1
|
Rana S, Broussard W, Elliott S, Burow ME, Boue SM. Unraveling the Impact of Aspergillus sojae-A Food-Grade Fungus-On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes. Foods 2024; 13:3533. [PMID: 39593949 PMCID: PMC11593148 DOI: 10.3390/foods13223533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Legumes are a rich source of polyphenolic compounds known for their ability to promote health. Under stress conditions, legumes have been shown to produce higher levels of secondary metabolites, as a defensive mechanism. Hence, the present study aimed to induce legume seeds (e.g., soybean, chickpea, green pea, and red kidney bean) by inoculating them with Aspergillus sojae (A. sojae) and to evaluate the extracts for phytoalexins, phenolics, and antioxidant, antiobesity, and antidiabetic potentials. The UPLC-DAD findings of A. sojae-induced legumes showed medicarpin and maackiain in chickpea, pisatin in green pea, glyceollin I-III in soybean, and kievitone and phaseollin in red kidney bean. All induced legumes exhibited a higher total polyphenol content compared to the non-induced ones. Among induced legumes, soybean exhibited a higher (4.85 mg GAE/g) polyphenol content. The UPLC-ESI-QTOF-MS/MS findings established that legumes contained substantial levels of protocatechuic acid, vanillic acid, ferulic acid, chlorogenic acid, coumaric acid, 4-hydroxybenzoic acid, and caffeic acid. The results of antioxidant assays revealed a significantly higher level of activity in induced red kidney bean and soybean, whereas the level of activity in non-induced legumes was markedly lower. Moreover, induced red kidney bean effectively inhibited α-glucosidase (87.2%) and α-amylase (63.90%) at 5 mg/mL. Additionally, the maximum lipase inhibitory effects were displayed by induced soybean (72.54%) at 20 mg/mL.
Collapse
Affiliation(s)
- Shalika Rana
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, New Orleans, LA 70124, USA
| | - William Broussard
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, New Orleans, LA 70124, USA
| | - Steven Elliott
- Section of Hematology & Medical Oncology, Tulane Departments of Medicine, New Orleans, LA 70112, USA
| | - Matthew E. Burow
- Section of Hematology & Medical Oncology, Tulane Departments of Medicine, New Orleans, LA 70112, USA
| | - Stephen M. Boue
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, New Orleans, LA 70124, USA
| |
Collapse
|
2
|
Vinciguerra C, Bellia L, Corbi G, Rengo S, Cannavo A. Resveratrol supplementation as a non-surgical treatment in periodontitis and related systemic conditions. J Tradit Complement Med 2024. [DOI: 10.1016/j.jtcme.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Ihnatowicz A, Siwinska J, Perkowska I, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Olry A. Genes to specialized metabolites: accumulation of scopoletin, umbelliferone and their glycosides in natural populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:806. [PMID: 39187756 PMCID: PMC11348552 DOI: 10.1186/s12870-024-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland.
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | | | - Alain Hehn
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France
| | | | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France.
| |
Collapse
|
4
|
Albornoz K, Zhou J, Zakharov F, Grove J, Wang M, Beckles DM. Ectopic overexpression of ShCBF1 and SlCBF1 in tomato suggests an alternative view of fruit responses to chilling stress postharvest. FRONTIERS IN PLANT SCIENCE 2024; 15:1429321. [PMID: 39161954 PMCID: PMC11331401 DOI: 10.3389/fpls.2024.1429321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Postharvest chilling injury (PCI) is a physiological disorder that often impairs tomato fruit ripening; this reduces fruit quality and shelf-life, and even accelerates spoilage at low temperatures. The CBF gene family confers cold tolerance in Arabidopsis thaliana, and constitutive overexpression of CBF in tomato increases vegetative chilling tolerance, in part by retarding growth, but, whether CBF increases PCI tolerance in fruit is unknown. We hypothesized that CBF1 overexpression (OE) would be induced in the cold and increase resistance to PCI. We induced high levels of CBF1 in fruit undergoing postharvest chilling by cloning it from S. lycopersicum and S. habrochaites, using the stress-inducible RD29A promoter. Harvested fruit were cold-stored (2.5°C) for up to three weeks, then rewarmed at 20°C for three days. Transgene upregulation was triggered during cold storage from 8.6- to 28.6-fold in SlCBF1-OE, and between 3.1- to 8.3-fold in ShCBF1-OE fruit, but developmental abnormalities in the absence of cold induction were visible. Remarkably, transgenic fruit displayed worsening of PCI symptoms, i.e., failure to ripen after rewarming, comparatively higher susceptibility to decay relative to wild-type (WT) fruit, lower total soluble solids, and the accumulation of volatile compounds responsible for off-odors. These symptoms correlated with CBF1 overexpression levels. Transcriptomic analysis revealed that the ripening and biotic and abiotic stress responses were altered in the cold-stored transgenic fruit. Seedlings grown from 'chilled' and 'non-chilled' WT fruit, in addition to 'non-chilled' transgenic fruit were also exposed to 0°C to test their photosynthetic response to chilling injury. Chilled WT seedlings adjusted their photosynthetic rates to reduce oxidative damage; 'non-chilled' WT seedlings did not. Photosynthetic parameters between transgenic seedlings were similar at 0°C, but SlCBF1-OE showed more severe photoinhibition than ShCBF1-OE, mirroring phenotypic observations. These results suggest that 1) CBF1 overexpression accelerated fruit deterioration in response to cold storage, and 2) Chilling acclimation in fructus can increase chilling tolerance in seedling progeny of WT tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
5
|
