1
|
Ferrarese L, Koch M, Baumann A, Bento-Lopes L, Wüst D, Berest I, Kopf M, Werner S. Inflammatory Mediators Suppress FGFR2 Expression in Human Keratinocytes to Promote Inflammation. Mol Cell Biol 2024; 44:489-504. [PMID: 39340759 PMCID: PMC11529413 DOI: 10.1080/10985549.2024.2399766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Fibroblast growth factors (FGFs) are key orchestrators of development, tissue homeostasis and repair. FGF receptor (FGFR) deficiency in mouse keratinocytes causes an inflammatory skin phenotype with similarities to atopic dermatitis, but the human relevance is unclear. Therefore, we generated human keratinocytes with a CRISPR/Cas9-induced knockout of FGFR2. Loss of this receptor promoted the expression of interferon-stimulated genes and pro-inflammatory cytokines under homeostatic conditions and in particular in response to different inflammatory mediators. Expression of FGFR2 itself was strongly downregulated in cultured human keratinocytes exposed to various pro-inflammatory stimuli. This is relevant in vivo, because bioinformatics analysis of bulk and single-cell RNA-seq data showed strongly reduced expression of FGFR2 in lesional skin of atopic dermatitis patients, which likely aggravates the inflammatory phenotype. These results reveal a key function of FGFR2 in human keratinocytes in the suppression of inflammation and suggest a role of FGFR2 downregulation in the pathogenesis of atopic dermatitis and possibly other inflammatory diseases.
Collapse
Affiliation(s)
- Luca Ferrarese
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michael Koch
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Artemis Baumann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Liliana Bento-Lopes
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daria Wüst
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ivan Berest
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Wei C, Peng D, Jing B, Wang B, Li Z, Yu R, Zhang S, Cai J, Zhang Z, Zhang J, Han L. A novel protein SPECC1-415aa encoded by N6-methyladenosine modified circSPECC1 regulates the sensitivity of glioblastoma to TMZ. Cell Mol Biol Lett 2024; 29:127. [PMID: 39333871 PMCID: PMC11429730 DOI: 10.1186/s11658-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can influence a variety of biological functions and act as a significant role in the progression and recurrence of glioblastoma (GBM). However, few coding circRNAs have been discovered in cancer, and their role in GBM is still unknown. The aim of this study was to identify coding circRNAs and explore their potential roles in the progression and recurrence of GBM. METHODS CircSPECC1 was screened via circRNAs microarray of primary and recurrent GBM samples. To ascertain the characteristics and coding ability of circSPECC1, we conducted a number of experiments. Afterward, through in vivo and in vitro experiments, we investigated the biological functions of circSPECC1 and its encoded novel protein (SPECC1-415aa) in GBM, as well as their effects on TMZ sensitivity. RESULTS By analyzing primary and recurrent GBM samples via circRNAs microarray, circSPECC1 was found to be a downregulated circRNA with coding potential in recurrent GBM compared with primary GBM. CircSPECC1 suppressed the proliferation, migration, invasion, and colony formation abilities of GBM cells by encoding a new protein known as SPECC1-415aa. CircSPECC1 restored TMZ sensitivity in TMZ-resistant GBM cells by encoding the new protein SPECC1-415aa. The m6A reader protein IGF2BP1 can bind to circSPECC1 to promote its expression and stability. Mechanistically, SPECC1-415aa can bind to ANXA2 and competitively inhibit the binding of ANXA2 to EGFR, thus resulting in the inhibition of the phosphorylation of EGFR (Tyr845) and its downstream pathway protein AKT (Ser473). In vivo experiments showed that the overexpression of circSPECC1 could combine with TMZ to treat TMZ-resistant GBM, thereby restoring the sensitivity of TMZ-resistant GBM to TMZ. CONCLUSIONS CircSPECC1 was downregulated in recurrent GBM compared with primary GBM. The m6A reader protein IGF2BP1 could promote the expression and stability of circSPECC1. The sequence of SPECC1-415aa, which is encoded by circSPECC1, can inhibit the binding of ANXA2 to EGFR by competitively binding to ANXA2 and inhibiting the phosphorylation of EGFR and AKT, thereby restoring the sensitivity of TMZ-resistant GBM cells to TMZ.
Collapse
Affiliation(s)
- Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Boyuan Jing
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 480082, Henan Province, China.
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
3
|
Han JY, Che N, Mo J, Zhang DF, Liang XH, Dong XY, Zhao XL, Sun BC. Desmoglein 2 and desmocollin 2 depletions promote malignancy through distinct mechanisms in triple-negative and luminal breast cancer. BMC Cancer 2024; 24:532. [PMID: 38671389 PMCID: PMC11046749 DOI: 10.1186/s12885-024-12229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for β-catenin. RESULTS We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas β-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting β-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.
Collapse
Affiliation(s)
- Ji-Yuan Han
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Na Che
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Jing Mo
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Dan-Fang Zhang
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Xiao-Hui Liang
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Xue-Yi Dong
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China
| | - Xiu-Lan Zhao
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China.
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China.
| | - Bao-Cun Sun
- Department of Pathology, School of Basic Medical Science, Tianjin Medical University, 300070, Tianjin, China.
- Department of Pathology, General Hospital of Tianjin Medical University, 300052, Tianjin, China.
| |
Collapse
|
4
|
Hu Z, Chen PH, Li W, Krone M, Zheng S, Saarbach J, Velasco IU, Hines J, Liu Y, Crews CM. EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling. SCIENCE ADVANCES 2024; 10:eadj7251. [PMID: 38536914 PMCID: PMC10971414 DOI: 10.1126/sciadv.adj7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
We recently developed a heterobifunctional approach [phosphorylation targeting chimeras (PhosTACs)] to achieve the targeted protein dephosphorylation (TPDephos). Here, we envisioned combining the inhibitory effects of receptor tyrosine kinase inhibitors (RTKIs) and the active dephosphorylation by phosphatases to achieve dual inhibition of kinases. We report an example of tyrosine phosphatase-based TPDephos and the effective epidermal growth factor receptor (EGFR) tyrosine dephosphorylation. We also used phosphoproteomic approaches to study the signaling transductions affected by PhosTAC-related molecules at the proteome-wide level. This work demonstrated the differential signaling pathways inhibited by PhosTAC compared with the TKI, gefitinib. Moreover, a covalent PhosTAC selective for mutated EGFR was developed and showed its inhibitory potential for dysregulated EGFR. Last, EGFR PhosTACs, consistent with EGFR dephosphorylation profiles, induced apoptosis and inhibited cancer cell viability during prolonged PhosTAC treatment. PhosTACs showcased their potential of modulating RTKs activity, expanding the scope of bifunctional molecule utility.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mackenzie Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jacques Saarbach
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ines Urquizo Velasco
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT 06511, USA
- Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Suhasini PC, Bhat V, Shetty SS, Shetty PK, Roopashree PG, Kumari NS. High expression of CD9 and Epidermal Growth Factor Receptor promotes the development of tongue cancer. Med Oncol 2024; 41:86. [PMID: 38472425 DOI: 10.1007/s12032-024-02311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
Tongue cancer is distinguished by aggressive behavior, a high risk of recurrence, lymph, and distant metastases. Hypoxia-Induced Factor 1 α functions as a CD9 transcription factor. CD9 is a transmembrane protein that may be found on the cell membrane. It can modulate the expression of the Epidermal Growth Factor Receptor (EGFR) pathway. ELISA was used to measure serum CD9, p-EGFR, and p-Akt levels in 70 tongue cancer patients and 35 healthy controls. RT-PCR was used to analyze the gene expression of the related genes. The gene as well as protein expression of CD9, EGFR/p-EGFR, and Akt/p-Akt was significantly higher in case subjects when compared with the controls. The expression of CD9 was higher in case subjects who were smokers/alcoholics when to control subjects who were smokers/alcoholics. Overexpression of CD9 due to hypoxic conditions leads to the activation of EGFR-signaling pathway resulting in cancer progression, resistance to chemotherapy. Hence, CD9 could be a potential target to suppress cancer progression.
