1
|
Li J, Tang Y, Long F, Tian L, Tang A, Ding L, Chen J, Liu M. Integrating bulk RNA-seq and scRNA-seq analyses revealed the function and clinical value of thrombospondins in colon cancer. Comput Struct Biotechnol J 2024; 23:2251-2266. [PMID: 38827236 PMCID: PMC11140486 DOI: 10.1016/j.csbj.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Background Acting as mediators in cell-matrix and cell-cell communication, matricellular proteins play a crucial role in cancer progression. Thrombospondins (TSPs), a type of matricellular glycoproteins, are key regulators in cancer biology with multifaceted roles. Although TSPs have been implicated in anti-tumor immunity and epithelial-mesenchymal transition (EMT) in several malignancies, their specific roles to colon cancer remain elusive. Addressing this knowledge gap is essential, as understanding the function of TSPs in colon cancer could identify new therapeutic targets and prognostic markers. Methods Analyzing 1981 samples from 10 high-throughput datasets, including six bulk RNA-seq, three scRNA-seq, and one spatial transcriptome dataset, our study investigated the prognostic relevance, risk stratification value, immune heterogeneity, and cellular origin of TSPs, as well as their influence on cancer-associated fibroblasts (CAFs). Utilizing survival analysis, unsupervised clustering, and functional enrichment, along with multiple correlation analyses of the tumor-microenvironment (TME) via Gene Set Variation Analysis (GSVA), spatial localization, Monocle2, and CellPhoneDB, we provided insights into the clinical and cellular implications of TSPs. Results First, we observed significant upregulation of THBS2 and COMP in colon cancer, both of which displayed significant prognostic value. Additionally, we detected a significant positive correlation between TSPs and immune cells, as well as marker genes of EMT. Second, based on TSPs expression, patients were divided into two clusters with distinct prognoses: the high TSPs expression group (TSPs-H) was characterized by pronounced immune and stromal cell infiltration, and notably elevated T-cell exhaustion scores. Subsequently, we found that THBS2 and COMP may be associated with the differentiation of CAFs into pan-iCAFs and pan-dCAFs, which are known for their heightened matrix remodeling activities. Moreover, THBS2 enhanced CAFs communication with vascular endothelial cells and monocyte-macrophages. CAFs expressing THBS2 (THBS2+ CAFs) demonstrated higher scores across multiple signaling pathways, including angiogenic, EMT, Hedgehog, Notch, Wnt, and TGF-β, when compared to THBS2- CAFs. These observations suggest that THBS2 may be associated with stronger pro-carcinogenic activity in CAFs. Conclusions This study revealed the crucial role of TSPs and the significant correlation between THBS2 and CAFs interactions in colon cancer progression, providing valuable insights for targeting TSPs to mitigate cancer progression.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Ying Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
- Medical Laboratory, People's Hospital of Qingbaijiang District, Chengdu 61300, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Luyao Tian
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Ao Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - LiHui Ding
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Juan Chen
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China
| |
Collapse
|
2
|
Cheng Y, Zhai Y, Yuan Y, Wang Q, Li S, Sun H. The Contributions of Thrombospondin-1 to Epilepsy Formation. Neurosci Bull 2024; 40:658-672. [PMID: 38528256 PMCID: PMC11127911 DOI: 10.1007/s12264-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/27/2024] [Indexed: 03/27/2024] Open
Abstract
Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Cudna A, Bronisz E, Mirowska-Guzel D, Kurkowska-Jastrzębska I. Serum levels of matrix metalloproteinase 2 and its inhibitor after tonic-clonic seizures. Epilepsy Res 2023; 192:107115. [PMID: 36958106 DOI: 10.1016/j.eplepsyres.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Damage to the blood-brain barrier (BBB) may result from on-going neuroinflammation, which can lead to leakage of blood components, such as leukocytes and serum proteins, into the brain, resulting in disturbed brain homeostasis. The aim of the project was to examine the involvement of modulatory proteins in the processes of BBB integration after epileptic seizures. We investigated serum changes in the levels of MMP-2 and MMP-7 and its inhibitors after seizures in epilepsy patients. Concentrations of these proteins were measured by ELISA in 50 patients at 1-3, 24, and 72 h after generalized tonic-clonic seizures and once in participants of the control group. The level of MMP-2 in serum was slightly higher after seizures (at 1-3 h time point), but the difference was not statistically significant. The levels of trombospondine (TSP) - 1 and - 2 were decreased at 1-3 h after seizures. The expression of TIMP-2 was increased 1 and 24 h after seizures. There were no significant changes in the level of α2-macroglobulin and MMP-7. Changes in the expression of both specific and non-specific inhibitors indicate the initiation of repair processes of the blood-brain barrier and improvement of its integrity. Since we performed serum analysis, further studies are necessary to investigate the correlation with the expression of the investigated markers in the brain. Perhaps this will allow for the identification of new biomarkers associated with epileptic seizures.
Collapse
Affiliation(s)
- A Cudna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - E Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland
| | | |
Collapse
|
5
|
Dong L, Sun Q, Song F, Song X, Lu C, Li Y, Song X. Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma. Heliyon 2023; 9:e14003. [PMID: 36938461 PMCID: PMC10018481 DOI: 10.1016/j.heliyon.2023.e14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) can exert their immunosuppressive effects by secreting various effectors that are involved in the regulation of tumor-infiltrating immune cells as well as other immune components in the tumor immune microenvironment (TIME), thereby promoting tumorigenesis, progression, metastasis, and drug resistance. Although a large number of studies suggest that CAFs play a key regulatory role in the development of head and neck squamous cell carcinoma (HNSCC), there are limited studies on the relevance of CAFs to the prognosis of HNSCC. In this study, we identified a prognostic signature containing eight CAF-related genes for HNSCC by univariate Cox analysis, lasso regression, stepwise regression, and multivariate Cox analysis. Our validation in primary cultures of CAFs from human HNSCC and four human HNSCC cell lines confirmed that these eight genes are indeed characteristic markers of CAFs. Immune cell infiltration differences analysis between high-risk and low-risk groups according to the eight CAF-related genes signature hinted at CAFs regulatory roles in the TIME, further revealing its potential role on prognosis. The signature of the eight CAF-related genes was validated in different independent validation cohorts and all showed that it was a valid marker for prognosis. The significantly higher overall survival (OS) in the low-risk group compared to the high-risk group was confirmed by Kaplan-Meier (K-M) analysis, suggesting that the signature of CAF-related genes can be used as a non-invasive predictive tool for HNSCC prognosis. The low-risk group had significantly higher levels of tumor-killing immune cell infiltration, as confirmed by CIBERSORT analysis, such as CD8+ T cells, follicular helper T cells, and Dendritic cells (DCs) in the low-risk group. In contrast, the level of infiltration of pro-tumor cells such as M0 macrophages and activated Mast cells (MCs) was lower. It is crucial to delve into the complex mechanisms between CAFs and immune cells to find potential regulatory targets and may provide new evidence for subsequently targeted immunotherapy. These results suggest that the signature of the eight CAF-related genes is a powerful indicator for the assessment of the TIME of HNSCC. It may provide a new and reliable potential indicator for clinicians to predict the prognosis of HNSCC, which may be used to guide treatment and clinical decision-making in HNSCC patients. Meanwhile, CAF-related genes are expected to become tumor biomarkers and effective targets for HNSCC.