Chen R, Wang J, Xu J, Nie S, Chen C, Li Y, Li Y, He J, Li W, Wen M, Qiao J. Heterologous Biosynthesis of Kauralexin A1 in Saccharomyces cerevisiae through Metabolic and Enzyme Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7308-7317. [PMID: 38529564 DOI: 10.1021/acs.jafc.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jingru Wang
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
- School of life science, Liaoning University, Shenyang 110036, China
| | - Junsong Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Chen Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yukun Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianwei He
- School of life science, Liaoning University, Shenyang 110036, China
| | - Weiguo Li
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
6
|
Chauhan A, Banerjee R. Evaluation of traditional uses, phytochemical constituents, therapeutic uses and future prospects of Pyracantha genus: a systematic review. Nat Prod Res 2024:1-13. [PMID: 38414268 DOI: 10.1080/14786419.2024.2319660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The Pyracantha genus consists of evergreen shrubs distributed from Southeast Europe to South-East Asia. They are found in geographical regions of India, China, and South West Europe. They are used in traditional medicines against earache, menstrual cycles, constipation etc. The genus is pharmacologically significant because of its antioxidant and antimicrobial effects. The genus also acts as a biomonitor species for heavy metals and bio sorbent in wastewater treatment. The review aims to present an overview of four species of the Pyracantha genus -P. crenulata, P. fortuneana, and P. coccinea and P. angustifolia. The comparison of their geographical distribution, traditional uses, therapeutic uses, phytochemical components and future prospects has been described. In this study, 189 research and review articles were scanned to provide summarised research of phytochemical composition, pharmacological effects and future prospects of the species which can benefit the plant as a therapeutic drug or as a functional food.
Collapse
Affiliation(s)
- Aishna Chauhan
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Ritesh Banerjee
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
7
|
Li Y, Yang J, Zhou J, Wan X, Liu J, Wang S, Ma X, Guo L, Luo Z. Multi-omics revealed molecular mechanism of biphenyl phytoalexin formation in response to yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells. PLANT CELL REPORTS 2024; 43:62. [PMID: 38336832 DOI: 10.1007/s00299-024-03155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE Yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells leads to the biosynthesis of various hormones, which activates specific signaling pathways that augments biphenyl phytoalexin production. Pathogen incursions pose a significant threat to crop yield and can have a pronounced effect on agricultural productivity and food security. Biphenyl phytoalexins are a specialized group of secondary metabolites that are mainly biosynthesized by Pyrinae plants as a defense mechanism against various pathogens. Despite previous research demonstrating that biphenyl phytoalexin production increased dramatically in Sorbus aucuparia suspension cells (SASCs) treated with yeast extract (YE), the underlying mechanisms remain poorly understood. To address this gap, we conducted an in-depth, multi-omics analysis of transcriptome, proteome, and metabolite (including biphenyl phytoalexins and phytohormones) dynamics in SASCs exposed to YE. Our results indicated that exposure to YE-induced oxidative stress in SASCs, leading to the biosynthesis of a range of hormones, including jasmonic acid (JA), jasmonic acid isoleucine (JA-ILE), gibberellin A4 (GA4), indole-3-carboxylic acid (ICA), and indole-3-acetic acid (IAA). These hormones activated specific signaling pathways that promoted phenylpropanoid biosynthesis and augmented biphenyl phytoalexin production. Moreover, reactive oxygen species (ROS) generated during this process also acted as signaling molecules, amplifying the phenylpropanoid biosynthesis cascade through activation of the mitogen-activated protein kinase (MAPK) pathway. Key genes involved in these signaling pathways included SaBIS1, SaBIS2, SaBIS3, SaPAL, SaB4H, SaOMT, SaUGT1, SaLOX2, SaPR1, SaCHIB1, SaCHIB2 and SaCHIB3. Collectively, this study provided intensive insights into biphenyl phytoalexin accumulation in YE-treated SASCs, which would inform the development of more efficient disease-resistance strategies in economically significant cultivars.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China.
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Zhiqiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, People's Republic of China.
| |
Collapse
|
8
|
Hu J, Li L, He Y, Hong G, Zhang C. Searching for the Virulence-contributing Genes of the Magnaporthe oryzae by Transcriptome Analysis. Pathogens 2024; 13:105. [PMID: 38392843 PMCID: PMC10891974 DOI: 10.3390/pathogens13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Magnaporthe oryzae is a fungal pathogen that causes rice blast. Plant metabolites such as plant hormones and phytoalexin can promote or inhibit the rice blast infection. To study the effect of plant metabolites on M. oryzae, we selected salicylic acid (SA), abscisic acid (ABA), and a phytoalexin sakuranetin to treat M. oryzae grown on the medium. Through the analysis of transcriptome data, 185 and 38 genes, 803 and 156 genes, and 1525 and 428 genes were up- or down-regulated after SA, ABA, or sakuranetin treatment. Among these differentially expressed genes (DEGs), most of them were annotated to the cellular process and metabolic process in the biological process category and binding and catalytic activity in the molecular function category by GO analysis. According to KEGG pathway analysis, metabolism is the pathway with the highest number of DEGs, and the main enriched pathway is carbohydrate, lipid, and amino acid metabolism. In addition, we also found two ABA-induced up-regulated genes that may contribute to M. oryzae infection from the transcriptome data. We verified their expressions in M. oryzae that infected rice.