Collapse
Affiliation(s)
- P C Suhasini
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Vadisha Bhat
- Department of ENT, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Shilpa S Shetty
- Cellomics, Lipdomics and Molecular Genetics division, Central Research Laboratory, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Praveen Kumar Shetty
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - P G Roopashree
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - N Suchetha Kumari
- Department of Biochemistry, KS Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
6
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Rivera Ortiz H, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep 2024; 43:113603. [PMID: 38117650 PMCID: PMC10835193 DOI: 10.1016/j.celrep.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with important roles in many cellular processes as well as in cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. How these dimers relate to higher-order EGFR oligomers seen in cell membranes, however, remains unclear. Here, we used single-particle tracking (SPT) and Förster resonance energy transfer imaging to examine how each domain of EGFR contributes to receptor oligomerization and the rate of receptor diffusion in the cell membrane. Although the extracellular region of EGFR is sufficient to drive receptor dimerization, we find that the EGF-induced EGFR slowdown seen by SPT requires higher-order oligomerization-mediated in part by the intracellular tyrosine kinase domain when it adopts an active conformation. Our data thus provide important insight into the interactions required for higher-order EGFR assemblies involved in EGF signaling.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| | - Eric A Burns
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - David J Schodt
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lucy W Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Emma M Mangiacapre
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Irais Ortiz-Caraveo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hector Rivera Ortiz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Chun Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
7
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Piletsky SS, Baidyuk E, Piletska EV, Lezina L, Shevchenko K, Jones DJL, Cao TH, Singh R, Spivey AC, Aboagye EO, Piletsky SA, Barlev NA. Modulation of EGFR Activity by Molecularly Imprinted Polymer Nanoparticles Targeting Intracellular Epitopes. NANO LETTERS 2023; 23:9677-9682. [PMID: 37902816 PMCID: PMC10636853 DOI: 10.1021/acs.nanolett.3c01374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/15/2023] [Indexed: 10/31/2023]
Abstract
In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.
Collapse
Affiliation(s)
- Stanislav S. Piletsky
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Ekaterina Baidyuk
- L.A.
Orbeli Institute of Physiology NAS, Yerevan 0028, Republic of Armenia
- Institute
of Cytology, 197101 Saint-Petersburg, Russia
| | - Elena V. Piletska
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Larissa Lezina
- Department
of Cancer Studies, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Donald J. L. Jones
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Thong H. Cao
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Rajinder Singh
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
| | - Alan C. Spivey
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Eric O. Aboagye
- Department
of Surgery and Cancer, Imperial College
London, Hammersmith Campus, Du Cane Road, London SW7 2BX, United
Kingdom
| | - Sergey A. Piletsky
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Nickolai A. Barlev
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic
of Kazakhstan
- Sechenov
First Medical University, 119992 Moscow, Russia
| |
Collapse
|
9
|
Hashemi Karoii D, Azizi H, Skutella T. Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. DNA Cell Biol 2023; 42:617-637. [PMID: 37610843 DOI: 10.1089/dna.2023.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Medical Faculty, Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Jeong KY, Park SY, Park MH, Kim HM. Suppressing Src-Mediated EGFR Signaling by Sustained Calcium Supply Targeting Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:13291. [PMID: 37686097 PMCID: PMC10488068 DOI: 10.3390/ijms241713291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Src is emerging as a promising target in triple-negative breast cancer (TNBC) treatment because it activates survival signaling linked to the epidermal growth factor receptor. In this study, the effect of calcium supply on Src degradation was investigated to confirm underlying mechanisms and anticancer effects targeting TNBC. MDA-MB-231 cells, the TNBC cell line, were used. Calcium supply was feasible through lactate calcium salt (CaLac), and the applicable calcium concentration was decided by changes in the viability with different doses of CaLac. Expression of signaling molecules mediated by calcium-dependent Src degradation was observed by Western blot analysis and immunocytochemistry, and the recovery of the signaling molecules was confirmed following calpeptin treatment. The anticancer effect was investigated in the xenograft animal model. Significant suppression of Src was induced by calcium supply, followed by a successive decrease in the expression of epithelial growth factor receptor, RAS, extracellular signal-regulated kinase, and nuclear factor kappa B. Then, the suppression of cyclooxygenase-2 contributed to a significant deactivation of the prostaglandin E2 receptors. These results suggest that calcium supply has the potential to reduce the risk of TNBC. However, as this study is at an early stage to determine clinical applicability, close consideration is needed.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Seon Young Park
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Min Hee Park
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Hwan Mook Kim
- MetiMedi Pharmaceuticals Co., 40, Imi-ro, Uiwang-si 16006, Republic of Korea
| |
Collapse
|
11
|
Moody TW, Ramos-Alvarez I, Jensen RT. Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer. BIOLOGY 2023; 12:957. [PMID: 37508387 PMCID: PMC10376828 DOI: 10.3390/biology12070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth.
Collapse
Affiliation(s)
- Terry W Moody
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Irene Ramos-Alvarez
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Robert T Jensen
- Center for Cancer Training, NCI, and Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Hirakawa H, Ikegami T, Kise N, Kinjyo H, Kondo S, Agena S, Hasegawa N, Kawakami J, Maeda H, Suzuki M. Human Papillomavirus Infection and EGFR Exon 20 Insertions in Sinonasal Inverted Papilloma and Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13040657. [PMID: 37109043 PMCID: PMC10143312 DOI: 10.3390/jpm13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to clarify the roles of high-risk human papillomavirus (HR-HPV) infection and epidermal growth factor receptor (EGFR) exon 20 mutations in sinonasal inverted papilloma (IP) and sinonasal squamous cell carcinoma (SNSCC). Samples were collected from 20 cases with IP, 7 with IP and squamous cell carcinoma (IP-SCC), and 20 with SNSCC and examined for HPV infection and EGFR exon 20 mutations. Low- or high-risk HPV DNA was observed in 25% of IP, 57.1% of IP-SCC, and 35% of SNSCC cases. Transcriptionally active HR-HPV infections in IP-SCC and SNSCC, accompanied by p16 overexpression, were observed in 28.5% and 25% of cases, respectively. Heterozygous EGFR exon 20 amino acid insertions (ex20ins), located between amino acids 768-774, were observed in 45% of IP, 28.5% of IP-SCC, and 0% of SNSCC and chronic sinusitis cases. EGFR phosphorylation sites were located at tyrosine (Y) 845, Y1068, Y1086, and Y1197 and induced PI3K/AKT/mTOR activation. The phosphorylation pattern of EGFR with ex20ins resembled that of HPV-related SNSCC and oropharyngeal cancer. The transcriptionally active HR-HPV infection and ex20ins might be responsible for the pathogenesis of IP-SCC cases with different fashions. Since IP-SCC might be a multifactorial disease, further investigation is needed to understand IP-SCC etiology.