Collapse
Key Words
- CAFs, Cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer-associated fibroblasts
- DCs, Dendritic cells
- EMT, epithelial mesenchymal transition
- GEO, Gene Expression Omnibus
- GEPIA, Gene Expression Profiling Interactive Analysis
- GO, Gene Ontology
- GSEA, Gene Set Enrichment Analysis
- HNSCC, head and neck squamous cell carcinoma
- HR, Hazard Ratio
- Head and neck squamous cell carcinoma
- Immune cell infiltration
- K-M, Kaplan-Meier
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCs, Mast cells
- NFs, normal fibroblasts
- OS, overall survival
- OSCC, oral squamous cell carcinomas
- Prognostic signature
- ROC, receiver operating characteristic
- TAMs, tumor-associated macrophages
- TCGA, The Cancer Genome Atlas
- TIME, tumor immune microenvironment
- TME, tumor microenvironment
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Qi Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Fei Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Xiaoyu Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Congxian Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Yumei Li: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Shandong University, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases
- Corresponding author. Xicheng Song: Department of Otorhinolaryngology Head and Neck Surgery. Yantai Yuhuangding Hospital, No.20, Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264000, China.
| |
Collapse
|
6
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
7
|
Yao H, Liu J, Zhang C, Shao Y, Li X, Yu Z, Huang Y. Apatinib inhibits glioma cell malignancy in patient-derived orthotopic xenograft mouse model by targeting thrombospondin 1/myosin heavy chain 9 axis. Cell Death Dis 2021; 12:927. [PMID: 34635636 PMCID: PMC8505401 DOI: 10.1038/s41419-021-04225-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
We determined the antitumor mechanism of apatinib in glioma using a patient-derived orthotopic xenograft (PDOX) glioma mouse model and glioblastoma (GBM) cell lines. The PDOX mouse model was established using tumor tissues from two glioma patients via single-cell injections. Sixteen mice were successfully modeled and randomly divided into two equal groups (n = 8/group): apatinib and normal control. Survival analysis and in vivo imaging was performed to determine the effect of apatinib on glioma proliferation in vivo. Candidate genes in GBM cells that may be affected by apatinib treatment were screened using RNA-sequencing coupled with quantitative mass spectrometry, data mining of The Cancer Genome Atlas, and Chinese Glioma Genome Atlas databases, and immunohistochemistry analysis of clinical high-grade glioma pathology samples. Quantitative reverse transcription-polymerase chain reaction (qPCR), western blotting, and co-immunoprecipitation (co-IP) were performed to assess gene expression and the apatinib-mediated effect on glioma cell malignancy. Apatinib inhibited the proliferation and malignancy of glioma cells in vivo and in vitro. Thrombospondin 1 (THBS1) was identified as a potential target of apatinib that lead to inhibited glioma cell proliferation. Apatinib-mediated THBS1 downregulation in glioma cells was confirmed by qPCR and western blotting. Co-IP and mass spectrometry analysis revealed that THBS1 could interact with myosin heavy chain 9 (MYH9) in glioma cells. Simultaneous THBS1 overexpression and MYH9 knockdown suppressed glioma cell invasion and migration. These data suggest that apatinib targets THBS1 in glioma cells, potentially via MYH9, to inhibit glioma cell malignancy and may provide novel targets for glioma therapy.
Collapse
Affiliation(s)
- Hui Yao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Chi Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Yunxiang Shao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215124, Jiangsu, China
| | - Zhengquan Yu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China.
| | - Yulun Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China.
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215124, Jiangsu, China.
| |
Collapse
|
8
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22179185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Correspondence: (M.-Y.L.); (S.R.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
- Correspondence: (M.-Y.L.); (S.R.)
| |
Collapse
|
9
|
Chen YJ, Chang JT, You GR, Huang CY, Fan KH, Cheng AJ. Panel biomarkers associated with cancer invasion and prognostic prediction for head-neck cancer. Biomark Med 2021; 15:861-877. [PMID: 34032473 DOI: 10.2217/bmm-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Cell invasion leading to metastasis is a major cause of treatment failure in head-neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. Materials & methods: A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Results: Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Conclusion: Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical School, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Yu Huang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236017, Taiwan
| | - Ann-Joy Cheng
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
10
|
Thrombospondin-2 and LDH Are Putative Predictive Biomarkers for Treatment with Everolimus in Second-Line Metastatic Clear Cell Renal Cell Carcinoma (MARC-2 Study). Cancers (Basel) 2021; 13:cancers13112594. [PMID: 34070677 PMCID: PMC8199288 DOI: 10.3390/cancers13112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge due to the lack of biomarkers indicating the optimal drug for each patient. This study analyzed blood samples of patients with predominant clear cell mRCC who were treated with the mTOR inhibitor everolimus after failure of one prior tumor therapy. In an exploratory approach, predictive blood biomarkers were searched. We found lower levels of the protein thrombospondin-2 (TSP-2) at the start of the therapy and higher lactate dehydrogenase (LDH) levels in serum two weeks after therapy initiation to be associated with therapy response. Of note, these blood biomarkers had a higher predictive value than baseline patient parameters or risk classifications. Polymorphisms in the mTOR gene appeared to be associated with therapy response, but were not significant. To conclude, it seems feasible to identify patients showing longtime responses to everolimus and possible to increase tumor therapy response rates based on biomarkers for individual therapy selection. Abstract There is an unmet need for predictive biomarkers in metastatic renal cell carcinoma (mRCC) therapy. The phase IV MARC-2 trial searched for predictive blood biomarkers in patients with predominant clear cell mRCC who benefit from second-line treatment with everolimus. In an exploratory approach, potential biomarkers were assessed employing proteomics, ELISA, and polymorphism analyses. Lower levels of angiogenesis-related protein thrombospondin-2 (TSP-2) at baseline (≤665 parts per billion, ppb) identified therapy responders with longer median progression-free survival (PFS; ≤665 ppb at baseline: 6.9 months vs. 1.8, p = 0.005). Responders had higher lactate dehydrogenase (LDH) levels in serum two weeks after therapy initiation (>27.14 nmol/L), associated with a longer median PFS (3.8 months vs. 2.2, p = 0.013) and improved overall survival (OS; 31.0 months vs. 14.0 months, p < 0.001). Baseline TSP-2 levels had a stronger relation to PFS (HR 0.36, p = 0.008) than baseline patient parameters, including IMDC score. Increased serum LDH levels two weeks after therapy initiation were the best predictor for OS (HR 0.21, p < 0.001). mTOR polymorphisms appeared to be associated with therapy response but were not significant. Hence, we identified TSP-2 and LDH as promising predictive biomarkers for therapy response on everolimus after failure of one VEGF-targeted therapy in patients with clear cell mRCC.
Collapse
|
11
|
Harada J, Miyata Y, Araki K, Matsuda T, Nagashima Y, Mukae Y, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Pathological Significance and Prognostic Roles of Thrombospondin-3, 4 and 5 in Bladder Cancer. In Vivo 2021; 35:1693-1701. [PMID: 33910854 PMCID: PMC8193323 DOI: 10.21873/invivo.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The pathological significance of thrombospondin (TSP)-1 and -2 in bladder cancer (BC) is well-known whereas that of TSP-3, 4 and 5 remains unclear. Our aim is to clarify the pathological significance and prognostic roles of TSP-3 to 5 expression in BC patients. PATIENTS AND METHODS TSP-3 to 5 expression, proliferation index (PI), apoptotic index (AI) and microvessel density (MVD) were evaluated in 206 BC patients by immunohistochemical techniques. RESULTS TSP-5 expression was positively associated with grade, T stage, metastasis, and worse prognosis. PI in TSP-5-positive tissues was significantly higher compared to negative tissues. In contrast, AI in TSP-5-positive tissues was significantly lower compared to negative tissues. Expressions of TSP-3 and 4 were not associated with any clinicopathological features, survival, PI, or AI. CONCLUSION TSP-5 plays important roles in malignant behavior via cell survival regulation whereas the pathological significance of TSP-3 and TSP-4 in BC might be minimal.