Collapse
Affiliation(s)
| | | | | | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.)
| | | |
Collapse
|
9
|
Liu P, Tang W, Xiang K, Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front Pharmacol 2024; 14:1323377. [PMID: 38259272 PMCID: PMC10800393 DOI: 10.3389/fphar.2023.1323377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Pterostilbene (PTS), a naturally occurring analog of resveratrol (RSV), has garnered significant attention due to its potential therapeutic effects in treating inflammatory and oncological diseases. This comprehensive review elucidates the pharmacological properties, mechanisms of action, and therapeutic potential of PTS. Various studies indicate that PTS exhibits anti-inflammatory, antioxidant, and antitumour properties, potentially making it a promising candidate for clinical applications. Its influence on regulatory pathways like NF-κB and PI3K/Akt underscores its diverse strategies in addressing diseases. Additionally, PTS showcases a favorable pharmacokinetic profile with better oral bioavailability compared to other stilbenoids, thus enhancing its therapeutic potential. Given these findings, there is an increased interest in incorporating PTS into treatment regimens for inflammatory and cancer-related conditions. However, more extensive clinical trials are imperative to establish its safety and efficacy in diverse patient populations.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Kali Xiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Guangcai Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
10
|
Kundu A. Antimicrobial to anti-herbivore: Sakuranetin in rice efficiently inhibits brown planthopper by targeting their beneficial endosymbionts. PHYSIOLOGIA PLANTARUM 2023; 175:e14110. [PMID: 38148222 DOI: 10.1111/ppl.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/28/2023]
Abstract
In rice, biosynthesis of specialized metabolites active against insect herbivores is elusive. The major known defense metabolites in rice against the destructive phloem-sucking herbivore brown planthoppers (BPH) (Nilaparvata lugens) are proteinase inhibitors, phenolamides and some terpenes (Xiao et al., 2012), which are induced during the invasion. Specifically, phenolamides were found to be induced upon herbivory with different feeding guild, including chewing and phloem-sucking, but could only provide defense against phloem-sucking BPH, though the clear mode of action of phenolamides has not been explored yet. Moreover, the jasmonic acid-mediated modulation of biosynthesis of these specialized metabolites in rice is not elucidated yet. However, a recent study by Liu et al. (2023) demonstrated that sakuranetin, a phytoalexin in rice, was induced upon BPH invasion and showed significant detrimental effect on herbivore's performance by targeting their beneficial endosymbionts. This is the first report on a strong bioactive anti-herbivore molecule observed in rice with an unusual mode of action. In this article, a view has been presented on this work, its impact and exceptionality.
Collapse
Affiliation(s)
- Anish Kundu
- Plant Biotechnology and Disease Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Jost M, Outram MA, Dibley K, Zhang J, Luo M, Ayliffe M. Plant and pathogen genomics: essential approaches for stem rust resistance gene stacks in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1223504. [PMID: 37727853 PMCID: PMC10505659 DOI: 10.3389/fpls.2023.1223504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023]
Abstract
The deployment of disease resistance genes is currently the most economical and environmentally sustainable method of crop protection. However, disease resistance genes can rapidly break down because of constant pathogen evolution, particularly when they are deployed singularly. Polygenic resistance is, therefore, considered the most durable, but combining and maintaining these genes by breeding is a laborious process as effective genes are usually unlinked. The deployment of polygenic resistance with single-locus inheritance is a promising innovation that overcomes these difficulties while enhancing resistance durability. Because of major advances in genomic technologies, increasing numbers of plant resistance genes have been cloned, enabling the development of resistance transgene stacks (RTGSs) that encode multiple genes all located at a single genetic locus. Gene stacks encoding five stem rust resistance genes have now been developed in transgenic wheat and offer both breeding simplicity and potential resistance durability. The development of similar genomic resources in phytopathogens has advanced effector gene isolation and, in some instances, enabled functional validation of individual resistance genes in RTGS. Here, the wheat stem rust pathosystem is used as an illustrative example of how host and pathogen genomic advances have been instrumental in the development of RTGS, which is a strategy applicable to many other agricultural crop species.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
12
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
13
|
Pérez-Zavala FG, Atriztán-Hernández K, Martínez-Irastorza P, Oropeza-Aburto A, López-Arredondo D, Herrera-Estrella L. Titanium nanoparticles activate a transcriptional response in Arabidopsis that enhances tolerance to low phosphate, osmotic stress and pathogen infection. FRONTIERS IN PLANT SCIENCE 2022; 13:994523. [PMID: 36388557 PMCID: PMC9664069 DOI: 10.3389/fpls.2022.994523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium is a ubiquitous element with a wide variety of beneficial effects in plants, including enhanced nutrient uptake and resistance to pathogens and abiotic stresses. While there is numerous evidence supporting the beneficial effects that Ti fertilization give to plants, there is little information on which genetic signaling pathways the Ti application activate in plant tissues. In this study, we utilize RNA-seq and ionomics technologies to unravel the molecular signals that Arabidopsis plants unleash when treated with Ti. RNA-seq analysis showed that Ti activates abscisic acid and salicylic acid signaling pathways and the expression of NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT receptors likely by acting as a chemical priming molecule. This activation results in enhanced resistance to drought, high salinity, and infection with Botrytis cinerea in Arabidopsis. Ti also grants an enhanced nutritional state, even at suboptimal phosphate concentrations by upregulating the expression of multiple nutrient and membrane transporters and by modifying or increasing the production root exudates. Our results suggest that Ti might act similarly to the beneficial element Silicon in other plant species.