Collapse
Affiliation(s)
- Hitoshi Hirakawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Taro Ikegami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Norimoto Kise
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Hidetoshi Kinjyo
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Shunsuke Kondo
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Shinya Agena
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Narumi Hasegawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Junko Kawakami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Hiroyuki Maeda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| |
Collapse
|
13
|
Mudumbi KC, Burns EA, Schodt DJ, Petrova ZO, Kiyatkin A, Kim LW, Mangiacapre EM, Ortiz-Caraveo I, Ortiz HR, Hu C, Ashtekar KD, Lidke KA, Lidke DS, Lemmon MA. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536273. [PMID: 37090557 PMCID: PMC10120646 DOI: 10.1101/2023.04.10.536273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) with important roles in many cellular processes as well as cancer and other diseases. EGF binding promotes EGFR dimerization and autophosphorylation through interactions that are well understood structurally. However, it is not clear how these dimers relate to higher-order EGFR oligomers detected at the cell surface. We used single-particle tracking (SPT) and Förster resonance energy transfer (FRET) imaging to examine how each domain within EGFR contributes to receptor dimerization and the rate of its diffusion in the cell membrane. We show that the EGFR extracellular region is sufficient to drive receptor dimerization, but that the EGF-induced EGFR slow-down seen by SPT requires formation of higher order oligomers, mediated in part by the intracellular tyrosine kinase domain - but only when in its active conformation. Our data thus provide important insight into higher-order EGFR interactions required for EGF signaling.
Collapse
|
14
|
Pettitt GA, Hurst CD, Khan Z, McPherson HR, Dunning MC, Alder O, Platt FM, Black EVI, Burns JE, Knowles MA. Development of resistance to FGFR inhibition in urothelial carcinoma via multiple pathways in vitro. J Pathol 2023; 259:220-232. [PMID: 36385700 PMCID: PMC10107504 DOI: 10.1002/path.6034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alterations of fibroblast growth factor receptors (FGFRs) are common in bladder and other cancers and result in disrupted signalling via several pathways. Therapeutics that target FGFRs have now entered the clinic, but, in common with many cancer therapies, resistance develops in most cases. To model this, we derived resistant sublines of two FGFR-driven bladder cancer cell lines by long-term culture with the FGFR inhibitor PD173074 and explored mechanisms using expression profiling and whole-exome sequencing. We identified several resistance-associated molecular profiles. These included HRAS mutation in one case and reversible mechanisms resembling a drug-tolerant persister phenotype in others. Upregulated IGF1R expression in one resistant derivative was associated with sensitivity to linsitinib and a profile with upregulation of a YAP/TAZ signature to sensitivity to the YAP inhibitor CA3 in another. However, upregulation of other potential therapeutic targets was not indicative of sensitivity. Overall, the heterogeneity in resistance mechanisms and commonality of the persister state present a considerable challenge for personalised therapy. Nevertheless, the reversibility of resistance may indicate a benefit from treatment interruptions or retreatment following disease relapse in some patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geoffrey A Pettitt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Zubeda Khan
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Helen R McPherson
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Matthew C Dunning
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Emma VI Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James'sSt James's University HospitalLeedsUK
| |
Collapse
|
15
|
Pagano C, Coppola L, Navarra G, Avilia G, Bruzzaniti S, Piemonte E, Galgani M, Della Monica R, Chiariotti L, Cuomo M, Buonaiuto M, Torelli G, Caiazzo P, Laezza C, Bifulco M. N6-Isopentenyladenosine Impairs Mitochondrial Metabolism through Inhibition of EGFR Translocation on Mitochondria in Glioblastoma Cells. Cancers (Basel) 2022; 14:cancers14246044. [PMID: 36551529 PMCID: PMC9776489 DOI: 10.3390/cancers14246044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is poorly susceptible to cytotoxic therapies. Amplification of the epidermal growth factor receptor (EGFR) and deletion of exons 2 to 7, which generates EGFR variant III (vIII), are the most common molecular alterations of GBMs that contribute to the aggressiveness of the disease. Recently, it has been shown that EGFR/EGFRvIII-targeted inhibitors enhance mitochondrial translocation by causing mitochondrial accumulation of these receptors, promoting the tumor drug resistance; moreover, they negatively modulate intrinsic mitochondria-mediated apoptosis by sequestering PUMA, leading to impaired apoptotic response in GBM cells. N6-isopentenyladenosine (i6A or iPA), a cytokinin consisting of an adenosine linked to an isopentenyl group deriving from the mevalonate pathway, has antiproliferative effects on numerous tumor cells, including GBM cells, by inducing cell death in vitro and in vivo. Here, we observed that iPA inhibits the mitochondrial respiration in GBM cells by preventing the translocation of EGFR/EGFRvIII to the mitochondria and allowing PUMA to interact with them by promoting changes in mitochondrial activity, thus playing a critical role in cell death. Our findings clearly demonstrate that iPA interferes with mitochondrial bioenergetic capacity, providing a rationale for an effective strategy for treating GBM.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80125 Naples, Italy
| | - Erica Piemonte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mario Galgani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80125 Naples, Italy
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80131 Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80131 Naples, Italy
| | - Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80131 Naples, Italy
| | - Michela Buonaiuto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE—Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80131 Naples, Italy
| | - Giovanni Torelli
- Neurosurgery Unit A.O. San Giovanni di Dio e Ruggi d’ Aragona, Salerno’s School of Medicine Largo Città di Ippocrate, 84131 Salerno, Italy
- Osservatorio Oncologico, 84091 Battipaglia, Italy
| | | | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80125 Naples, Italy
- Correspondence: or (C.L.); (M.B.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence: or (C.L.); (M.B.)
| |
Collapse
|
16
|
Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, Galibert M, Corre S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med 2022; 14:e15677. [PMID: 36305167 PMCID: PMC9728058 DOI: 10.15252/emmm.202215677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
The nongenetic mechanisms required to control tumor phenotypic plasticity and shape drug-resistance remain unclear. We show here that the Aryl hydrocarbon Receptor (AhR) transcription factor directly regulates the gene expression program associated with the acquisition of resistance to BRAF inhibitor (BRAFi) in melanoma. In addition, we show in melanoma cells that canonical activation of AhR mediates the activation of the SRC pathway and promotes the acquisition of an invasive and aggressive resistant phenotype to front-line BRAFi treatment in melanoma. This nongenetic reprogramming identifies a clinically compatible approach to reverse BRAFi resistance in melanoma. Using a preclinical BRAFi-resistant PDX melanoma model, we demonstrate that SRC inhibition with dasatinib significantly re-sensitizes melanoma cells to BRAFi. Together we identify the AhR/SRC axis as a new therapeutic vulnerability to trigger resistance and warrant the introduction of SRC inhibitors during the course of the treatment in combination with front-line therapeutics to delay BRAFi resistance.