Collapse
Affiliation(s)
- Junki Harada
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Matsuda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiaki Nagashima
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Mukae
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Deng LY, Zeng XF, Tang D, Deng W, Liu HF, Xie YK. Expression and prognostic significance of thrombospondin gene family in gastric cancer. J Gastrointest Oncol 2021; 12:355-364. [PMID: 34012631 DOI: 10.21037/jgo-21-54] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Thrombospondins (THBSs) are glycoproteins expressed in the extracellular matrix (ECM) and have critical roles in tumor development and metastasis. However, the diverse expression patterns and prognostic roles of distinct THBS genes in gastric cancer have not been fully elucidated. In the current study, we aimed to investigate the expression patterns of THBSs in gastric cancer (GC) and determine whether they are prognostic markers for this malignancy. Methods mRNA expression status and genetic mutations of THBS family members were performed by using ONCOMINE, UCSC Xena browser, GEPIA, and cBioPortal databases. Prognostic values and function enrichment analysis of the members were assessed via Kaplan-Meier plotter and Metascape. Results we found that the mRNA expression of THBS1, THBS2, THBS4, and COMP were higher in patients with GC tissues than those in normal gastric mucosa and there was no difference in the mRNA expression of THBS3 between GC and normal tissue. Survival analysis revealed that mRNA levels of THBSs were strongly related to worse OS in GC patients (P<0.05). Overexpression of THBSs indicated poor OS in stage III/IV GC and high expression of THBS1, THBS3, THBS4, and COMP were related to worse OS in stage II GC. Conclusions Bioinformatics analysis revealed a better understanding the value of THBS family members in GC and suggest that THBSs might serve as potential prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Long-Ying Deng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiang-Fu Zeng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dan Tang
- Department of General Practice, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Deng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Fu Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuan-Kang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Visser WCH, de Jong H, Melchers WJG, Mulders PFA, Schalken JA. Commercialized Blood-, Urinary- and Tissue-Based Biomarker Tests for Prostate Cancer Diagnosis and Prognosis. Cancers (Basel) 2020; 12:E3790. [PMID: 33339117 PMCID: PMC7765473 DOI: 10.3390/cancers12123790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/24/2023] Open
Abstract
In the diagnosis and prognosis of prostate cancer (PCa), the serum prostate-specific antigen test is widely used but is associated with low specificity. Therefore, blood-, urinary- and tissue-based biomarker tests have been developed, intended to be used in the diagnostic and prognostic setting of PCa. This review provides an overview of commercially available biomarker tests developed to be used in several clinical stages of PCa management. In the diagnostic setting, the following tests can help selecting the right patients for initial and/or repeat biopsy: PHI, 4K, MiPS, SelectMDx, ExoDx, Proclarix, ConfirmMDx, PCA3 and PCMT. In the prognostic setting, the Prolaris, OncotypeDx and Decipher test can help in risk-stratification of patients regarding treatment decisions. Following, an overview is provided of the studies available comparing the performance of biomarker tests. However, only a small number of recently published head-to-head comparison studies are available. In contrast, recent research has focused on the use of biomarker tests in relation to the (complementary) use of multiparametric magnetic resonance imaging in PCa diagnosis.
Collapse
Affiliation(s)
- Wieke C. H. Visser
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Hans de Jong
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Willem J. G. Melchers
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter F. A. Mulders
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| |
Collapse
|
14
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. Thrombospondin-1 is a prognostic biomarker and is correlated with tumor immune microenvironment in glioblastoma. Oncol Lett 2020; 21:22. [PMID: 33240428 PMCID: PMC7681197 DOI: 10.3892/ol.2020.12283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/17/2020] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and the most aggressive type of glioma, characterized by strong invasive potential and rapid recurrence despite severe treatment methods, such as maximal tumor resection followed by chemotherapy and radiotherapy. Thrombospondin-1 (THBS1) was first discovered in platelets and subsequent studies have indicated its functions in the development of several cancers, including breast cancer, melanoma, gastric cancer, cervical cancer and GBM. However, to the best of our knowledge, the expression profiles of THBS1 in GBM subtypes remain unknown, and the underlying mechanism by which THBS1 expression is regulated, and its effect on the local immune response in GBM, remains unclear. The present study used public datasets from The Cancer Genome Atlas, the Chinese Glioma Genome Atlas, the Gene Expression Omnibus, the Ivy Glioblastoma Atlas Project, Tumor Immune Estimation Resource, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data and the Human Protein Atlas to investigate the prognostic value of THBS1 and its expression profiles, as well as its correlation with the local immune response in GBM. The results demonstrated that THBS1 was a biomarker of the pathological malignancy of glioma, and predicted the mesenchymal subtype of GBM. Furthermore, DNA methylation of THBS1 may be an important mechanism by which THBS1 expression is regulated in GBM. The hypomethylation or overexpression of THBS1 predicted an unfavorable prognosis in patients with GBM. Additionally, THBS1 was correlated with immune and inflammatory responses in GBM. Thus, the findings of the present study provide insight into the potential value of THBS1 in the treatment of GBM.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Su W, Guan Y, Huang B, Wang J, Wei Y, Zhao Y, Jiao Q, Ji J, Yu D, Xu L. Bioinformatic analysis reveals hub genes and pathways that promote melanoma metastasis. BMC Cancer 2020; 20:863. [PMID: 32894090 PMCID: PMC7487637 DOI: 10.1186/s12885-020-07372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Melanoma has the highest mortality rate of all skin tumors, and metastases are the major cause of death from it. The molecular mechanism leading to melanoma metastasis is currently unclear. METHODS With the goal of revealing the underlying mechanism, three data sets with accession numbers GSE8401, GSE46517 and GSE7956 were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the differentially expressed gene (DEG) of primary melanoma and metastatic melanoma, three kinds of analyses were performed, namely functional annotation, protein-protein interaction (PPI) network and module construction, and co-expression and drug-gene interaction prediction analysis. RESULTS A total of 41 up-regulated genes and 79 down-regulated genes was selected for subsequent analyses. Results of pathway enrichment analysis showed that extracellular matrix organization and proteoglycans in cancer are closely related to melanoma metastasis. In addition, seven pivotal genes were identified from PPI network, including CXCL8, THBS1, COL3A1, TIMP3, KIT, DCN, and IGFBP5, which have all been verified in the TCGA database and clinical specimens, but only CXCL8, THBS1 and KIT had significant differences in expression. CONCLUSIONS To conclude, CXCL8, THBS1 and KIT may be the hub genes in the metastasis of melanoma and thus may be regarded as therapeutic targets in the future.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.,Department of Medicine, Soochow University, No. 199 Renai Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yi Guan
- School of Foreign Languages, Soochow University, No. 1 Shizi Street, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Biao Huang
- Department of Medicine, Soochow University, No. 199 Renai Street, Suzhou, Jiangsu, 215000, People's Republic of China.,Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Juanjuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yuqian Wei
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Daojiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Longjiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Street, Suzhou, 215000, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Quoc Lam B, Shrivastava SK, Shrivastava A, Shankar S, Srivastava RK. The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. J Cell Mol Med 2020; 24:7706-7716. [PMID: 32458441 PMCID: PMC7348166 DOI: 10.1111/jcmm.15413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/18/2023] Open
Abstract
The incidence of obesity and type 2 diabetes (T2DM) in the Western world has increased dramatically during the recent decades. According to the American Cancer Society, pancreatic cancer (PC) is the fourth leading cause of cancer‐related death in the United States. The relationship among obesity, T2DM and PC is complex. Due to increase in obesity, diabetes, alcohol consumption and sedentary lifestyle, the mortality due to PC is expected to rise significantly by year 2040. The underlying mechanisms by which diabetes and obesity contribute to pancreatic tumorigenesis are not well understood. Furthermore, metabolism and microenvironment within the pancreas can also modulate pancreatic carcinogenesis. The risk of PC on a population level may be reduced by modifiable lifestyle risk factors. In this review, the interactions of diabetes and obesity to PC development were summarized, and novel strategies for the prevention and treatment of diabetes and PC were discussed.
