latham P, Lai Y, Patierno SR, Lee NH. Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities. Clin Cancer Res 2015; 21:4970-84. [PMID: 26089375 DOI: 10.1158/1078-0432.ccr-14-1566] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/08/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE African Americans (AA) exhibit higher rates of prostate cancer incidence and mortality compared with European American (EA) men. In addition to socioeconomic influences, biologic factors are believed to play a critical role in prostate cancer disparities. We investigated whether population-specific and -enriched miRNA-mRNA interactions might contribute to prostate cancer disparities. EXPERIMENTAL DESIGN Integrative genomics was used, combining miRNA and mRNA profiling, miRNA target prediction, pathway analysis, and functional validation, to map miRNA-mRNA interactions associated with prostate cancer disparities. RESULTS We identified 22 AA-specific and 18 EA-specific miRNAs in prostate cancer versus patient-matched normal prostate, and 10 "AA-enriched/-depleted" miRNAs in AA prostate cancer versus EA prostate cancer comparisons. Many of these population-specific/-enriched miRNAs could be paired with target mRNAs that exhibited an inverse pattern of differential expression. Pathway analysis revealed EGFR (or ERBB) signaling as a critical pathway significantly regulated by AA-specific/-enriched mRNAs and miRNA-mRNA pairings. Novel miRNA-mRNA pairings were validated by qRT-PCR, Western blot, and/or IHC analyses in prostate cancer specimens. Loss/gain of function assays performed in population-specific prostate cancer cell lines confirmed miR-133a/MCL1, miR-513c/STAT1, miR-96/FOXO3A, miR-145/ITPR2, and miR-34a/PPP2R2A as critical miRNA-mRNA pairings driving oncogenesis. Manipulating the balance of these pairings resulted in decreased proliferation and invasion, and enhanced sensitization to docetaxel-induced cytotoxicity in AA prostate cancer cells. CONCLUSIONS Our data suggest that AA-specific/-enriched miRNA-mRNA pairings may play a critical role in the activation of oncogenic pathways in AA prostate cancer. Our findings also suggest that miR-133a/MCL1, miR-513c/STAT1, and miR-96/FOXO3A may have clinical significance in the development of novel strategies for treating aggressive prostate cancer.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Qi Yang
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Ramez Andrawis
- Medical Faculty Associates, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Youngmi Ji
- Cartilage Biology and Orthopedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Johng Rhim
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Anastas Popratiloff
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Patricia Latham
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Yinglei Lai
- Department of Statistics, The George Washington University, Washington, District of Columbia
| | - Steven R Patierno
- GW Cancer Institute, The George Washington University Medical Center, Washington, District of Columbia. Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
24
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
25
|
Wright C, Calhoun VD, Ehrlich S, Wang L, Turner JA, Bizzozero NIP. Meta gene set enrichment analyses link miR-137-regulated pathways with schizophrenia risk. Front Genet 2015; 6:147. [PMID: 25941532 PMCID: PMC4403556 DOI: 10.3389/fgene.2015.00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/27/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) within MIR137, the host gene for miR-137, has been identified repeatedly as a risk factor for schizophrenia. Previous genetic pathway analyses suggest that potential targets of this microRNA (miRNA) are also highly enriched in schizophrenia-relevant biological pathways, including those involved in nervous system development and function. METHODS In this study, we evaluated the schizophrenia risk of miR-137 target genes within these pathways. Gene set enrichment analysis of pathway-specific miR-137 targets was performed using the stage 1 (21,856 subjects) schizophrenia genome wide association study data from the Psychiatric Genomics Consortium and a small independent replication cohort (244 subjects) from the Mind Clinical Imaging Consortium and Northwestern University. RESULTS Gene sets of potential miR-137 targets were enriched with variants associated with schizophrenia risk, including target sets involved in axonal guidance signaling, Ephrin receptor signaling, long-term potentiation, PKA signaling, and Sertoli cell junction signaling. The schizophrenia-risk association of SNPs in PKA signaling targets was replicated in the second independent cohort. CONCLUSIONS These results suggest that these biological pathways may be involved in the mechanisms by which this MIR137 variant enhances schizophrenia risk. SNPs in targets and the miRNA host gene may collectively lead to dysregulation of target expression and aberrant functioning of such implicated pathways. Pathway-guided gene set enrichment analyses should be useful in evaluating the impact of other miRNAs and target genes in different diseases.