Collapse
Affiliation(s)
- Anaïs Paris
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Nina Tardif
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Francesca M Baietti
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Cyrille Berra
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Héloïse M Leclair
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Sébastien Corre
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| |
Collapse
|
17
|
Lai Y, Chang H, Chen H, Chang G, Chen JJW. Peruvoside is a novel Src inhibitor that suppresses NSCLC cell growth and motility by downregulating multiple Src-EGFR-related pathways. Am J Cancer Res 2022; 12:2576-2593. [PMID: 35812056 PMCID: PMC9251685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023] Open
Abstract
The tyrosine kinase Src plays an essential role in the progression of many cancers and is involved in several epidermal growth factor receptor (EGFR)-mediated signalling pathways. To improve the efficacy of lung cancer treatments, this study aimed to identify novel compounds that can disrupt the Src-EGFR interaction and that are less dependent on EGFR status with wild-type and mutations than other compounds. We used the Src pY419 ELISA as the platform to screen a compound library of more than 400 plant-derived active ingredients and identified peruvoside as a candidate Src-EGFR crosstalk inhibitor. The effects of peruvoside were evaluated by western blotting, cell function assays, combination Index (CI)-isobologram analyses and in vivo experiments. Peruvoside significantly suppressed the phosphorylation of Src, EGFR, and signal transducer and activator of transcription 3 (STAT3) in a dose- and time-dependent manner and somewhat suppressed their protein expression. Cell function assays revealed that peruvoside inhibited the proliferation, invasion, migration, and colony formation of lung cancer cells in vitro and tumour growth in vivo. Furthermore, peruvoside sensitized gefitinib-resistant tumour cells (A549, PC9/gef and H1975) to gefitinib treatment, indicating that peruvoside may exert synergistic effects when used in combination with established therapeutic agents. Our data also demonstrated that the inhibitory effects of peruvoside on lung cancer progression might be attributed to its ability to regulate Src, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinase (JNK), Paxillin, p130cas, and EGFR. Our findings suggest that peruvoside suppresses non-small-cell lung carcinoma (NSCLC) malignancy by downregulating multiple Src-related pathways and could serve as a potential base molecule for developing new anticancer drugs and therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Yihua Lai
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Rheumatic Diseases Research Center, China Medical University HospitalTaichung, Taiwan
- College of Medicine, China Medical UniversityTaichung, Taiwan
- Rheumatology and Immunology Center, China Medical University HospitalTaichung, Taiwan
| | - Hsiuhui Chang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Hueiwen Chen
- Graduate Institute of Toxicology, National Taiwan University College of MedicineTaipei, Taiwan
| | - Geechen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
| | - Jeremy JW Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
- Institute of Molecular Biology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
18
|
Kim JG, Kang HY, Kim MJ, Lim S, Lee CJ, Kim KM, Jung SK. 4-phenylpyridine suppresses UVB-induced skin inflammation by targeting c-Src in vitro and in vivo. J Cell Mol Med 2022; 26:3891-3901. [PMID: 35686492 PMCID: PMC9279582 DOI: 10.1111/jcmm.17422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Acute or repetitive exposure to ultraviolet (UV) cause disruptions to the skin barrier and subsequent inflammatory skin disease. 4‐phenylpyridine (4‐PP) is a constituent of Brassica campestris L. ssp. Pekinensis and its effect on skin inflammation and molecular target remain unclear. The purpose of this study is to confirm the anti‐inflammatory efficacy of 4‐PP on UVB‐induced skin inflammation in human keratinocytes HaCaT and mouse skin and validation of its molecular target. 4‐PP also attenuated UVB‐induced phosphorylation of p38/mitogen‐activated protein kinase kinase (MKK) 3/6, c‐Jun N‐terminal kinase 1/2, MKK 4/7, extracellular‐signal‐regulated kinase 1/2, mitogen‐activated protein kinase 1/2. Additionally, 4‐PP inhibited UVB‐induced phosphorylation of epidermal growth factor receptor (EGFR) Y1068, Y1045 and 854 residues but not the proto‐oncogene tyrosine‐protein kinase c‐Src. Drug affinity responsive target stability assay revealed that 4‐PP directly binds to c‐Src and inhibits pronase c‐proteolysis. Knockdown of c‐Src inhibited UVB‐induced COX‐2 expression and phosphorylation of MAPKs and EGFR in HaCaT cells. Dorsal treatment of 4‐PP prevented UVB (0.5 J/cm2)‐induced skin thickness, phosphorylation of EGFR and COX‐2 expression in mouse skin. Our findings suggest that 4‐PP can be used as anti‐inflammatory agent with an effect of skin inflammation by inhibiting the COX‐2 expression via suppressing the c‐Src/EGFR/MAPKs signalling pathway.
Collapse
Affiliation(s)
- Ju Gyeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Ha Yeong Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do, Korea
| | - Chang Joo Lee
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea.,Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Korea
| |
Collapse
|
19
|
Cabral-Dias R, Lucarelli S, Zak K, Rahmani S, Judge G, Abousawan J, DiGiovanni LF, Vural D, Anderson KE, Sugiyama MG, Genc G, Hong W, Botelho RJ, Fairn GD, Kim PK, Antonescu CN. Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. J Cell Biol 2022; 221:213045. [PMID: 35238864 PMCID: PMC8899389 DOI: 10.1083/jcb.201808181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Karolina Zak
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Gurjeet Judge
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Laura F DiGiovanni
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Michael G Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Peter K Kim
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
21
|
Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat Commun 2021; 12:5256. [PMID: 34489407 PMCID: PMC8421385 DOI: 10.1038/s41467-021-25410-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1. Humans and other large mammals heal wounds by forming fibrotic scar tissue with diminished function. Here, the authors show that disrupting mechanotransduction through the focal adhesion kinase pathway in large animals accelerates healing, prevents fibrosis, and enhances skin regeneration.
Collapse
|
22
|
Moon SY, Lee H, Kim S, Hong JH, Chun SH, Lee HY, Kang K, Kim HS, Won HS, Ko YH. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer 2021; 21:931. [PMID: 34407787 PMCID: PMC8371881 DOI: 10.1186/s12885-021-08641-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The mechanisms of endocrine resistance are complex, and deregulation of several oncogenic signalling pathways has been proposed. We aimed to investigate the role of the EGFR and Src-mediated STAT3 signalling pathway in tamoxifen-resistant breast cancer cells. METHODS The ER-positive luminal breast cancer cell lines, MCF-7 and T47D, were used. We have established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. Cell viability was determined using an MTT assay, and protein expression levels were determined using western blot. Cell cycle and annexin V staining were analysed using flow cytometry. RESULTS TamR cells showed decreased expression of estrogen receptor and increased expression of EGFR. TamR cells showed an acceleration of the G1 to S phase transition. The protein expression levels of phosphorylated Src, EGFR (Y845), and STAT3 was increased in TamR cells, while phosphorylated Akt was decreased. The expression of p-STAT3 was enhanced according to exposure time of tamoxifen in T47D cells, suggesting that activation of STAT3 can cause tamoxifen resistance in ER-positive breast cancer cells. Both dasatinib (Src inhibitor) and stattic (STAT3 inhibitor) inhibited cell proliferation and induced apoptosis in TamR cells. However, stattic showed a much stronger effect than dasatinib. Knockdown of STAT3 expression by siRNA had no effect on sensitivity to tamoxifen in MCF-7 cells, while that enhanced sensitivity to tamoxifen in TamR cells. There was not a significant synergistic effect of dasatinib and stattic on cell survival. TamR cells have low nuclear p21(Cip1) expression compared to MCF-7 cells and inhibition of STAT3 increased the expression of nuclear p21(Cip1) in TamR cells. CONCLUSIONS The EGFR and Src-mediated STAT3 signalling pathway is activated in TamR cells, and inhibition of STAT3 may be a potential target in tamoxifen-resistant breast cancer. An increase in nuclear p21(Cip1) may be a key step in STAT3 inhibitor-induced cell death in TamR cells.
Collapse
Affiliation(s)
- Seo Yun Moon
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heejin Lee
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seoree Kim
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyung Hong
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Yeon Lee
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea
| | - Ho Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Yoon Ho Ko
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-gu, Seoul, 03312, Republic of Korea.
| |
Collapse
|
23
|
Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg Chem 2021; 115:105151. [PMID: 34333424 DOI: 10.1016/j.bioorg.2021.105151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Herein we describe the design, synthesis and anticancer evaluation of a series of 2,3-dihydroimidazo[2,1-b]thiazoles as dual kinase inhibitors of IGF1R and EGFR. A series of saturated dihydroimidazo[2,1-b] thiazoles were synthesized to understand the structure-activity relationship. Further, the key modifications were performed to improve drug like properties of the series. A 2-oxa-6-azaspiro [3.3] heptane moiety was incorporated as a bioisosteric replacement of morpholine on dihydroimidazo[2,1-b] thiazole scaffold.Subsequent structure-activity relationship (SAR) studies identified several compounds with nM range of activity. The compound 18a shows promising activity, IC50 = 52 nM against IGF1R and IC50 = 35.5 nM against EGFR with descent PK profile. The identified leadshows promising activity against both wild type and the T790M mutant forms of enzymes.