Collapse
Affiliation(s)
| | - Karina Atriztán-Hernández
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Paulina Martínez-Irastorza
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Damar López-Arredondo
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
- Intitute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
14
|
Kemper C, Benham D, Brothers S, Wahlestedt C, Volmar CH, Bennett D, Hayward M. Safety and pharmacokinetics of a highly bioavailable resveratrol preparation (JOTROL TM). AAPS OPEN 2022; 8:11. [PMID: 35789594 PMCID: PMC9243782 DOI: 10.1186/s41120-022-00058-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022] Open
Abstract
Resveratrol exhibits a wide range of biological properties, including anti-glycation, antioxidant, anti-inflammation, neuroprotective (including against advanced dementia and Alzheimer’s disease), anti-cancer, and anti-aging activity in experimental models (Galiniak et al., Acta Biochim Pol 66:13-21, 2019). Unfortunately, this compound exhibits low bioavailability and solubility (Galiniak et al., Acta Biochim Pol 66:13-21, 2019), requiring large doses that can cause nausea and GI distress. JOTROLTM is a micellar 10% resveratrol solubilization formulation that is thought to increase bioavailability of resveratrol via lymphatic system absorption. Jupiter Neurosciences (formerly Jupiter Orphan Therapeutics; “Jupiter”) is pursuing the use of resveratrol in mucopolysaccharidosis type 1 (MPS 1), Friedreich’s ataxia, and Alzheimer’s disease/mild cognitive impairment. This paper describes a first in human study (FIH) to evaluate the bioavailability of resveratrol after ascending, single oral doses up to 700 mg resveratrol as JOTROLTM. After a single 500 mg dose of JOTROLTM, a Cmax of 455 ng/mL was observed, vs. 85 ng/mL Cmax after a 1 g encapsulated dose (Turner et al., Neurology 85:1383-91, 2015) and 1942 ng/mL after a 2.5 g micronized dose (Howells et al., Cancer Prev Res (Phila) 4:1419-1425, 2011). In this study, resveratrol exposures (AUCs and Cmax) increased with increasing doses. This increase appears to be higher than dose-proportional for AUC0-t and Cmax. Resveratrol and its three major conjugates accounted for 40 to 55% of the dose in urine, consistent with a high extent of absorption, but < 1% of drug-related material was intact relative to key metabolites in plasma and urine. Studies in Alzheimer’s patients and in MPS 1 are currently in development to test the effect this improved bioavailability has on those patient populations (Clintrials.gov, NCT04668274, 12/16/2020, https://clinicaltrials.gov/ct2/show/NCT04668274).
Collapse
Affiliation(s)
| | | | - Shaun Brothers
- Jupiter Neurosciences Inc., 1001 US Highway North Suite 504, Jupiter, FL 33458 USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Claes Wahlestedt
- Jupiter Neurosciences Inc., 1001 US Highway North Suite 504, Jupiter, FL 33458 USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Claude-Henry Volmar
- Jupiter Neurosciences Inc., 1001 US Highway North Suite 504, Jupiter, FL 33458 USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | | | - Marshall Hayward
- Jupiter Neurosciences Inc., 1001 US Highway North Suite 504, Jupiter, FL 33458 USA
| |
Collapse
|
15
|
Nguyen NH, Trotel-Aziz P, Clément C, Jeandet P, Baillieul F, Aziz A. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. PLANTA 2022; 255:116. [PMID: 35511374 DOI: 10.1007/s00425-022-03907-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species. Phytoalexins are synthesized and accumulated in plants upon pathogen challenge, root colonization by beneficial microbes, following treatment with chemical elicitors or in response to abiotic stresses. Their protective properties against pathogens have been reported in various plant species as well as their contribution to human health. Phytoalexins are synthesized through activation of particular sets of genes encoding specific pathways. Camalexin (3'-thiazol-2'-yl-indole) is the primary phytoalexin produced by Arabidopsis thaliana after microbial infection or abiotic elicitation and an iconic representative of the indole phytoalexin family. The synthesis of camalexin is an integral part of cruciferous plant defense mechanisms. Although the pathway leading to camalexin has been largely elucidated, the regulatory networks that control the induction of its biosynthetic steps by pathogens with different lifestyles or by beneficial microbes remain mostly unknown. This review thus presents current knowledge regarding camalexin biosynthesis induction during plant-pathogen and beneficial microbe interactions as well as in response to microbial compounds and provides an overview on its regulation and interplay with signaling pathways. The contribution of camalexin to basal and induced plant resistance and its detoxification by some pathogens to overcome host resistance are also discussed.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France.