Collapse
Affiliation(s)
- Carrie Wright
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
| | - Vince D. Calhoun
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New MexicoAlbuquerque, NM, USA
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität DresdenDresden, Germany
- Department of Psychiatry, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical SchoolCharlestown, MA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Department of Radiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Jessica A. Turner
- The Mind Research NetworkAlbuquerque, NM, USA
- Department of Psychology and Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| | - Nora I. Perrone- Bizzozero
- Department of Neurosciences, University of New MexicoAlbuquerque, NM, USA
- Department of Psychiatry, University of New MexicoAlbuquerque, NM, USA
| |
Collapse
|
26
|
Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii. Genetics 2015; 200:105-21. [PMID: 25769981 DOI: 10.1534/genetics.115.174797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 45 unique, AGO3-associated miRNA sequences including 13 previously reported miRNAs and 32 novel ones. Potential miRNA targets were identified based on the complementarity of miRNAs with candidate binding sites on transcripts and classified, depending on the extent of complementarity, as being likely to be regulated through cleavage or translational repression. The search for cleavage targets identified 74 transcripts. However, only 6 of them showed an increase in messenger RNA (mRNA) levels in a mutant strain almost devoid of sRNAs. The search for translational repression targets, which used complementarity criteria more stringent than those empirically required for a reduction in target protein levels, identified 488 transcripts. However, unlike observations in metazoans, most predicted translation repression targets did not show appreciable changes in transcript abundance in the absence of sRNAs. Additionally, of three candidate targets examined at the protein level, only one showed a moderate variation in polypeptide amount in the mutant strain. Our results emphasize the difficulty in identifying genuine miRNA targets in Chlamydomonas and suggest that miRNAs, under standard laboratory conditions, might have mainly a modulatory role in endogenous gene regulation in this alga.
Collapse
|
27
|
Roy S, Benz F, Luedde T, Roderburg C. The role of miRNAs in the regulation of inflammatory processes during hepatofibrogenesis. Hepatobiliary Surg Nutr 2015; 4:24-33. [PMID: 25713802 DOI: 10.3978/j.issn.2304-3881.2015.01.05] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022]
Abstract
Liver cirrhosis represents the end stage of most chronic inflammatory liver diseases and is a major global health burden. Despite the enormous relevance of cirrhotic disease, pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, underlining the need to establish a better understanding of the molecular mechanisms underlying the pathogenesis of hepatic cirrhosis. Recently, miRNAs have emerged as a new class of RNAs that do not withhold the information to encode for proteins but regulate whole gene expression networks during different physiological and pathological processes. Various authors demonstrated that miRNA species are functionally involved in the regulation of chronic liver damage and development of liver cirrhosis in inflamed livers. Moreover, circulating miRNA patterns were suggested to serve as blood-based biomarkers indicating liver injury and progression to hepatic cirrhosis and cancer. Here we summarize current findings on a potential role of miRNAs in the cascade leading from liver inflammation to liver fibrosis and finally hepatocellular carcinoma. We compare data from animal models with findings on miRNAs dysregulated in human patients and finally highlight a potential use of miRNAs as biomarkers for liver injury, fibrosis and cancer.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Benz
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University of Aachen (RWTH), Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
28
|
Maalouf SW, Liu WS, Albert I, Pate JL. Regulating life or death: potential role of microRNA in rescue of the corpus luteum. Mol Cell Endocrinol 2014; 398:78-88. [PMID: 25458694 DOI: 10.1016/j.mce.2014.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023]
Abstract
The role of miRNA in tissue biology has added a new level of understanding of gene regulation and function. The corpus luteum (CL) is a transitory endocrine gland; the dynamic nature of the CL makes it a candidate for regulation by miRNA. Rescue of the CL from luteolysis is essential for the maintenance of pregnancy in all eutherian mammals. Using next generation sequencing, we profiled miRNA expression in the bovine CL during maternal recognition of pregnancy. We identified 590 luteal miRNA, of which 544 were known and 46 were novel miRNAs. Fifteen (including 3 novel) miRNAs were differentially expressed between CL of pregnant vs. cyclic animals. Target analysis of the differentially expressed miRNA resulted in genes involved in regulating apoptosis and immune response, providing evidence that miRNAs regulate the intracellular pathways that lead to either luteal regression or survival.