Collapse
Affiliation(s)
- Bao Quoc Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sushant K Shrivastava
- Department of Pharmaceutics, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, India
| | - Anju Shrivastava
- Department of Oncology, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
17
|
Macagno A, Athanasiou A, Wittig A, Huber R, Weber S, Keller T, Rhiel M, Golding B, Schiess R. Analytical performance of thrombospondin-1 and cathepsin D immunoassays part of a novel CE-IVD marked test as an aid in the diagnosis of prostate cancer. PLoS One 2020; 15:e0233442. [PMID: 32421745 PMCID: PMC7233579 DOI: 10.1371/journal.pone.0233442] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 11/20/2022] Open
Abstract
The Prostate Specific Antigen (PSA) test suffers from low specificity for the diagnosis of Prostate Cancer (PCa). We originally discovered two cancer-related proteins thrombospondin-1 (THBS1) and cathepsin D (CTSD) using a mass-spectrometry-based proteomics approach. The two serum proteins were shown to improve the diagnosis of high-grade PCa. Thus, we developed quantitative ELISAs for the determination of their concentration in human serum. Here we report their analytical performance in terms of limit of detection, specificity, precision, linearity and interferences, which were determined based on CLSI guidelines. Further, we investigated the influence of pre-analytical factors on concentration measurements. For this, blood from 4-6 donors was collected in different tubes and stored at room temperature for different times prior to centrifugation at different centrifugal forces and temperatures. Stability of THBS1 and CTSD under different storage temperatures was also evaluated. Our results show that the assays are specific, linear and sensitive enough to allow measurement of clinical samples. Precision in terms of repeatability and total within-laboratory coefficient of variation (CV) are 5.5% and 8.1% for THBS1 and 4.3% and 7.2% for CTSD, respectively. Relative laboratory-to-laboratory differences were -6.3% for THBS1 and -3% for CTSD. Both THBS1 and CTSD were stable in serum samples, with 80-120% recoveries of concentrations across donors, sample preparation and storage. In conclusion, the ELISAs as part of the novel commercial in vitro diagnostic test Proclarix are suitable for the use in clinical practice. THBS1 and CTSD can be accurately measured for their intended use independent of the lot and laboratory when conditions consistent with routine practice for PSA sampling and storage are used.
Collapse
|
18
|
Abstract
Thrombospondins are encoded in vertebrates by a family of 5 THBS genes. THBS1 is infrequently mutated in most cancers, but its expression is positively regulated by several tumor suppressor genes and negatively regulated by activated oncogenes and promoter hypermethylation. Consequently, thrombospondin-1 expression is frequently lost during oncogenesis and is correlated with a poor prognosis for some cancers. Thrombospondin-1 is a secreted protein that acts in the tumor microenvironment to inhibit angiogenesis, regulate antitumor immunity, stimulate tumor cell migration, and regulate the activities of extracellular proteases and growth factors. Differential effects of thrombospondin-1 on the sensitivity of normal versus malignant cells to ischemic and genotoxic stress also regulate the responses to tumors to therapeutic radiation and chemotherapy.
Collapse
Affiliation(s)
| | - David D Roberts
- Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Wang Z, Zhao Y, An Z, Li W. Molecular Links Between Angiogenesis and Neuroendocrine Phenotypes in Prostate Cancer Progression. Front Oncol 2020; 9:1491. [PMID: 32039001 PMCID: PMC6985539 DOI: 10.3389/fonc.2019.01491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
As a common therapy for prostate cancer, androgen deprivation therapy (ADT) is effective for the majority of patients. However, prolonged ADT promotes drug resistance and progression to an aggressive variant with reduced androgen receptor signaling, so called neuroendocrine prostate cancer (NEPC). Until present, NEPC is still poorly understood, and lethal with no effective treatments. Elevated expression of neuroendocrine related markers and increased angiogenesis are two prominent phenotypes of NEPC, and both of them are positively associated with cancers progression. However, direct molecular links between the two phenotypes in NEPC and their mechanisms remain largely unclear. Their elucidation should substantially expand our knowledge in NEPC. This knowledge, in turn, would facilitate the development of effective NEPC treatments. We recently showed that a single critical pathway regulates both ADT-enhanced angiogenesis and elevated expression of neuroendocrine markers. This pathway consists of CREB1, EZH2, and TSP1. Here, we seek new insights to identify molecules common to pathways promoting angiogenesis and neuroendocrine phenotypes in prostate cancer. To this end, our focus is to summarize the literature on proteins reported to regulate both neuroendocrine marker expression and angiogenesis as potential molecular links. These proteins, often described in separate biological contexts or diseases, include AURKA and AURKB, CHGA, CREB1, EZH2, FOXA2, GRK3, HIF1, IL-6, MYCN, ONECUT2, p53, RET, and RB1. We also present the current efforts in prostate cancer or other diseases to target some of these proteins, which warrants testing for NEPC, given the urgent unmet need in treating this aggressive variant of prostate cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Yicheng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
20
|
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, Hüttenhain R, Sethi A, Pan S, Brentnall TA, Chen R, Blattmann P, Friedrich B, Niméus E, Malander S, Omlin A, Gillessen S, Claassen M, Aebersold R. Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Rep 2019; 23:2819-2831.e5. [PMID: 29847809 DOI: 10.1016/j.celrep.2018.04.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is mostly incurable when diagnosed at a metastatic stage, making its early detection via blood proteins of immense clinical interest. Proteomic changes in tumor tissue may lead to changes detectable in the protein composition of circulating blood plasma. Using a proteomic workflow combining N-glycosite enrichment and SWATH mass spectrometry, we generate a data resource of 284 blood samples derived from patients with different types of localized-stage carcinomas and from matched controls. We observe whether the changes in the patient's plasma are specific to a particular carcinoma or represent a generic signature of proteins modified uniformly in a common, systemic response to many cancers. A quantitative comparison of the resulting N-glycosite profiles discovers that proteins related to blood platelets are common to several cancers (e.g., THBS1), whereas others are highly cancer-type specific. Available proteomics data, including a SWATH library to study N-glycoproteins, will facilitate follow-up biomarker research into early cancer detection.
Collapse
Affiliation(s)
- Tatjana Sajic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Yansheng Liu
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eirini Arvaniti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Sethi
- Department of Biomedicine, University of Basel/University Hospital Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler, Houston, TX 77030, USA
| | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Emma Niméus
- Department of Clinical Sciences Lund, Surgery, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Surgery, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Aurelius Omlin
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Silke Gillessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Zhou XQ, Ren J, Yang S. [Relationship between thrombospondin-1 and the occurrence and development of oral and maxillofacial malignancy]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:686-690. [PMID: 30593119 DOI: 10.7518/hxkq.2018.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thrombospondin-1 (TSP-1) is widely distributed in human tissues and is important in inhibiting angiogenesis.It also occupies an indispensable position in the formation, growth, differentiation, and metastasis of tumors in different tissues.TSP-1 plays an important role in the occurrence and development of various types of tumors. The inhibitory effect of TSP-1 on the angiogenesis and tumor development of oral and maxillofacial malignant tumors has been demonstrated in recent years. This paper reviews the findings and progress of TSP-1 research involving all kinds of tumors as well as oral and maxillofacial malignancies.