| |
Collapse
|
16
|
Gao J, Li T, Jiao L, Jiang C, Chen S, Huang L, Liu J. Metabolome and transcriptome analyses identify the plant immunity systems that facilitate sesquiterpene and lignan biosynthesis in Syringa pinnatifolia Hemsl. BMC PLANT BIOLOGY 2022; 22:132. [PMID: 35317751 PMCID: PMC8939180 DOI: 10.1186/s12870-022-03537-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Syringa pinnatifolia Hemsl. is a shrub belonging to the Oleaceae family. The peeled woody stems and roots of S. pinnatifolia are used in Chinese traditional medicine. This plant has been used for centuries, and modern pharmacological research has revealed its medicinal value. However, the wild populations of S. pinnatifolia have been decreasing, and it has been listed as an endangered plant in China. To elucidate the molecular mechanism leading to the synthesis of the major components of S. pinnatifolia for its further development and sustainable use, this study compared peeled stems and twigs at the metabolic and molecular levels. RESULTS Peeled stems with the purple substance visible (SSP) and peeled twigs without the purple substance (TSP) were compared at different levels. Microscopic observation showed resin-like fillers in SSP and wood fiber cell walls approximately 1.0 μm thicker than those in TSP (wood fiber cell thickness approximately 2.7 μm). In addition, 104 volatile organic compounds and 870 non-volatile metabolites were detected in the non-targeted and widely-targeted metabolome analyses, respectively. Among the 76 differentially accumulated metabolites (DAMs) detected, 62 were up-accumulated in SSP. Most of these DAMs were terpenes, of which 90% were identified as sesquiterpenes in the volatile organic compound analysis. In the analysis of the non-volatile metabolites, 21 differentially accumulated lignans were identified, of which 18, including five subtypes, were accumulated in SSP. RNA sequencing revealed 4,421 upregulated differentially expressed genes (DEGs) and 5,522 downregulated DEGs in SSP compared with TSP, as well as 33,452 genes that were not differentially expressed. Analysis of the DEGs suggested that sesquiterpenes and lignans were mostly biosynthesized via the mevalonate and phenylpropanoid pathways, respectively. Additionally, in SSP, the enriched Gene Ontology terms included response to biotic stimulus and defense response, while the enriched Kyoto Encyclopedia of Genes and Genomes pathways included plant-pathogen interaction and many other pathways related to plant immunity. CONCLUSIONS This study provides metabolome and transcriptome information for S. pinnatifolia, suggesting that biotic stimuli, including pathogens, are potential and valuable approaches to promoting the biosynthesis of the metabolites linked to the medicinal properties of this plant.
Collapse
Affiliation(s)
- Jiaqi Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Tianxiao Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Lichao Jiao
- Research Institute of Wood Industry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Suyile Chen
- Alashan Mongolian Hospital, Alashan East Banner of Alashan, 75030, Inner Mongolia, China
| | - Luqi Huang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Juan Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
17
|
Pokhrel S, Ponniah SK, Jia Y, Yu O, Manoharan M. Transgenic Rice Expressing Isoflavone Synthase Gene from Soybean Shows Resistance Against Blast Fungus ( Magnaporthe oryzae). PLANT DISEASE 2021; 105:3141-3146. [PMID: 33616428 DOI: 10.1094/pdis-08-20-1777-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The isoflavones are a group of plant secondary metabolites primarily synthesized in legumes and are known for their role in improving human health and plant disease resistance. The isoflavones, especially genistein, act as precursors for the production of phytoalexins, which may induce broad-spectrum disease resistance in plants. In this study, we screened transgenic rice lines expressing the isoflavone synthase (GmIFS1) gene from soybean for rice blast (Magnaporthe oryzae) resistance. Two homozygous transgenic lines (I2 and I10), based on single copy gene integration, were identified. The expression of GmIFS1 in transgenic lines was confirmed by quantitative real-time PCR. Genistein was detected in the transgenic lines using liquid chromatography with tandem mass spectrometry. Subsequently, the transgenic lines were evaluated against the rice blast pathogen, isolate YJ54 (race IB-54). The results indicated that >60% of the plants in both the lines (I2 and I10) showed resistance against the blast pathogen. The progenies of one of the resistant transgenic lines (I10) also showed >65% resistance against rice blast. The resistance of these transgenic lines against rice blast may be attributed to the synthesis of isoflavone (genistein) in rice.