Collapse
|
24
|
Shafiekhani S, Poursheykhani A, Rahbar S, Jafari AH. Simulating ATO Mechanism and EGFR Signaling with Fuzzy Logic and Petri Net. J Biomed Phys Eng 2021; 11:325-336. [PMID: 34189121 PMCID: PMC8236109 DOI: 10.31661/jbpe.v0i0.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/05/2017] [Indexed: 12/04/2022]
Abstract
BACKGROUND Interactions of many key proteins or genes in signalling pathway have been studied qualitatively in the literature, but only little quantitative information is available. OBJECTIVE Although much has been done to clarify the biochemistry of transcriptional dynamics in signalling pathway, it remains difficult to find out and predict quantitative responses. The aim of this study is to construct a computational model of epidermal growth factor receptor (EGFR) signalling pathway as one of hallmarks of cancer so as to predict quantitative responses. MATERIAL AND METHODS In this analytical study, we presented a computational model to investigate EGFR signalling pathway. Interaction of Arsenic trioxide (ATO) with EGFR signalling pathway factors has been elicited by systematic search in data bases, as ATO is one of the mysterious chemotherapy agents that control EGFR expression in cancer. ATO has dichotomous manner in vivo, dependent on its concentration. According to fuzzy rules based upon qualitative knowledge and Petri Net, we can construct a quantitative model to describe ATO mechanism in EGFR signalling pathway. RESULTS By Fuzzy Logic models that have the potential to trade with the loss of quantitative information on how different species interact, along with Petri net quantitatively describe the dynamics of EGFR signalling pathway. By this model the dynamic of different factors in EGFR signalling pathway is achieved. CONCLUSION The use of Fuzzy Logic and PNs in biological network modelling causes a deeper understanding and comprehensive analysis of the biological networks.
Collapse
Affiliation(s)
- Sajad Shafiekhani
- PhD Candidate, Department of Biophysics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD Candidate, Research Center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Poursheykhani
- PhD Candidate, Department of Medical Genetics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sara Rahbar
- PhD Candidate, Department of Biophysics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD Candidate, Research Center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Homayoun Jafari
- PhD, Department of Biophysics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD, Research Center for Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Ahmed S, Mohamed HT, El-Husseiny N, El Mahdy MM, Safwat G, Diab AA, El-Sherif AA, El-Shinawi M, Mohamed MM. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118995. [PMID: 33667527 DOI: 10.1016/j.bbamcr.2021.118995] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.
Collapse
Affiliation(s)
- Shaza Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ayman A Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ahmed A El-Sherif
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Vice President for International Affairs, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Director of Biotechnology program, Faculty of Science, Galala University, 43511 Suez, Egypt.
| |
Collapse
|
26
|
Chen M, Wu S, Shen B, Fan Q, Zhang R, Zhou Y, Zhang P, Wang L, Zhang L. Activation of the δ opioid receptor relieves cerebral ischemic injury in rats via EGFR transactivation. Life Sci 2021; 273:119292. [PMID: 33667516 DOI: 10.1016/j.lfs.2021.119292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022]
Abstract
Delta opioids are thought to relieve ischemic injury and have tissue-protective properties. However, the detailed mechanisms of delta opioids have not been well identified. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), have been shown to mediate downstream signals of δ opioid receptor (δOR) activation through the metalloproteinase (MMP)-dependent EGF-like growth factor (HB-EGF) excretion pathway, which is called transactivation. In this study, to investigate the role of EGFR in δOR-induced anti-ischemic effects in the brain, we applied the middle cerebral artery occlusion (MCAO) model followed by reperfusion to mimic ischemic stroke injury in rats. Pre-treatment with the δOR agonist [D-ala2, D-leu5] enkephalin (DADLE) improved the neurologic deficits and the decreased infarct volume caused by cerebral ischemia/reperfusion injury, which were blocked by the EGFR inhibitor AG1478 and the MMP inhibitor GM6001, respectively. Further results indicated that DADLE activated EGFR, Akt and ERK1/2 and upregulated EGFR expression in the hippocampus in a time-dependent manner, which were inhibited by AG1478 and GM6001. The enzyme-linked immunosorbent assay (ELISA) results showed that δOR activation led to an increase in HB-EGF release, but HB-EGF in tissue was downregulated at the mRNA and protein levels. Moreover, this protective action caused by δOR agonists may involve attenuated hippocampal cellular apoptosis. Overall, these results demonstrate that MMP-mediated transactivation of EGFR is essential for δOR agonist-induced MCAO/reperfusion injury relief. These findings provide a potential molecular mechanism for the neuroprotective property of δOR and may add new insight into mitigating or preventing injury.
Collapse
Affiliation(s)
- Meixuan Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuo Wu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingquan Fan
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
27
|
Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR Inhibition in Molecular Cancer Therapy: What Else Can We Improve? Cancers (Basel) 2020; 12:E1489. [PMID: 32517369 PMCID: PMC7352780 DOI: 10.3390/cancers12061489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The proto-oncogene c-Src is a non-receptor tyrosine kinase playing a key role in many cellular pathways, including cell survival, migration and proliferation. c-Src de-regulation has been observed in several cancer types, making it an appealing target for drug discovery efforts. Recent evidence emphasizes its crucial role not only in promoting oncogenic traits, but also in the acquisition and maintenance of cancer resistance to various chemotherapeutic or molecular target drugs. c-Src modulates epidermal growth factor receptor (EGFR) activation and amplifies its downstream oncogenic signals. In this review, we report several studies supporting c-Src kinase role in the intricate mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs). We further highlighted pre- and clinical progresses of combined treatment strategies made in recent years. Several pre-clinical data have encouraged the use of c-Src inhibitors in combination with EGFR inhibitors. However, clinical trials provided controversial outcomes in some cancer types. Despite c-Src inhibitors showed good tolerability in cancer patients, no incontrovertible and consistent clinical responses were recorded, supporting the idea that a better selection of patients is needed to improve clinical outcome. Currently, the identification of biological markers predictive of therapy response and the accurate molecular screening of cancer patients aimed to gain most clinical benefits become decisive and mandatory.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (S.B.); (D.E.); (A.S.); (A.P.)
| |
Collapse
|
28
|
Weng CW, Li JH, Tsai JY, Lin SH, Chang GC, Liu CC, Chen JJW. Pharmacophore-based virtual screening for the identification of the novel Src inhibitor SJG-136 against lung cancer cell growth and motility. Am J Cancer Res 2020; 10:1668-1690. [PMID: 32642283 PMCID: PMC7339285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023] Open
Abstract
Aberrant elevated Src activity is related to lung cancer growth and metastasis. Therefore, the development of potent small molecule inhibitors to target Src kinase is a potential therapeutic strategy for lung cancer. This study aimed to develop a computational model for the in silico screening of Src inhibitors and then assess the suppressive effect of candidate compounds on cellular functions. A 3D-quantitative structure-activity relationship (QSAR) pharmacophore model consisting of two hydrogen bond acceptors and two hydrophobic regions was constructed by using 28 structurally diverse compounds with IC50 values spanning four orders of magnitude. A National Cancer Institute (NCI) compound dataset was employed for virtual screening by applying the pharmacophore model and molecular docking. Candidate compounds were chosen from the top 20% of scored hits. Among these compounds, the suppressive effects of 30 compounds available in the NCI on Src phosphorylation were validated by using an enzyme-linked immunosorbent assay. Among these compounds, SJG-136, a pyrrolobenzodiazepine dimer, showed a significant inhibitory effect against Src activity in a dose-dependent manner. Further investigations showed that SJG-136 can inhibit lung cancer cell proliferation, clonogenicity, invasion and migration in vitro and tumour growth in vivo. Furthermore, SJG-136 also had an inhibitory effect on Src-related signaling pathways, including the FAK, paxillin, p130Cas, PI3K, AKT, and MEK pathways. In conclusion, we have established a pharmacophore-based virtual screening approach to identify novel Src inhibitors that can inhibit lung cancer cell growth and motility through suppressing Src-related pathways. These findings may contribute to the development of targeted drugs for lung cancer treatment, such as lead compounds.