Collapse
Affiliation(s)
- Samar W Maalouf
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - Wan-Sheng Liu
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joy L Pate
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
29
|
Sun J, Wang SW, Li C. ATP synthase: an identified target gene of bantam in paired female Schistosoma japonicum. Parasitol Res 2014; 114:593-600. [PMID: 25407126 DOI: 10.1007/s00436-014-4221-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/06/2014] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function in transcriptional and post-transcriptional regulation of gene expression. An increasing number of schistosome miRNAs have been identified and are expected possibly involved in differentiation, development, and metabolism. However, limited information is available concerning the target genes of schistosome miRNAs. In the present study, the key target genes of bantam, an abundant miRNA found in paired female Schistosoma japonicum, were predicted by bioinformatics analysis and Solexa technology. Luciferase reporter assay and bantam mimic assay were applied in combination to further verify the targets of bantam. Results showed that ATP synthase (CAX76793.1), one of the three selected predicted targets, was confirmed as the target of bantam; bantam mimic assay results also showed that the two other predicted targets, namely, ataxia telangiectasia mutated (ATM)-related (XP_002571630.1), and ribosomal protein L30 (CAX72575.1), were not confirmed as targets. This research proposed the design and significance of reasonable biological experiments that could be performed to identify miRNA target genes in schistosomes.
Collapse
Affiliation(s)
- Jun Sun
- Tongji University School of Medicine, Shanghai, 200092, People's Republic of China,
| | | | | |
Collapse
|
30
|
Ultsch A, Lötsch J. What do all the (human) micro-RNAs do? BMC Genomics 2014; 15:976. [PMID: 25404408 PMCID: PMC4289375 DOI: 10.1186/1471-2164-15-976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 12/23/2022] Open
Abstract
Background Micro-RNAs (miRNA) are attributed to the systems biological role of a regulatory mechanism of the expression of protein coding genes. Research has identified miRNAs dysregulations in several but distinct pathophysiological processes, which hints at distinct systems-biology functions of miRNAs. The present analysis approached the role of miRNAs from a genomics perspective and assessed the biological roles of 2954 genes and 788 human miRNAs, which can be considered to interact, based on empirical evidence and computational predictions of miRNA versus gene interactions. Results From a genomics perspective, the biological processes in which the genes that are influenced by miRNAs are involved comprise of six major topics comprising biological regulation, cellular metabolism, information processing, development, gene expression and tissue homeostasis. The usage of this knowledge as a guidance for further research is sketched for two genetically defined functional areas: cell death and gene expression. Results suggest that the latter points to a fundamental role of miRNAs consisting of hyper-regulation of gene expression, i.e., the control of the expression of such genes which control specifically the expression of genes. Conclusions Laboratory research identified contributions of miRNA regulation to several distinct biological processes. The present analysis transferred this knowledge to a systems-biology level. A comprehensible and precise description of the biological processes in which the genes that are influenced by miRNAs are notably involved could be made. This knowledge can be employed to guide future research concerning the biological role of miRNA (dys-) regulations. The analysis also suggests that miRNAs especially control the expression of genes that control the expression of genes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-976) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Xu L, Li M, Wang M, Yan D, Feng G, An G. The expression of microRNA-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 2014; 14:714. [PMID: 25255814 PMCID: PMC4181388 DOI: 10.1186/1471-2407-14-714] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/22/2014] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNAs (miRNAs) offer great potential as cancer biomarkers. The importance of miRNAs profiling in tissue and body fluids in colorectal cancer (CRC) have been addressed respectively in many studies. The purpose of our study is to systematically assess the expression of miRNAs in cancer tissue and matched plasma samples and to evaluate their usefulness as minimally invasive diagnostic biomarkers for the detection of CRC. Methods The study was divided into two phases: firstly, qRT-PCR based TaqMan Low Density MiRNA Arrays (TLDAs) was used to screen the differentially expressed miRNAs in 6 plasma samples of CRC patients and 6 healthy controls. Secondly, marker validation by stem-loop reverse transcription real-time PCR using an independent set of paired cancer tissues (n = 88) and matched plasma samples (CRC, n = 88; control, n = 40). Correlation analysis was determined by Pearson’s test. Receiver operating characteristic curve analyses were applied to obtain diagnostic utility of the differentially expressed miRNAs. Target gene prediction and signal pathway analyses were used to predict the function of miRNAs. Results TLDAs identified 42 miRNAs, which were differentially expressed in patients and healthy individuals. Five of them (miR-375, miR-150, miR-206, miR-125b and miR-126*) were chosen to be validated in plasma and tissue samples. The results indicated that for plasma sample, miR-375 (p < 0.0001) and miR-206 (p = 0.0002) were dysregulated and could discriminate CRC patients from healthy controls. For tissue samples, miR-375 (p < 0.0001), miR-150 (p < 0.0001), miR-125b (p = 0.0065) and miR-126*(p = 0.0009) were down-regulated. miR-375 was significantly down-regulated and positively correlated in both tissue and plasma samples (r = 0.4663, p = 0.0007). Gene ontology and signal pathway analyses showed that most of the target genes that were regulated by miR-375 were involved in some critical pathways in the development and progression of cancer. Conclusions Our results indicate that the down-regulation of miR-375 in plasma and tissue is matched in CRC. Moreover, bioinformatics prediction revealed miR-375 association with some critical signal pathways in the development and progression of CRC. Therefore, plasma miR-375 holds great promise to be an alternative tissue biomarker for CRC detection. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-714) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Guosheng Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | | |
Collapse
|
32
|
Jasinski-Bergner S, Mandelboim O, Seliger B. The role of microRNAs in the control of innate immune response in cancer. J Natl Cancer Inst 2014; 106:dju257. [PMID: 25217579 DOI: 10.1093/jnci/dju257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ligands for receptors of natural killer (NK) cells and CD8(+) cytotoxic T lymphocytes (CTL), such as the inhibitory nonclassical HLA-G, the activating stress-induced major histocompatibility complex class I-related antigens MICA and MICB, and/or the UL16-binding proteins (ULBPs), are often aberrantly expressed upon viral infection and neoplastic transformation, thereby preventing virus-infected or malignant-transformed cells from elimination by immune effector cells. Recently, it has been shown that ligands of both NK and CD8(+) T cells are regulated by a number of cellular and/or viral microRNAs (miRs). These miRs are involved in shaping the antiviral and/or antitumoral immune responses as well as neoplastic growth properties. This review summarizes the expression pattern and function of miRs directed against selected NK and T cell receptor ligands, their putative role in shaping immune surveillance and tumorigenicity, and their clinical relevance. In addition, the potential role of RNA-binding proteins in the post-transcriptional gene regulation of these ligands will be discussed.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Ofer Mandelboim
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM)
| | - Barbara Seliger
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany (SJB, BS); The Hebrew University of Jerusalem, Ein Kerem, The Lautenberg Center for General and Tumor Immunology, IMRIC, Jerusalem, Israel (OM).
| |
Collapse
|
33
|
Ekimler S, Sahin K. Computational Methods for MicroRNA Target Prediction. Genes (Basel) 2014; 5:671-83. [PMID: 25153283 PMCID: PMC4198924 DOI: 10.3390/genes5030671] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/06/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have been identified as one of the most important molecules that regulate gene expression in various organisms. miRNAs are short, 21–23 nucleotide-long, single stranded RNA molecules that bind to 3' untranslated regions (3' UTRs) of their target mRNAs. In general, they silence the expression of their target genes via degradation of the mRNA or by translational repression. The expression of miRNAs, on the other hand, also varies in different tissues based on their functions. It is significantly important to predict the targets of miRNAs by computational approaches to understand their effects on the regulation of gene expression. Various computational methods have been generated for miRNA target prediction but the resulting lists of candidate target genes from different algorithms often do not overlap. It is crucial to adjust the bioinformatics tools for more accurate predictions as it is equally important to validate the predicted target genes experimentally.
Collapse
Affiliation(s)
- Semih Ekimler
- Molecular Biology and Genetics Department, Faculty of Science, Istanbul University, Vezneciler Fatih, 34134 Istanbul, Turkey.
| | - Kaniye Sahin
- Molecular Biology and Genetics Department, Faculty of Science, Istanbul University, Vezneciler Fatih, 34134 Istanbul, Turkey.
| |
Collapse
|
34
|
Ahmad HM, Muiwo P, Ramachandran SS, Pandey P, Gupta YK, Kumar L, Kulshreshtha R, Bhattacharya A. miR-22 regulates expression of oncogenic neuro-epithelial transforming gene 1, NET1. FEBS J 2014; 281:3904-19. [DOI: 10.1111/febs.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/17/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Hafiz M. Ahmad
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Pamchui Muiwo
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | | | - Priyatama Pandey
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi India
| | - Yogendra K. Gupta
- Department of Pharmacology; All India Institute of Medical Sciences; New Delhi India
| | - Lalit Kumar
- Department of Medical Oncology; Institute Rotary Cancer Hospital; All India Institute of Medical Science; New Delhi India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
35
|
Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 2014; 20:437-48. [PMID: 24986063 PMCID: PMC4123187 DOI: 10.1016/j.molmed.2014.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022]
Abstract
A comprehensive understanding of diverse ncRNAs in modulating pain is lacking. Among ncRNAs, miRNAs have been relatively well studied in pain regulation. lncRNAs also hold large potential for pain regulation. ncRNAs offer potential therapeutic options for treating chronic pain.