Collapse
Affiliation(s)
- Suresh Pokhrel
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601
| | - Sathish K Ponniah
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601
| | - Yulin Jia
- Dale Bumpers National Rice Research Center, U.S. Department of Agriculture-Agricultural Research Service, Stuttgart, AR 72160
| | | | - Muthusamy Manoharan
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601
| |
Collapse
|
18
|
Sharifi-Rad J, Quispe C, Mukazhanova Z, Knut E, Turgumbayeva A, Kipchakbayeva A, Seitimova G, Mahomoodally MF, Lobine D, Koay A, Wang J, Sheridan H, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Rescigno A, Zucca P, Sytar O, Imran M, Rodrigues CF, Cruz-Martins N, Ekiert H, Kumar M, Abdull Razis AF, Sunusi U, Kamal RM, Szopa A. Resveratrol-Based Nanoformulations as an Emerging Therapeutic Strategy for Cancer. Front Mol Biosci 2021; 8:649395. [PMID: 34540888 PMCID: PMC8440914 DOI: 10.3389/fmolb.2021.649395] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Zhazira Mukazhanova
- Department of Natural Sciences and Technologies, Sarsen Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan
| | - Ewa Knut
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Aknur Turgumbayeva
- Asfendiyarov Kazakh National Medical University, School Pharmacy, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Higher School of Medicine, Almaty, Kazakhstan
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Aaron Koay
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Jinfan Wang
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Helen Sheridan
- Trinity College Dublin, NatPro (Natural Products Research Centre), School of Pharmacy and Pharmaceutical Science, Dublin, Ireland
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico City, Mexico
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR – Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
19
|
El-Garhy HAS, Elsisi AA, Mohamed SA, Morsy OM, Osman G, Abdel-Rahman FA. Transcriptomic changes in green bean pods against grey mould and white rot diseases via field application of chemical elicitor nanoparticles. IET Nanobiotechnol 2021; 14:574-583. [PMID: 33010132 DOI: 10.1049/iet-nbt.2020.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The authors tested the efficacy of two salt nanoparticles (NPs), namely, copper dioxide (CuO) and tri-calcium phosphate [Ca3(PO4)2] to induce resistance in green bean pods against grey mould and white rot diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum, respectively. High amounts of phytoalexins, kievitone, coumestrol, phaseollidin, 6-ά-hydroxyphaseollin, and phaseollin, were detected in naturally infected and artificially inoculated green bean pods in response to the tested NPs. Green bean plants treated in the field with CuO and Ca3(PO4)2 NPs had the highest mRNA quantity of all the studied defence genes, receptor-like kinase (PvRK20), pathogenesis-related protein (PR1), 1,3-β-D-glucanase (pvgluc), polygalacturonase inhibitor protein (PvGIP), and alpha-dioxygenase (a-DOX) than that of the control group. CuO NPs followed by Ca3(PO4)2 NPs at 0.15 mg ml-1 were the most potent in increasing the transcriptomic levels of pk20, DOX, PR1, PvGIP, and pvgluc. Field applications of both chemical elicitor NPs exhibited a non-genotoxic effect on the Paulista green bean DNA using eight ISSR primers. The field application of the studied NPs could effectively extend the shelf life of green bean pods by up to 21 days at 7 ± 1°C during marketing and export due to its potent effect against grey mould and white rot diseases.
Collapse
Affiliation(s)
- Hoda A S El-Garhy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Qalyubia, Egypt.
| | - Ahmed A Elsisi
- Plant Pathology Department, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Shereen A Mohamed
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Osama M Morsy
- Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt
| | - Gamal Osman
- Microbial Genetics Department, Agricultural Genetic Engineering Research Institute (AGERI), Giza, Egypt
| | - Fayz A Abdel-Rahman
- Postharvest Diseases Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| |
Collapse
|
20
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
21
|
He Y, Pan L, Yang T, Wang W, Li C, Chen B, Shen Y. Metabolomic and Confocal Laser Scanning Microscopy (CLSM) Analyses Reveal the Important Function of Flavonoids in Amygdalus pedunculata Pall Leaves With Temporal Changes. FRONTIERS IN PLANT SCIENCE 2021; 12:648277. [PMID: 34093611 PMCID: PMC8170035 DOI: 10.3389/fpls.2021.648277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Amygdalus pedunculata Pall [Rosaceae, Prunus, Prunus pedunculata (Pall.) Maxim.] belongs to the Rosaceae family and is resistant to cold and drought. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomics were used to track the changes in bioactive metabolites during several stages of Amygdalus pedunculata Pall growth. A total of 827 different metabolites were detected, including 169 flavonoids, 68 organic acids, 35 terpenoids and 2 tannins. Flavonoid biosynthesis and flavone and flavonol biosynthesis were the main synthetic sources of flavonoids. Quercetin, isoquercitrin, and epicatechin as biomarkers related to growth and development were found. Quercetin connects the biosynthesis of flavonoids and the biosynthesis of flavones and flavonols. The contents of isoquercitrin and epicatechin increased uniformly during the whole growth process from the flowering stage to the fruit ripening stage, indicating that play key roles in the fruit growth and ripening stages of this plant. The tissue location and quantitative analysis of flavonoids in leaves at different stages were performed by confocal laser scanning microscopy. The flavonoids were mainly distributed in the palisade tissue and spongy tissue, indicating the need for protection of these sensitive tissues in particular. Through comprehensive and systematic analysis, the temporal distribution of flavonoids in the process of their leaves growth was determined. These results clarify the important role of flavonoids in the developmental process of Amygdalus pedunculata Pall.