Collapse
Affiliation(s)
- Xue-Qin Zhou
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| | - Jun Ren
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| | - Sen Yang
- Graduate School, Zunyi Medical University, Zunyi 563000, China;Dept. of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining 629000, China
| |
Collapse
|
22
|
Zhang Z, Qin W, Sun Y. Contribution of biomarkers for pancreatic cancer-associated new-onset diabetes to pancreatic cancer screening. Pathol Res Pract 2018; 214:1923-1928. [PMID: 30477640 DOI: 10.1016/j.prp.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/09/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic cancer (PaC) is one of the deadliest types of tumor, and it is regarded as a fatal disease, with a 5-year survival rate less than 10%. Most clinical diagnoses for PaC are made at an advanced stage because of the insidious onset of the disease, which leads to an extremely poor prognosis. RECENT FINDINGS The relationship between diabetes mellitus (DM) and PaC has been established by several decades of research, and the prevalence of DM in patients with PaC has been reported to be 40%, with half of the patients having developed new-onset DM within 2 years or less. Increasing evidence suggests that new-onset DM is associated with a high prevalence of PaC, and PaC resection ameliorates DM. Therefore, screening for PaC may be needed in patients with newly developed DM. PURPOSE The objective of this review was to present our current understanding of biomarkers for PaC-associated new-onset DM (PCAND), to offer a perspective on the prospects and problems of using this strategy for early screening to differentiate PCAND from new-onset type 2 DM not associated with PaC and to suggest candidate biomarkers to use for PaC screening in patients with new-onset DM. Finding sensitive and specific biomarkers to manage these patients constitutes a challenge for the research community and for public health policies.
Collapse
Affiliation(s)
- Zhenjun Zhang
- Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, China
| | - Wenjie Qin
- Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, China
| | - Yuling Sun
- Institute of Hepatobiliary and Pancreatic Diseases, School of Medicine, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, China.
| |
Collapse
|
23
|
Steuber T, Tennstedt P, Macagno A, Athanasiou A, Wittig A, Huber R, Golding B, Schiess R, Gillessen S. Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unnecessary prostate biopsies. BJU Int 2018; 123:826-833. [PMID: 30216634 PMCID: PMC7379977 DOI: 10.1111/bju.14540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives To investigate and further validate if two novel cancer‐related glycoproteins, discovered by a genetic‐guided proteomics approach, can distinguish benign disease from prostate cancer (PCa) in men with enlarged prostates. Patients and Methods A retrospective study was performed that included men with a total prostate‐specific antigen (PSA) concentration of 2.0–10 ng/mL, negative digital rectal examination and enlarged prostate (volume ≥35 mL). Serum samples were collected between 2011 and 2016 at a single centre from 474 men before they underwent prostate biopsy. Serum concentrations of thrombospondin 1 (THBS1) and cathepsin D (CTSD) glycoproteins were combined with the percentage of free PSA to total PSA ratio (%fPSA) to predict any or significant cancer at biopsy. Results The multivariable logistic regression model including THBS1, CTSD and %fPSA discriminated among biopsy‐positive and biopsy‐negative patients in the validation set with an area under the curve (AUC) of 0.86 (P < 0.001, 95% confidence interval (CI) 0.82–0.91), while %fPSA alone showed an AUC of 0.64 (P < 0.001, 95% CI 0.57–0.71). At 90% sensitivity for PCa, the specificity of the model was 62%, while %fPSA had a specificity of 23%. For high grade (Gleason score ≥ 7 in prostatectomy specimen) PCa, the specificity was 48% at 90% sensitivity, with an AUC of 0.83, (P < 0.001, 95% CI 0.77 to 0.88). Limitations of the study include the retrospective set‐up and single‐centre cohort. Conclusions A model combining two cancer‐related glycoproteins (THBS1 and CTSD) and %fPSA can improve PCa diagnosis and may reduce the number of unnecessary prostate biopsies because of its improved specificity for PCa when compared to %fPSA alone.
Collapse
Affiliation(s)
- Thomas Steuber
- Martini-Klinik, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Klinik, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Silke Gillessen
- Cantonal Hospital St. Gallen, Oncology and Haematology, St Gallen and University of Berne, Berne, Switzerland
| |
Collapse
|
24
|
Zhao J, Shi L, Zeng S, Ma C, Xu W, Zhang Z, Liu Q, Zhang P, Sun Y, Xu C. Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol Oncol 2018; 36:311.e1-311.e13. [DOI: 10.1016/j.urolonc.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 03/04/2018] [Indexed: 11/15/2022]
|
25
|
Endt K, Goepfert J, Omlin A, Athanasiou A, Tennstedt P, Guenther A, Rainisio M, Engeler DS, Steuber T, Gillessen S, Joos T, Schiess R. Development and clinical testing of individual immunoassays for the quantification of serum glycoproteins to diagnose prostate cancer. PLoS One 2017; 12:e0181557. [PMID: 28767721 PMCID: PMC5540289 DOI: 10.1371/journal.pone.0181557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022] Open
Abstract
Prostate Cancer (PCa) diagnosis is currently hampered by the high false-positive rate of PSA evaluations, which consequently may lead to overtreatment. Non-invasive methods with increased specificity and sensitivity are needed to improve diagnosis of significant PCa. We developed and technically validated four individual immunoassays for cathepsin D (CTSD), intercellular adhesion molecule 1 (ICAM1), olfactomedin 4 (OLFM4), and thrombospondin 1 (THBS1). These glycoproteins, previously identified by mass spectrometry using a Pten mouse model, were measured in clinical serum samples for testing the capability of discriminating PCa positive and negative samples. The development yielded 4 individual immunoassays with inter and intra-variability (CV) <15% and linearity on dilution of the analytes. In serum, ex vivo protein stability (<15% loss of analyte) was achieved for a duration of at least 24 hours at room temperature and 2 days at 4°C. The measurement of 359 serum samples from PCa positive (n = 167) and negative (n = 192) patients with elevated PSA (2-10 ng/ml) revealed a significantly improved accuracy (P <0.001) when two of the glycoproteins (CTSD and THBS1) were combined with %fPSA and age (AUC = 0.8109; P <0.0001; 95% CI = 0.7673-0.8545). Conclusively, the use of CTSD and THBS1 together with commonly used parameters for PCa diagnosis such as %fPSA and age has the potential to improve the diagnosis of PCa.
Collapse
|
26
|
Negative regulators of angiogenesis: important targets for treatment of exudative AMD. Clin Sci (Lond) 2017; 131:1763-1780. [PMID: 28679845 DOI: 10.1042/cs20170066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Angiogenesis contributes to the pathogenesis of many diseases including exudative age-related macular degeneration (AMD). It is normally kept in check by a tightly balanced production of pro- and anti-angiogenic factors. The up-regulation of the pro-angiogenic factor, vascular endothelial growth factor (VEGF), is intimately linked to the pathogenesis of exudative AMD, and its antagonism has been effectively targeted for treatment. However, very little is known about potential changes in expression of anti-angiogenic factors and the role they play in choroidal vascular homeostasis and neovascularization associated with AMD. Here, we will discuss the important role of thrombospondins and pigment epithelium-derived factor, two major endogenous inhibitors of angiogenesis, in retinal and choroidal vascular homeostasis and their potential alterations during AMD and choroidal neovascularization (CNV). We will review the cell autonomous function of these proteins in retinal and choroidal vascular cells. We will also discuss the potential targeting of these molecules and use of their mimetic peptides for therapeutic development for exudative AMD.