Although noncoding RNAs (ncRNAs) were initially considered to be transcriptional byproducts, recent technological advances have led to a steady increase in our understanding of their importance in gene regulation and disease pathogenesis. In keeping with these developments, pain research is also experiencing rapid growth in the investigation of links between ncRNAs and pathological pain. Although the initial focus was on analyzing expression and dysregulation of candidate miRNAs, elucidation of other ncRNAs and ncRNA-mediated functional mechanisms in pain modulation has just commenced. Here we review the major ncRNA literature available to date with respect to pain modulation and discuss tools and opportunities available for testing the impact of other types of ncRNA on pain.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | - Rohini Kuner
- Institute for Pharmacology, Im Neuenheimer Feld 366, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit with European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
36
|
Zhang D, Lu K, Dong Z, Jiang G, Xu W, Liu W. The effect of exposure to a high-fat diet on microRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS One 2014; 9:e96132. [PMID: 24788396 PMCID: PMC4008502 DOI: 10.1371/journal.pone.0096132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/02/2014] [Indexed: 12/15/2022] Open
Abstract
Blunt snout bream (Megalobrama amblycephala) are susceptible to hepatic steatosis when maintained in modern intensive culture systems. The aim of this study was to investigate the potential roles of microRNAs (miRNAs) in diet-induced hepatic steatosis in this species. MiRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level, are involved in diverse biological processes, including lipid metabolism. Deep sequencing of hepatic small RNA libraries from blunt snout bream fed normal-fat and high-fat diets identified 202 (193 known and 9 novel) miRNAs, of which 12 were differentially expressed between the normal-fat and high-fat diet groups. Quantitative stem-loop reverse transcriptase-polymerase chain reaction analyses confirmed the upregulation of miR-30c and miR-30e-3p and the downregulation of miR-145 and miR-15a-5p in high-fat diet-fed fish. Bioinformatics tools were used to predict the targets of these verified miRNAs and to explore potential downstream gene ontology biological process categories and Kyoto Encyclopedia of Genes and Genomes pathways. Six putative lipid metabolism-related target genes (fetuin-B, Cyp7a1, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 2, 3-oxoacid CoA transferase 1b, stearoyl-CoA desaturase, and fatty-acid synthase) were identified as having potential important roles in the development of diet-induced hepatic steatosis in blunt snout bream. The results presented here are a foundation for future studies of miRNA-controlled lipid metabolism regulatory networks in blunt snout bream.
Collapse
Affiliation(s)
- Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Kangle Lu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- * E-mail: (WL); (ZD)
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weina Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WL); (ZD)
| |
Collapse
|
37
|
MicroRNAs in the Neural Retina. Int J Genomics 2014; 2014:165897. [PMID: 24745005 PMCID: PMC3972879 DOI: 10.1155/2014/165897] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
The health and function of the visual system rely on a collaborative interaction between diverse classes of molecular regulators. One of these classes consists of transcription factors, which are known to bind to DNA and control the transcription activities of their target genes. For a long time, it was thought that the transcription factors were the only regulators of gene expression. More recently, however, a novel class of regulators emerged. This class consists of a large number of small noncoding endogenous RNAs, namely, miRNAs. The miRNAs compose an essential component of posttranscriptional gene regulation, since they ultimately control the fate of gene transcripts. The retina, as a part of the central nervous system, is a well-established model for unraveling the molecular mechanisms underlying neuronal and glial functions. Numerous recent efforts have been made towards identification of miRNAs and their inferred roles in the visual pathway. In this review, we summarize the current state of our knowledge regarding the expression and function of miRNA in the neural retina and we discuss their potential uses as biomarkers for some retinal disorders.
Collapse
|
38
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
39
|
Delihas N. Editorial on the Special Issue: Regulation by non-coding RNAs. Int J Mol Sci 2013; 14:21960-4. [PMID: 24201126 PMCID: PMC3856044 DOI: 10.3390/ijms141121960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
This Special Issue of IJMS is devoted to regulation by non-coding RNAs and contains both original research and review articles. An attempt is made to provide an up-to-date analysis of this very fast moving field and cover regulatory roles of both microRNAs and long non-coding RNAs. Multifaceted functions of these RNAs in normal cellular processes, as well as in disease progression, are highlighted.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222 USA.
| |
Collapse
|