Collapse
Affiliation(s)
- Yueyue He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Lei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Tao Yang
- Shaanxi Academy of Forestry, Xi’an, China
- Technology Research Center of Amygdalus pedunculata of State Forestry and Grassland Administration, Yulin, China
| | - Wei Wang
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, China
| |
Collapse
|
22
|
Zimmermann A, Jaber QZ, Koch J, Riebe S, Vallet C, Loza K, Hayduk M, Steinbuch KB, Knauer SK, Fridman M, Voskuhl J. Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. Chembiochem 2021; 22:1563-1567. [PMID: 33410196 PMCID: PMC8248372 DOI: 10.1002/cbic.202000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Indexed: 12/26/2022]
Abstract
We report the characterization of amphiphilic aminoglycoside conjugates containing luminophores with aggregation-induced emission properties as transfection reagents. These inherently luminescent transfection vectors are capable of binding plasmid DNA through electrostatic interactions; this binding results in an emission "on" signal due to restriction of intramolecular motion of the luminophore core. The luminescent cationic amphiphiles effectively transferred plasmid DNA into mammalian cells (HeLa, HEK 293T), as proven by expression of a red fluorescent protein marker. The morphologies of the aggregates were investigated by microscopy as well as ζ-potential and dynamic light-scattering measurements. The transfection efficiencies using luminescent cationic amphiphiles were similar to that of the gold-standard transfection reagent Lipofectamine® 2000.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Qais Z. Jaber
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Johannes Koch
- Center for Medical Biotechnology (ZMB)University of Duisburg EssenUniversitätsstrasse 245141EssenGermany
| | - Steffen Riebe
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Cecilia Vallet
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Matthias Hayduk
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Kfir B. Steinbuch
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Shirley K. Knauer
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Micha Fridman
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Jens Voskuhl
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
23
|
Synthesis and Biological Evaluation of 2,3,4-Triaryl-1,2,4-oxadiazol-5-ones as p38 MAPK Inhibitors. Molecules 2021; 26:molecules26061745. [PMID: 33804659 PMCID: PMC8003627 DOI: 10.3390/molecules26061745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
A series of azastilbene derivatives, characterized by the presence of the 1,2,4-oxadiazole-5-one system as a linker of the two aromatic rings of stilbenes, have been prepared as novel potential inhibitors of p38 MAPK. Biological assays indicated that some of the synthesized compounds are endowed with good inhibitory activity towards the kinase. Molecular modeling data support the biological results showing that the designed compounds possess a reasonable binding mode in the ATP binding pocket of p38α kinase with a good binding affinity.
Collapse
|
24
|
Szajko K, Ciekot J, Wasilewicz-Flis I, Marczewski W, Sołtys-Kalina D. Transcriptional and proteomic insights into phytotoxic activity of interspecific potato hybrids with low glycoalkaloid contents. BMC PLANT BIOLOGY 2021; 21:60. [PMID: 33482727 PMCID: PMC7825178 DOI: 10.1186/s12870-021-02825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs. In wild and cultivated potato species, more than 50 steroidal glycoalkaloids were recognized. Steroidal glycoalkaloids are recognized as potential allelopathic/phytotoxic compounds that may modify the growth of target plants. There are limited data on the impact of the composition of glycoalkaloids on their phytotoxic potential. RESULTS The presence of α-solasonine and α-solamargine in potato leaf extracts corresponded to the high phytotoxic potential of the extracts. Among the differentially expressed genes between potato leaf bulks with high and low phytotoxic potential, the most upregulated transcripts in sample of high phytotoxic potential were anthocyanin 5-aromatic acyltransferase-like and subtilisin-like protease SBT1.7-transcript variant X2. The most downregulated genes were carbonic anhydrase chloroplastic-like and miraculin-like. An analysis of differentially expressed proteins revealed that the most abundant group of proteins were those related to stress and defence, including glucan endo-1,3-beta-glucosidase acidic isoform, whose expression level was 47.96× higher in potato leaf extract with low phytotoxic. CONCLUSIONS The phytotoxic potential of potato leaf extract possessing low glycoalkaloid content is determined by the specific composition of these compounds in leaf extract, where α-solasonine and α-solamargine may play significant roles. Differentially expressed gene and protein profiles did not correspond to the glycoalkaloid biosynthesis pathway in the expression of phytotoxic potential. We cannot exclude the possibility that the phytotoxic potential is influenced by other compounds that act antagonistically or may diminish the glycoalkaloids effect.
Collapse
Affiliation(s)
- Katarzyna Szajko
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Jarosław Ciekot
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Laboratory of Biomedical Chemistry, Rudolfa Weigla 12 st, 53-114, Wrocław, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland.
| |
Collapse
|
25
|
Mohsenpour H, Pesce M, Patruno A, Bahrami A, Pour PM, Farzaei MH. A Review of Plant Extracts and Plant-Derived Natural Compounds in the Prevention/Treatment of Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2021; 22:E833. [PMID: 33467663 PMCID: PMC7830094 DOI: 10.3390/ijms22020833] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is one of the major drawbacks of mortality and causes significant short/long-term neurological dysfunction in newborn infants worldwide. To date, due to multifunctional complex mechanisms of brain injury, there is no well-established effective strategy to completely provide neuroprotection. Although therapeutic hypothermia is the proven treatment for hypoxic-ischemic encephalopathy (HIE), it does not completely chang outcomes in severe forms of HIE. Therefore, there is a critical need for reviewing the effective therapeutic strategies to explore the protective agents and methods. In recent years, it is widely believed that there are neuroprotective possibilities of natural compounds extracted from plants against HIE. These natural agents with the anti-inflammatory, anti-oxidative, anti-apoptotic, and neurofunctional regulatory properties exhibit preventive or therapeutic effects against experimental neonatal HI brain damage. In this study, it was aimed to review the literature in scientific databases that investigate the neuroprotective effects of plant extracts/plant-derived compounds in experimental animal models of neonatal HI brain damage and their possible underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 75333–67427, Iran;