Collapse
|
27
|
Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget 2017; 8:75881-75892. [PMID: 29100277 PMCID: PMC5652671 DOI: 10.18632/oncotarget.17427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023] Open
Abstract
Microenvironment at the metastatic locus usually differs greatly from that present in the site of primary tumor formation and it has a significant impact on the fate of the extravasated cancer cells. We compared gene expression signatures of primary tumors and lung metastatic tumors, and identified Thrombospondin-1 (TSP1) as highly up-regulated in the lung metastatic tumors. Immunohistochemical staining further indicated that TSP1 protein expression was higher in lung metastatic tumors compared to primary tumors in both osteosarcoma xenograft model and human clinical samples. TSP1 mRNA level is significantly associated with the Enneking stage of osteosarcoma and lung metastasis. TGF-β pathways could stimulate the TSP1 expression in osteosarcoma cells. Knockdown of TSP1 expression in osteosarcoma cells dramatically suppressed cell wound healing, migration and invasion. Treatment with recombinant TSP1 protein in osteosarcoma cells significantly promoted cell wound healing, migration and invasion. Meanwhile, suppression of TSP1 in osteosarcoma cells resulted in decreased pulmonary metastasis in vivo. Mechanistically, TSP1 increased expression of metastasis related genes, including MMP2, MMP9 and Fibronectin 1. TSP1 promoted osteosarcoma cell motility through the activation of FAK pathway. Taken together, our study provides evidence of the contributions of TSP1 to the lung metastasis of osteosarcoma and suggests that this protein may represent a potential therapeutic target for osteosarcoma lung metastasis.
Collapse
|
28
|
Duriez E, Masselon CD, Mesmin C, Court M, Demeure K, Allory Y, Malats N, Matondo M, Radvanyi F, Garin J, Domon B. Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine. J Proteome Res 2017; 16:1617-1631. [PMID: 28287737 DOI: 10.1021/acs.jproteome.6b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.
Collapse
Affiliation(s)
- Elodie Duriez
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Christophe D Masselon
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Cédric Mesmin
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Magali Court
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Kevin Demeure
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH) , Luxembourg L-1526, Luxembourg
| | | | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) , Madrid 28029, Spain
| | - Mariette Matondo
- Department of Biology, Institute of Molecular Systems Biology, ETHZ , Zürich 8093, Switzerland
| | - François Radvanyi
- Institut Curie , Centre de Recherche, Paris 75005, France.,CNRS, UMR144, Equipe Oncologie Moléculaire , Paris 75248, France
| | - Jérôme Garin
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Bruno Domon
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
29
|
Buda V, Andor M, Petrescu L, Cristescu C, Baibata DE, Voicu M, Munteanu M, Citu I, Muntean C, Cretu O, Tomescu MC. Perindopril Induces TSP-1 Expression in Hypertensive Patients with Endothelial Dysfunction in Chronic Treatment. Int J Mol Sci 2017; 18:ijms18020348. [PMID: 28178210 PMCID: PMC5343883 DOI: 10.3390/ijms18020348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a potent endogenous inhibitor of both physiological and pathological angiogenesis, widely studied as a target in drug development for treating cancer. Several studies performed in the cardiovascular field on TSP-1 are contradictory, the role of TSP-1 in the physiopathology of cardiovascular disorders (CVDs) being, for the moment, incompletely understood and may be due to the presence of several domains in its structure which can stimulate many cellular receptors. It has been reported to inhibit NO-mediated signaling and to act on the angiogenesis, tissue perfusion, endothelial cell proliferation, and homeostasis, so we aimed to quantify the effect Perindopril has on TSP-1 plasma levels in hypertensive patients with endothelial dysfunction in comparison with other antihypertensive drugs, such as beta blockers, calcium channel blockers, and diuretics, in a chronic treatment. As a conclusion, patients under treatment with Perindopril had increased plasma levels of TSP-1 compared with other hypertensive patients and with the control group. The results of this study confirms the pleiotropic properties of Perindopril: anti-proliferative, anti-inflammatory, with effects showed by quantifying a single biomarker: TSP-1.
Collapse
Affiliation(s)
- Valentina Buda
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Minodora Andor
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Lucian Petrescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Carmen Cristescu
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Dana Emilia Baibata
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Mirela Voicu
- Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Melania Munteanu
- Faculty of Pharmacy, VasileGoldis Western University, 86 LiviuRebreanu, 310045 Arad, Romania.
| | - Ioana Citu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Calin Muntean
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Octavian Cretu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| | - Mirela Cleopatra Tomescu
- Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2 EftimieMurgu, 300041 Timisoara, Romania.
| |
Collapse
|
30
|
Fuhrman-Luck RA, Stansfield SH, Stephens CR, Loessner D, Clements JA. Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1. J Proteome Res 2016; 15:2466-78. [PMID: 27378148 DOI: 10.1021/acs.jproteome.5b01148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression.
Collapse
Affiliation(s)
- Ruth A Fuhrman-Luck
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute , 37 Kent Street, Woolloongabba, Queensland 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology , 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | - Scott H Stansfield
- Institute of Health and Biomedical Innovation, Queensland University of Technology , 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | - Carson R Stephens
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute , 37 Kent Street, Woolloongabba, Queensland 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology , 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology , 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology at the Translational Research Institute , 37 Kent Street, Woolloongabba, Queensland 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology , 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
31
|
Belov L, Matic KJ, Hallal S, Best OG, Mulligan SP, Christopherson RI. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles 2016; 5:25355. [PMID: 27086589 PMCID: PMC4834364 DOI: 10.3402/jev.v5.25355] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) are membranous particles (30–1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer) and MEC1 (B-cell chronic lymphocytic leukaemia; CLL), were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326) and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19+ EV from the plasma of CLL patients. These EV expressed a subset (~40%) of the proteins detected on CLL cells from the same patients: moderate or high levels of CD5, CD19, CD31, CD44, CD55, CD62L, CD82, HLA-A,B,C, HLA-DR; low levels of CD21, CD49c, CD63. None of these proteins was detected on EV from the plasma of age- and gender-matched healthy individuals.
Collapse
Affiliation(s)
- Larissa Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia;
| | - Kieran J Matic
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Susannah Hallal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - O Giles Best
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stephen P Mulligan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | |
Collapse
|
32
|
Jenkinson C, Elliott VL, Evans A, Oldfield L, Jenkins RE, O’Brien DP, Apostolidou S, Gentry-Maharaj A, Fourkala EO, Jacobs IJ, Menon U, Cox T, Campbell F, Pereira SP, Tuveson DA, Park BK, Greenhalf W, Sutton R, Timms JF, Neoptolemos JP, Costello E. Decreased Serum Thrombospondin-1 Levels in Pancreatic Cancer Patients Up to 24 Months Prior to Clinical Diagnosis: Association with Diabetes Mellitus. Clin Cancer Res 2016; 22:1734-1743. [PMID: 26573598 PMCID: PMC4820087 DOI: 10.1158/1078-0432.ccr-15-0879] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/19/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE Identification of serum biomarkers enabling earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) could improve outcome. Serum protein profiles in patients with preclinical disease and at diagnosis were investigated. EXPERIMENTAL DESIGN Serum from cases up to 4 years prior to PDAC diagnosis and controls (UKCTOCS,n= 174) were studied, alongside samples from patients diagnosed with PDAC, chronic pancreatitis, benign biliary disease, type 2 diabetes mellitus, and healthy subjects (n= 298). Isobaric tags for relative and absolute quantification (iTRAQ) enabled comparisons of pooled serum from a test set (n= 150). Validation was undertaken using multiple reaction monitoring (MRM) and/or Western blotting in all 472 human samples and samples from a KPC mouse model. RESULTS iTRAQ identified thrombospondin-1 (TSP-1) as reduced preclinically and in diagnosed samples. MRM confirmed significant reduction in levels of TSP-1 up to 24 months prior to diagnosis. A combination of TSP-1 and CA19-9 gave an AUC of 0.86, significantly outperforming both markers alone (0.69 and 0.77, respectively;P< 0.01). TSP-1 was also decreased in PDAC patients compared with healthy controls (P< 0.05) and patients with benign biliary obstruction (P< 0.01). Low levels of TSP-1 correlated with poorer survival, preclinically (P< 0.05) and at clinical diagnosis (P< 0.02). In PDAC patients, reduced TSP-1 levels were more frequently observed in those with confirmed diabetes mellitus (P< 0.01). Significantly lower levels were also observed in PDAC patients with diabetes compared with individuals with type 2 diabetes mellitus (P= 0.01). CONCLUSIONS Circulating TSP-1 levels decrease up to 24 months prior to diagnosis of PDAC and significantly enhance the diagnostic performance of CA19-9. The influence of diabetes mellitus on biomarker behavior should be considered in future studies.