Collapse
Affiliation(s)
- Chia-Wei Weng
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Jia-Hua Li
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Jeng-Yuan Tsai
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Shih-Hsuan Lin
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Gee-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General HospitalTaichung, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing UniversityTaichung, Taiwan
| | - Jeremy JW Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
- Institute of Molecular Biology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
29
|
Kim MJ, Choi WG, Ahn KJ, Chae IG, Yu R, Back SH. Reduced EGFR Level in eIF2α PhosphorylationDeficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress. Mol Cells 2020; 43:264-275. [PMID: 32150794 PMCID: PMC7103887 DOI: 10.14348/molcells.2020.2197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play a significant role in intracellular signaling and regulation, particularly when they are maintained at physiologic levels. However, excess ROS can cause cell damage and induce cell death. We recently reported that eIF2α phosphorylation protects hepatocytes from oxidative stress and liver fibrosis induced by fructose metabolism. Here, we found that hepatocyte-specific eIF2α phosphorylation-deficient mice have significantly reduced expression of the epidermal growth factor receptor (EGFR) and altered EGFR-mediated signaling pathways. EGFR-mediated signaling pathways are important for cell proliferation, differentiation, and survival in many tissues and cell types. Therefore, we studied whether the reduced amount of EGFR is responsible for the eIF2α phosphorylationdeficient hepatocytes' vulnerability to oxidative stress. ROS such as hydrogen peroxide and superoxides induce both EGFR tyrosine phosphorylation and eIF2α phosphorylation. eIF2α phosphorylation-deficient primary hepatocytes, or EGFR knockdown cells, have decreased ROS scavenging ability compared to normal cells. Therefore, these cells are particularly susceptible to oxidative stress. However, overexpression of EGFR in these eIF2α phosphorylationdeficient primary hepatocytes increased ROS scavenging ability and alleviated ROS-mediated cell death. Therefore, we hypothesize that the reduced EGFR level in eIF2α phosphorylation-deficient hepatocytes is one of critical factors responsible for their susceptibility to oxidative stress.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Woo-Gyun Choi
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Kyung-Ju Ahn
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - In Gyeong Chae
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 4460, Korea
| |
Collapse
|
30
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
31
|
Dou J, Mao S, Li H, Lin JM. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Anal Chem 2019; 92:892-898. [DOI: 10.1021/acs.analchem.9b03681] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinxin Dou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Kriegs M, Clauditz TS, Hoffer K, Bartels J, Buhs S, Gerull H, Zech HB, Bußmann L, Struve N, Rieckmann T, Petersen C, Betz CS, Rothkamm K, Nollau P, Münscher A. Analyzing expression and phosphorylation of the EGF receptor in HNSCC. Sci Rep 2019; 9:13564. [PMID: 31537844 PMCID: PMC6753061 DOI: 10.1038/s41598-019-49885-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022] Open
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC) is considered to cause increased EGFR activity, which adds to tumorigenicity and therapy resistance. Since it is still unclear, whether EGFR expression is indeed associated with increased activity in HNSCC, we analyzed the relationship between EGFR expression and auto-phosphorylation as a surrogate marker for activity. We used a tissue micro array, fresh frozen HNSCC tumor and corresponding normal tissue samples and a large panel of HNSCC cell lines. While we observed substantial overexpression only in approximately 20% of HNSCC, we also observed strong discrepancies between EGFR protein expression and auto-phosphorylation in HNSCC cell lines as well as in tumor specimens using Western blot and SH2-profiling; for the majority of HNSCC EGFR expression therefore seems not to be correlated with EGFR auto-phosphorylation. Blocking of EGFR activity by cetuximab and erlotinib points to increased EGFR activity in samples with increased basal auto-phosphorylation. However, we could also identify cells with low basal phosphorylation but relevant EGFR activity. In summary, our data demonstrate that EGFR expression and activity are not well correlated. Therefore EGFR positivity is no reliable surrogate marker for EGFR activity, arguing the need for alternative biomarkers or functional predictive tests.
Collapse
Affiliation(s)
- Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany.
| | - Till Sebastian Clauditz
- Institute of Pathology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Joanna Bartels
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Lara Bußmann
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Nina Struve
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center and Department of Pediatric Hematology and Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Adrian Münscher
- Department of Otolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
33
|
A nongenomic mechanism for "metalloestrogenic" effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch Toxicol 2019; 93:2773-2785. [PMID: 31468104 DOI: 10.1007/s00204-019-02544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.
Collapse
|
34
|
Mirhosseini SA, Sarfi M, Samavarchi Tehrani S, Mirazakhani M, Maniati M, Amani J. Modulation of cancer cell signaling by long noncoding RNAs. J Cell Biochem 2019; 120:12224-12246. [PMID: 31069841 DOI: 10.1002/jcb.28847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.
Collapse
Affiliation(s)
- Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Zhou S, Li Y, Lu J, Chen C, Wang W, Wang L, Zhang Z, Dong Z, Tang F. Nuclear factor-erythroid 2-related factor 3 (NRF3) is low expressed in colorectal cancer and its down-regulation promotes colorectal cancer malignance through activating EGFR and p38/MAPK. Am J Cancer Res 2019; 9:511-528. [PMID: 30949407 PMCID: PMC6448064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 3 (NRF3), a nuclear transcription factor, has been implicated in various cellular processes including carcinogenesis. However, mechanisms underlying its regulation in carcinogenesis are unclear. Herein, we found that NRF3 is lowly expressed in colorectal cancer (CRC) tissues and cells, and NRF3 low-expressions in CRC tissue samples are associated with CRC carcinogenesis and poor patient outcomes. Nrf3-knockdown increased CRC cell growth, colony formation, and cell motility and invasion, and Nrf3-knockin dramatically decreased CRC cell growth and colony formation. Mechanistically, NRF3 increased CRC cell apoptosis and arrested cell G2/M stage. NRF3 was found to be reversely with epidermal growth factor receptor (EGFR) and p38. Strikingly, Nrf3-knockin dramatically decreased phosphorylated-EGFR at Tyrosine845 (pEGFR Tyr845) and phosphorylated-p38 at Threonine180/Tyrosine182 (p-p38 Thr180/Tyr182) expressions, and Nrf3-knockdown increased pEGFR Tyr845 and p-p38 Thr180/Tyr182. Moreover, NRF3 regulated EGFR and p38 down-stream molecules, protein kinase B (AKT), activating transcription factor (ATF) 2, and C/EBP homologous protein (CHOP) expressions. NRF3 loss-increased CRC growth through EGFR and p38 was confirmed in nude mice. Collectively, NRF3-loss in CRC cell increases EGFR and p38 phosphorylation activation, enhances cell proliferation and decreases cell apoptosis, and finally promotes CRC malignance.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Jinping Lu
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Chan Chen
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Lei Wang
- Department of Clinical Laboratory, Changsha Central HospitalChangsha 410013, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota801 16 Avenue NE, Austin, MN 55912, USA
| | - Faqing Tang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| |
Collapse
|
36
|
Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF 1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019; 10:869. [PMID: 31920979 PMCID: PMC6921279 DOI: 10.3389/fendo.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gβγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gβγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/βγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent β-arrestin-2 recruitment; however, this situation may have resulted from the low β-arrestin expression in the COS-7 cells. When β-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/βγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.
Collapse
Affiliation(s)
- G. Karina Parra-Mercado
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Alma M. Fuentes-Gonzalez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Judith Hernandez-Aranda
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Monica Diaz-Coranguez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Kevin J. Catt
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - J. Alberto Olivares-Reyes
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: J. Alberto Olivares-Reyes
| |
Collapse
|
37
|
D'Andrea P, Sciancalepore M, Veltruska K, Lorenzon P, Bandiera A. Epidermal Growth Factor - based adhesion substrates elicit myoblast scattering, proliferation, differentiation and promote satellite cell myogenic activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:504-517. [PMID: 30343052 DOI: 10.1016/j.bbamcr.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
The biochemical properties of muscle extracellular matrix are essential for stem cell adhesion, motility, proliferation and myogenic development. Recombinant elastin-like polypeptides are synthetic polypeptides that, besides maintaining some properties of the native protein, can be tailored by fusing bioactive sequences to their C-terminal. Our laboratory synthesized several Human Elastin-Like Polypeptides (HELP) derived from the sequence of human tropoelastin. Here, we developed a novel HELP family member by fusing the elastin-like backbone to the sequence of human Epidermal Growth Factor. We employed this synthetic protein, named HEGF, either alone or in combination with other proteins of the HELP family carrying RGD-integrin binding sites, as adhesion substrate for C2C12 myoblasts and satellite cells primary cultures. Adhesion of myoblasts to HEGF-based substrates induced scattering, decreased adhesion and cytoskeleton assembly; the concomitant presence of the RGD motifs potentiated all these effects. Recombinant substrates induced myoblasts proliferation, differentiation and the development of multinucleated myotubes, thus favoring myoblasts expansion and preserving their myogenic potential. The effects induced by adhesion substrates were inhibited by AG82 (Tyrphostin 25) and herbimycin A, indicating their dependence on the activation of both the EGF receptor and the tyrosine kinase c-src. Finally, HEGF increased the number of muscle stem cells (satellite cells) derived from isolated muscle fibers in culture, thus highlighting its potential as a novel substrate for skeletal muscle regeneration strategies.
Collapse
Affiliation(s)
- Paola D'Andrea
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy; Centre for Neuroscience B.R.A.I.N., University of Trieste, I-34127 Trieste, Italy
| | - Katerina Veltruska
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague V Holešovičkách 747/2, Praha 8, Czech Republic
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy; Centre for Neuroscience B.R.A.I.N., University of Trieste, I-34127 Trieste, Italy
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
38
|
Nami B, Maadi H, Wang Z. Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer. Cancers (Basel) 2018; 10:cancers10100342. [PMID: 30241301 PMCID: PMC6210751 DOI: 10.3390/cancers10100342] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20⁻30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information.
Collapse
Affiliation(s)
- Babak Nami
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Hamid Maadi
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
39
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|
40
|
Segrelles C, Contreras D, Navarro EM, Gutiérrez-Muñoz C, García-Escudero R, Paramio JM, Lorz C. Bosutinib Inhibits EGFR Activation in Head and Neck Cancer. Int J Mol Sci 2018; 19:ijms19071824. [PMID: 29933569 PMCID: PMC6073167 DOI: 10.3390/ijms19071824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and although new therapeutic approaches have been recently evaluated, overall patient survival is still poor. Thus, new effective and selective clinical treatments are urgently needed. An analysis of data from large-scale, high-throughput drug screening cell line projects identified Bosutinib, a Src/Abl inhibitor that is currently used for the treatment of chronic myelogenous leukemia, as a candidate drug to treat HNSCC. Using a panel of HNSCC-derived cell lines, we found that treatment with Bosutinib reduced cell proliferation and induced apoptosis of sensitive cell lines. The drug rapidly inhibited Src and EGFR (epidermal growth factor receptor) phosphorylation, and sensitivity to Bosutinib was correlated with the activation status of EGFR. Similar findings were observed in in vivo xenograft assays using HNSCC derived cells. Moreover, in the presence of mutations in PIK3CA, the combination of Bosutinib with the PI3Kα inhibitor Alpelisib showed a synergistic effect. These results suggest that Bosutinib could be a new effective drug for the treatment of HNSCC, particularly in tumors with high EGFR activity. Its combination with Alpelisib could especially benefit patients bearing activating mutations of PIK3CA.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
- Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Ave Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - David Contreras
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
| | - Elena M Navarro
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
| | | | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
- Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Ave Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
- Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Ave Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Corina Lorz
- Molecular Oncology Unit, CIEMAT (ed 70A), Ave Complutense 40, 28040 Madrid, Spain.
- Molecular Oncology, University Hospital 12 de Octubre, Research Institute 12 de Octubre i+12, Ave Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
41
|
Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci 2018; 19:ijms19061811. [PMID: 29921831 PMCID: PMC6032236 DOI: 10.3390/ijms19061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol, a major component of the plasma membrane, determines the physical properties of biological membranes and plays a critical role in the assembly of membrane microdomains. Enrichment or deprivation of membrane cholesterol affects the activities of many signaling molecules at the plasma membrane. Cell detachment changes the structure of the plasma membrane and influences the localizations of lipids, including cholesterol. Recent studies showed that cell detachment changes the activities of a variety of signaling molecules. We previously reported that the localization and the function of the Src-family kinase Lyn are critically regulated by its membrane anchorage through lipid modifications. More recently, we found that the localization and the activity of Lyn were changed upon cell detachment, although the manners of which vary between cell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterol in the regulation of Lyn’s activation following cell detachment.
Collapse
|
42
|
Harper K, R. Lavoie R, Charbonneau M, Brochu-Gaudreau K, Dubois CM. The Hypoxic Tumor Microenvironment Promotes Invadopodia Formation and Metastasis through LPA1 Receptor and EGFR Cooperation. Mol Cancer Res 2018; 16:1601-1613. [DOI: 10.1158/1541-7786.mcr-17-0649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
43
|
Antitumor Effect of Calcium-Mediated Destabilization of Epithelial Growth Factor Receptor on Non-Small Cell Lung Carcinoma. Int J Mol Sci 2018. [PMID: 29641465 DOI: 10.3390/ijms19041158.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.
Collapse
|
44
|
Antitumor Effect of Calcium-Mediated Destabilization of Epithelial Growth Factor Receptor on Non-Small Cell Lung Carcinoma. Int J Mol Sci 2018; 19:ijms19041158. [PMID: 29641465 PMCID: PMC5979318 DOI: 10.3390/ijms19041158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Despite the development of numerous therapeutics targeting the epithelial growth factor receptor (EGFR) for non-small cell lung carcinoma (NSCLC), the application of these drugs is limited because of drug resistance. Here, we investigated the antitumor effect of calcium-mediated degradation of EGFR pathway-associated proteins on NSCLC. First, lactate calcium salt (LCS) was utilized for calcium supplementation. Src, α-tubulin and EGFR levels were measured after LSC treatment, and the proteins were visualized by immunocytochemistry. Calpeptin was used to confirm the calcium-mediated effect of LCS on NSCLC. Nuclear expression of c-Myc and cyclin D1 was determined to understand the underlying mechanism of signal inhibition following EGFR and Src destabilization. The colony formation assay and a xenograft animal model were used to confirm the in vitro and in vivo antitumor effects, respectively. LCS supplementation reduced Src and α-tubulin expression in NSCLC cells. EGFR was destabilized because of proteolysis of Src and α-tubulin. c-Myc and cyclin D1 expression levels were also reduced following the decrease in the transcriptional co-activation of EGFR and Src. Clonogenic ability and tumor growth were significantly inhibited by LSC treatment-induced EGFR destabilization. These results suggest that other than specifically targeting EGFR, proteolysis of associated molecules such as Src or α-tubulin may effectively exert an antitumor effect on NSCLC via EGFR destabilization. Therefore, LCS is expected to be a good candidate for developing novel anti-NSCLC therapeutics overcoming chemoresistance.