Collapse
Affiliation(s)
- Claire Jenkinson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Victoria L. Elliott
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Anthony Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Lucy Oldfield
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Rosalind E. Jenkins
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Darragh P. O’Brien
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
| | - Sophia Apostolidou
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
| | | | - Evangelia-O Fourkala
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
| | - Ian J. Jacobs
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
- Faculty of Medical & Human Sciences, 1.018 Core Technology Facility, University of Manchester, UK
| | - Usha Menon
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
| | - Trevor Cox
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | | | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - John F. Timms
- Department of Women’s Cancer, Institute for Women’s Health, University College London, UK
| | - John P. Neoptolemos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| |
Collapse
|
33
|
Perez-Janices N, Blanco-Luquin I, Tuñón MT, Barba-Ramos E, Ibáñez B, Zazpe-Cenoz I, Martinez-Aguillo M, Hernandez B, Martínez-Lopez E, Fernández AF, Mercado MR, Cabada T, Escors D, Megias D, Guerrero-Setas D. EPB41L3, TSP-1 and RASSF2 as new clinically relevant prognostic biomarkers in diffuse gliomas. Oncotarget 2016; 6:368-80. [PMID: 25621889 PMCID: PMC4381601 DOI: 10.18632/oncotarget.2745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022] Open
Abstract
Hypermethylation of tumor suppressor genes is one of the hallmarks in the progression of brain tumors. Our objectives were to analyze the presence of the hypermethylation of EPB41L3, RASSF2 and TSP-1 genes in 132 diffuse gliomas (astrocytic and oligodendroglial tumors) and in 10 cases of normal brain, and to establish their association with the patients’ clinicopathological characteristics. Gene hypermethylation was analyzed by methylation-specific-PCR and confirmed by pyrosequencing (for EPB41L3 and TSP-1) and bisulfite-sequencing (for RASSF2). EPB41L3, RASSF2 and TSP-1 genes were hypermethylated only in tumors (29%, 10.6%, and 50%, respectively), confirming their cancer-specific role. Treatment of cells with the DNA-demethylating-agent 5-aza-2′-deoxycytidine restores their transcription, as confirmed by quantitative-reverse-transcription-PCR and immunofluorescence. Immunohistochemistry for EPB41L3, RASSF2 and TSP-1 was performed to analyze protein expression; p53, ki-67, and CD31 expression and 1p/19q co-deletion were considered to better characterize the tumors. EPB41L3 and TSP-1 hypermethylation was associated with worse (p = 0.047) and better (p = 0.037) prognosis, respectively. This observation was confirmed after adjusting the results for age and tumor grade, the role of TSP-1 being most pronounced in oligodendrogliomas (p = 0.001). We conclude that EPB41L3, RASSF2 and TSP-1 genes are involved in the pathogenesis of diffuse gliomas, and that EPB41L3 and TSP-1 hypermethylation are of prognostic significance.
Collapse
Affiliation(s)
- N Perez-Janices
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - I Blanco-Luquin
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - M T Tuñón
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Barba-Ramos
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Ibáñez
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain. Red de Evaluación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Navarra, Spain
| | - I Zazpe-Cenoz
- Department of Neurosurgery, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - M Martinez-Aguillo
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - B Hernandez
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - E Martínez-Lopez
- Department of Radiation Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Asturias, Spain
| | - M R Mercado
- Department of Pathology Section A, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - T Cabada
- Department of Radiology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - D Escors
- Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| | - D Megias
- Confocal Microscopy Core Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - D Guerrero-Setas
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet, Navarra, Spain
| |
Collapse
|
34
|
Leibowitz-Amit R, Pintilie M, Khoja L, Azad AA, Berger R, Laird AD, Aftab DT, Chi KN, Joshua AM. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J Transl Med 2016; 14:12. [PMID: 26762579 PMCID: PMC4712499 DOI: 10.1186/s12967-015-0747-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background
Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). Methods
Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. Results A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. Conclusions Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches.
Collapse
Affiliation(s)
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Leila Khoja
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | - Arun A Azad
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Raanan Berger
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Anthony M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
35
|
Yang F, Jiang X, Song L, Wang H, Mei Z, Xu Z, Xing N. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep 2015; 35:1602-10. [PMID: 26676551 DOI: 10.3892/or.2015.4481] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/24/2015] [Indexed: 11/06/2022] Open
Abstract
The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.
Collapse
Affiliation(s)
- Feiya Yang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xian Jiang
- Department of Urology, The Third Hospital of Nanchang, Jiangxi, P.R. China
| | - Liming Song
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Huiping Wang
- Department of Reproductive Immunology and Pharmacology, National Research Institute for Family Planning, Beijing, P.R. China
| | - Zhu Mei
- Institute of Neuroscience, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, P.R. China
| | - Zhiqing Xu
- Institute of Neuroscience, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, P.R. China
| | - Nianzeng Xing
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
36
|
Lopez-Dee ZP, Chittur SV, Patel H, Chinikaylo A, Lippert B, Patel B, Lawler J, Gutierrez LS. Thrombospondin-1 in a Murine Model of Colorectal Carcinogenesis. PLoS One 2015; 10:e0139918. [PMID: 26461935 PMCID: PMC4603676 DOI: 10.1371/journal.pone.0139918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/19/2015] [Indexed: 12/12/2022] Open
Abstract
Colorectal Cancer (CRC) is one of the late complications observed in patients suffering from inflammatory bowel diseases (IBD). Carcinogenesis is promoted by persistent chronic inflammation occurring in IBD. Understanding the mechanisms involved is essential in order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1) is a multidomain glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic tumor formation and growth were analyzed in a model of inflammation-induced carcinogenesis. WT and TSP-1 deficient mice (TSP-1-/-) of the C57BL/6 strain received a single injection of azoxymethane (AOM) and multiple cycles of dextran sodium sulfate (DSS) to induce chronic inflammation-related cancers. Proliferation and angiogenesis were histologically analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microarray approach. When the area containing tumors was compared with the entire colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild type (WT) mice. However, these lesions displayed more angiogenesis and proliferation rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in significant deregulation of genes involved in transcription, canonical Wnt signaling, transport, defense response, regulation of epithelial cell proliferation and metabolism. Microarray analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors. These results contribute new insights on the controversial role of TSP-1 in cancer and offer a better understanding of the genetics and pathogenesis of CRC.
Collapse
Affiliation(s)
- Zenaida P. Lopez-Dee
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
| | - Sridar V. Chittur
- Center for Functional Genomics, University of Albany, State University of New York, Renssaeler, New York, United States of America
| | - Hiral Patel
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
| | - Aleona Chinikaylo
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
| | - Brittany Lippert
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
| | - Bhumi Patel
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda S. Gutierrez
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Kadosawa T, Watabe A. The effects of surgery-induced immunosuppression and angiogenesis on tumour growth. Vet J 2015; 205:175-9. [DOI: 10.1016/j.tvjl.2015.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023]
|
38
|
Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo PH, Vella LJ, Goding CR, Cebon J, Behren A. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 2015; 5:5782-97. [PMID: 25051363 PMCID: PMC4170613 DOI: 10.18632/oncotarget.2164] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.
Collapse
Affiliation(s)
- Aparna Jayachandran
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Prashanth Prithviraj
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Christopher Hudson
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Pu-Han Lo
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
39
|
Upur H, Chen Y, Kamilijiang M, Deng W, Sulaiman X, Aizezi R, Wu X, Tulake W, Abudula A. Identification of plasma protein markers common to patients with malignant tumour and Abnormal Savda in Uighur medicine: a prospective clinical study. Altern Ther Health Med 2015; 15:9. [PMID: 25652121 PMCID: PMC4321703 DOI: 10.1186/s12906-015-0526-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
Abstract
Background Traditional Uighur medicine shares an origin with Greco-Arab medicine. It describes the health of a human body as the dynamic homeostasis of four normal Hilits (humours), known as Kan, Phlegm, Safra, and Savda. An abnormal change in one Hilit may cause imbalance among the Hilits, leading to the development of a syndrome. Abnormal Savda is a major syndrome of complex diseases that are associated with common biological changes during disease development. Here, we studied the protein expression profile common to tumour patients with Abnormal Savda to elucidate the biological basis of this syndrome and identify potential biomarkers associated with Abnormal Savda. Methods Patients with malignant tumours were classified by the diagnosis of Uighur medicine into two groups: Abnormal Savda type tumour (ASt) and non-Abnormal Savda type tumour (nASt), which includes other syndromes. The profile of proteins that were differentially expressed in ASt compared with nASt and normal controls (NC) was analysed by iTRAQ proteomics and evaluated by bioinformatics using MetaCore™ software and an online database. The expression of candidate proteins was verified in all plasma samples by enzyme-linked immunosorbent assay (ELISA). Results We identified 31 plasma proteins that were differentially expressed in ASt compared with nASt, of which only 10 showed quantitatively different expression between ASt and NC. Bioinformatics analysis indicated that most of these proteins are known biomarkers for neoplasms of the stomach, breast, and lung. ELISA detection showed significant upregulation of plasma SAA1 and SPP24 and downregulation of PIGR and FASN in ASt compared with nASt and NC (p < 0.05). Conclusions Abnormal Savda may be causally associated with changes in the whole regulation network of protein expression during carcinogenesis. The expression of potential biomarkers might be used to distinguish Abnormal Savda from other syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0526-6) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Miyata Y, Asai A, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Met in urological cancers. Cancers (Basel) 2014; 6:2387-403. [PMID: 25521854 PMCID: PMC4276973 DOI: 10.3390/cancers6042387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Met is a tyrosine kinase receptor that is considered to be a proto-oncogene. The hepatocyte growth factor (HGF)-Met signaling system plays an important role in tumor growth, invasion, and metastasis in many types of malignancies. Furthermore, Met expression has been reported to be a useful predictive biomarker for disease progression and patient survival in these malignancies. Many studies have focused on the clinical significance and prognostic role of Met in urological cancers, including prostate cancer (PCa), renal cell carcinoma (RCC), and urothelial cancer. Several preclinical studies and clinical trials are in progress. In this review, the current understanding of the pathological role of Met in cancer cell lines, its clinical significance in cancer tissues, and its predictive value in patients with urological cancers are summarized. In particular, Met-related malignant behavior in castration-resistant PCa and the different pathological roles Met plays in papillary RCC and other histological types of RCC are the subjects of focus. In addition, the pathological significance of phosphorylated Met in these cancers is shown. In recent years, Met has been recognized as a potential therapeutic target in various types of cancer; therapeutic strategies used by Met-targeted agents in urological cancers are summarized in this review.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
41
|
Cheng Y, Ho RLKY, Chan KC, Kan R, Tung E, Lung HL, Yau WL, Cheung AKL, Ko JMY, Zhang ZF, Luo DZ, Feng ZB, Chen S, Guan XY, Kwong D, Stanbridge EJ, Lung ML. Anti-angiogenic pathway associations of the 3p21.3 mapped BLU gene in nasopharyngeal carcinoma. Oncogene 2014; 34:4219-28. [PMID: 25347745 PMCID: PMC4761643 DOI: 10.1038/onc.2014.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
Zinc-finger, MYND-type containing 10 (ZMYND10), or more commonly called BLU, expression is frequently downregulated in nasopharyngeal carcinoma (NPC) and many other tumors due to promoter hypermethylation. Functional evidence shows that the BLU gene inhibits tumor growth in animal assays, but the detailed molecular mechanism responsible for this is still not well understood. In current studies, we find that 93.5% of early-stage primary NPC tumors show downregulated BLU expression. Using a PCR array, overexpression of the BLU gene was correlated to the angiogenesis network in NPC cells. Moreover, expression changes of the MMP family, VEGF and TSP1, were often detected in different stages of NPC, suggesting the possibility that BLU may be directly involved in the microenvironment and anti-angiogenic activity in NPC development. Compared with vector-alone control cells, BLU stable transfectants, derived from poorly-differentiated NPC HONE1 cells, suppress VEGF165, VEGF189 and TSP1 expression at both the RNA and protein levels, and significantly reduce the secreted VEGF protein in these cells, reflecting an unknown regulatory mechanism mediated by the BLU gene in NPC. Cells expressing BLU inhibited cellular invasion, migration and tube formation. These in vitro results were further confirmed by in vivo tumor suppression and a matrigel plug angiogenesis assay in nude mice. Tube-forming ability was clearly inhibited, when the BLU gene is expressed in these cells. Up to 70-90% of injected tumor cells expressing increased exogenous BLU underwent cell death in animal assays. Overexpressed BLU only inhibited VEGF165 expression in differentiated squamous NPC HK1 cells, but also showed an anti-angiogenic effect in the animal assay, revealing a complicated mechanism regulating angiogenesis and the microenvironment in different NPC cell lines. Results of these studies indicate that alteration of BLU gene expression influences anti-angiogenesis pathways and is important for the development of NPC.
Collapse
Affiliation(s)
- Y Cheng
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R L K Y Ho
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - K C Chan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R Kan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E Tung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - H L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - W L Yau
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - A K L Cheung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - J M Y Ko
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - Z F Zhang
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - D Z Luo
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - Z B Feng
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - S Chen
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - X Y Guan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - D Kwong
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E J Stanbridge
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - M L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| |
Collapse
|
42
|
Reddy LA, Mikesh L, Moskulak C, Harvey J, Sherman N, Zigrino P, Mauch C, Fox JW. Host response to human breast Invasive Ductal Carcinoma (IDC) as observed by changes in the stromal proteome. J Proteome Res 2014; 13:4739-51. [PMID: 25244421 DOI: 10.1021/pr500620x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following initial transformation, tumorigenesis, growth, invasion, and metastasis involves a complex interaction between the transformed tissue and the host, particularly in the microenvironment adjacent to the developing tumor. The tumor microenvironment itself is a unique outcome of the host reacting to the tumor and perhaps the tumor reacting to the host and in turn the tumor altering the host's response to give rise to an environment that ultimately promotes tumor progression. The tumor-adjacent stromal, sometimes referred to as "reactive stromal" or the desmoplastic stroma, has received some investigative studies, but it is incomplete, and likely different tumors promote a varied response and hence different reactive stroma. In this study, we have investigated the proteomics of the host response, both in vitro and in vivo, to breast epithelial cancer, in the former using tissue culture and in the latter laser microdissection of stromal tissue both adjacent and distal to breast invasive ductal cancer (IDC). From proteomic analysis of in vitro tissue culture studies, we observed that the stroma produced is related to the invasiveness of the stimulating breast cancer cell lines but different from that observed from the stromal proteome of archival tissue. In vivo we have identified several potential markers of a reactive stroma. Furthermore, we observed that the proteome of tumor-adjacent stroma differs from that of tumor-distal stroma. The proteomic description of human breast IDC stroma may serve to enhance our understanding of the role of stroma in the progression of cancer and may suggest potential mechanisms of therapeutic interdiction.
Collapse
Affiliation(s)
- Lavakumar A Reddy
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine , Jordan Hall, Box 441, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | | | | | |
Collapse
|