Collapse
|
45
|
Chen Z, Oh D, Dubey AK, Yao M, Yang B, Groves JT, Sheetz M. EGFR family and Src family kinase interactions: mechanics matters? Curr Opin Cell Biol 2018; 51:97-102. [DOI: 10.1016/j.ceb.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023]
|
46
|
Komuro A, Raja E, Iwata C, Soda M, Isogaya K, Yuki K, Ino Y, Morikawa M, Todo T, Aburatani H, Suzuki H, Ranjit M, Natsume A, Mukasa A, Saito N, Okada H, Mano H, Miyazono K, Koinuma D. Identification of a novel fusion gene HMGA2-EGFR in glioblastoma. Int J Cancer 2017; 142:1627-1639. [PMID: 29193056 DOI: 10.1002/ijc.31179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Glioblastoma is one of the most malignant forms of cancer, for which no effective targeted therapy has been found. Although The Cancer Genome Atlas has provided a list of fusion genes in glioblastoma, their role in progression of glioblastoma remains largely unknown. To search for novel fusion genes, we obtained RNA-seq data from TGS-01 human glioma-initiating cells, and identified a novel fusion gene (HMGA2-EGFR), encoding a protein comprising the N-terminal region of the high-mobility group AT-hook protein 2 (HMGA2) fused to the C-terminal region of epidermal growth factor receptor (EGFR), which retained the transmembrane and kinase domains of the EGFR. This fusion gene product showed transforming potential and a high tumor-forming capacity in cell culture and in vivo. Mechanistically, HMGA2-EGFR constitutively induced a higher level of phosphorylated STAT5B than EGFRvIII, an in-frame exon deletion product of the EGFR gene that is commonly found in primary glioblastoma. Forced expression of HMGA2-EGFR enhanced orthotopic tumor formation of the U87MG human glioma cell line. Furthermore, the EGFR kinase inhibitor erlotinib blocked sphere formation of TGS-01 cells in culture and inhibited tumor formation in vivo. These findings suggest that, in addition to gene amplification and in-frame exon deletion, EGFR signaling can also be activated by gene fusion, suggesting a possible avenue for treatment of glioblastoma.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Yuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Melissa Ranjit
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Lai YH, Lin SY, Wu YS, Chen HW, Chen JJW. AC-93253 iodide, a novel Src inhibitor, suppresses NSCLC progression by modulating multiple Src-related signaling pathways. J Hematol Oncol 2017; 10:172. [PMID: 29132432 PMCID: PMC5683468 DOI: 10.1186/s13045-017-0539-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
Background The tyrosine kinase Src is involved in the progression of many cancers. Moreover, inhibiting Src activity has been shown to obstruct several signaling pathways regulated by the EGFR. Thus, Src is a valuable target molecule in drug development. The purpose of this study was to identify compounds that directly or indirectly modulate Src to suppress lung cancer cell growth and motility and to investigate the molecular mechanisms underlying the effects of these compounds. Methods Human non-small cell lung cancer (NSCLC) cell lines (PC9, PC9/gef, A549, and H1975) with different EGFR statuses were tested by cytotoxicity and proliferation assays after AC-93253 iodide treatment. Src and Src-related protein expression in AC-93253 iodide-treated PC9, PC9/gef, and A549 cells were assessed by western blotting. The effects of AC-93253 iodide on cancer cell colony formation, invasion, and migration were assessed in PC9 and PC9/gef cells. The synergistic effects of gefitinib and AC-93253 iodide were evaluated by combination index (CI)-isobologram analysis in gefitinib-resistant cell lines. The efficacy of AC-93253 iodide in vivo was determined using nude mice treated with either the compound or the vehicle. Results Among the compounds, AC-93253 iodide exhibited the most potent dose-independent inhibitory effects on the activity of Src as well as on that of the Src-related proteins EGFR, STAT3, and FAK. Furthermore, AC-93253 iodide significantly suppressed cancer cell proliferation, colony formation, invasion, and migration in vitro and tumor growth in vivo. AC-93253 iodide sensitized tumor cells to gefitinib treatment regardless of whether the cells were gefitinib-sensitive (PC9) or resistant (H1975 and PC9/gef), indicating that it may exert synergistic effects when used in combination with established therapeutic agents. Our findings also suggested that the inhibitory effects of AC-93253 iodide on lung cancer progression may be attributable to its ability to modulate multiple proteins, including Src, PI3K, JNK, Paxillin, p130cas, MEK, ERK, and EGFR. Conclusions Our data suggest that AC-93253 iodide inhibits NSCLC cell growth and motility by regulating multiple Src-related pathways. Our findings may facilitate the development of therapeutic strategies and anti-tumor drugs that may be useful for treating lung cancer in the future. Electronic supplementary material The online version of this article (10.1186/s13045-017-0539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Hua Lai
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Sih-Yin Lin
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist, Taichung, 40227, Taiwan, Republic of China. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
48
|
Transcriptional regulation of ataxia–telangiectasia and Rad3-related protein by activated p21-activated kinase-1 protects keratinocytes in UV-B-induced premalignant skin lesions. Oncogene 2017; 36:6154-6163. [DOI: 10.1038/onc.2017.218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
|
49
|
Saxena M, Liu S, Yang B, Hajal C, Changede R, Hu J, Wolfenson H, Hone J, Sheetz MP. EGFR and HER2 activate rigidity sensing only on rigid matrices. NATURE MATERIALS 2017; 16:775-781. [PMID: 28459445 PMCID: PMC5920513 DOI: 10.1038/nmat4893] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/20/2017] [Indexed: 05/20/2023]
Abstract
Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.
Collapse
Affiliation(s)
- Mayur Saxena
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | - Shuaimin Liu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Cynthia Hajal
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Junqiang Hu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Haguy Wolfenson
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
50
|
Thamilselvan V, Menon M, Stein GS, Valeriote F, Thamilselvan S. Combination of Carmustine and Selenite Inhibits EGFR Mediated Growth Signaling in Androgen-Independent Prostate Cancer Cells. J Cell Biochem 2017; 118:4331-4340. [PMID: 28430389 DOI: 10.1002/jcb.26086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023]
Abstract
Although aberrant androgen receptor (AR) signaling is a central mechanism for castration resistant prostate cancer (CRPC) progression, AR-independent growth signaling is also present in CRPC. The current therapeutic options for patients with CRPC are limited and new drugs are desperately needed to eliminate these crucial growth signaling pathways. We have previously shown that combination of carmustine and selenite effectively induces apoptosis and growth inhibition by targeting AR and AR-variants in CRPC cells. High levels of EGFR expression present in the CRPC cells mediates the cell proliferation via AR-independent growth signaling mechanisms. Therefore, in this study, we investigated whether the combination of carmustine and selenite could inhibit EGFR mediated growth signaling and induce apoptosis in androgen independent-AR negative prostate cancer cells. EGF exposure dose and time dependently increased phospho-EGFR (Tyr845, Tyr1068, and Tyr1045), pAkt (Ser473), and pERK1/2 (Thr204/Tyr202) protein expression levels in AIPC cells. Combination of carmustine and selenite treatment markedly suppressed EGF-stimulated proliferation and survival of AIPC cells and effectively induced apoptosis. The ROS generated by the combination of carmustine and selenite exhibited a strong inhibition on EGF stimulated EGFR and its downstream signaling molecules such as Akt, NF-kB, ERK1/2, and Cyclin D1. Individual agent treatment showed only partial effect. Overall, our findings demonstrated that the combination of carmustine and selenite treatment dramatically inhibits EGFR signaling, proliferation, and induces apoptosis in AIPC cells, suggesting a potential candidate for the treatment of CRPC. The results of the study further suggest that the combination of carmustine and selenite treatment can overcome EGFR mediated AR-independent growth response in CRPC during anti-androgen therapy. J. Cell. Biochem. 118: 4331-4340, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Mani Menon
- Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan 48202
| | - Gary S Stein
- University of Vermont Cancer Center and Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Fred Valeriote
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| | | |
Collapse
|