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Azam Bahrami
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| |
Collapse
|
26
|
Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Manero FJ, Lucas JA. Metabolic elicitors of Pseudomonas fluorescens N 21.4 elicit flavonoid metabolism in blackberry fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:205-214. [PMID: 32623714 DOI: 10.1002/jsfa.10632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The beneficial rhizobacterium, Pseudomonas fluorescens N 21.4, and its metabolic elicitors were inoculated in commercial cultivars of blackberry plants (Rubus cv. Loch Ness). Phenolic compounds present in red and black fruit and the expression of structural marker genes of the phenylpropanoid pathway during fruit ripening were studied. RESULTS An inverse relationship between gene expression and accumulation of metabolites was seen, except for the RuDFR gene, which had a direct correlation with cyanidin 3-O-glucoside synthesis, increasing its content 1.3 times when RuDFR was overexpressed in the red fruit of plants inoculated with the metabolic elicitors of P. fluorescens N 21.4, compared with red fruit of plants inoculated with N 21.4. The RuCHS gene also had a fundamental role in the accumulation of metabolites. Both rhizobacterium and metabolic elicitors triggered the flavonoid metabolism, enhancing the catechin and epicatechin content between 1.1 and 1.6 times in the case of red fruit and between 1.1 and 1.8 times in the case of black fruit. Both treatments also boosted the anthocyanin, quercetin, and kaempferol derivative content, highlighting the effects of metabolic elicitors in red fruit and the effects of live rhizobacterium in black fruit. CONCLUSION The metabolic elicitors' capacity to modulate gene expression and to increase secondary metabolites content was demonstrated. This work therefore suggests that they are effective, affordable, easily manageable, and ecofriendly plant inoculants that complement, or are alternatives to, beneficial rhizobacteria. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Helena Martin-Rivilla
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - Ana Garcia-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | - Francisco J Gutierrez-Manero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Boadilla del Monte, Spain
| | | |
Collapse
|
27
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
28
|
Sohn SI, Pandian S, Oh YJ, Kang HJ, Cho WS, Cho YS. Metabolic Engineering of Isoflavones: An Updated Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:670103. [PMID: 34163508 PMCID: PMC8216759 DOI: 10.3389/fpls.2021.670103] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 05/04/2023]
Abstract
Isoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans. According to epidemiological studies, a high intake of isoflavones-rich diets linked to a lower risk of hormone-related cancers, osteoporosis, menopausal symptoms, and cardiovascular diseases. These characteristics lead to the significant advancement in the studies on genetic and metabolic engineering of isoflavones in plants. As a result, a number of structural and regulatory genes involved in isoflavone biosynthesis in plants have been identified and characterized. Subsequently, they were engineered in various crop plants for the increased production of isoflavones. Furthermore, with the advent of high-throughput technologies, the regulation of isoflavone biosynthesis gains attention to increase or decrease the level of isoflavones in the crop plants. In the review, we begin with the role of isoflavones in plants, environment, and its benefits in human health. Besides, the main theme is to discuss the updated research progress in metabolic engineering of isoflavones in other plants species and regulation of production of isoflavones in soybeans.
Collapse
Affiliation(s)
- Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
- *Correspondence: Soo-In Sohn,
| | - Subramani Pandian
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Young Ju Oh
- Institute for Future Environmental Ecology Co., Ltd., Jeonju, South Korea
| | - Hyeon Jung Kang
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Woo Suk Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| | - Youn Sung Cho
- Biosafety Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, South Korea
| |
Collapse
|
29
|
Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Mañero FJ, Lucas JA. Bioeffectors as Biotechnological Tools to Boost Plant Innate Immunity: Signal Transduction Pathways Involved. PLANTS 2020; 9:plants9121731. [PMID: 33302428 PMCID: PMC7762609 DOI: 10.3390/plants9121731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The use of beneficial rhizobacteria (bioeffectors) and their derived metabolic elicitors are efficient biotechnological alternatives in plant immune system elicitation. This work aimed to check the ability of 25 bacterial strains isolated from the rhizosphere of Nicotiana glauca, and selected for their biochemical traits from a group of 175, to trigger the innate immune system of Arabidopsis thaliana seedlings against the pathogen Pseudomonas syringae pv. tomato DC3000. The five strains more effective in preventing pathogen infection were used to elucidate signal transduction pathways involved in the plant immune response by studying the differential expression of Salicylic acid and Jasmonic acid/Ethylene pathway marker genes. Some strains stimulated both pathways, while others stimulated either one or the other. The metabolic elicitors of two strains, chosen for the differential expression results of the genes studied, were extracted using n-hexane, ethyl acetate, and n-butanol, and their capacity to mimic bacterial effect to trigger the plant immune system was studied. N-hexane and ethyl acetate were the most effective fractions against the pathogen in both strains, achieving similar protection rates although gene expression responses were different from that obtained by the bacteria. These results open an amount of biotechnological possibilities to develop biological products for agriculture.
Collapse
|
30
|
Zhou X, Liu L, Li Y, Li K, Liu X, Zhou J, Yang C, Liu X, Fang C, Luo J. Integrative Metabolomic and Transcriptomic Analyses Reveal Metabolic Changes and Its Molecular Basis in Rice Mutants of the Strigolactone Pathway. Metabolites 2020; 10:metabo10110425. [PMID: 33114491 PMCID: PMC7693813 DOI: 10.3390/metabo10110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
Plants have evolved many metabolites to meet the demands of growth and adaptation. Although strigolactones (SLs) play vital roles in controlling plant architecture, their function in regulating plant metabolism remains elusive. Here we report the integrative metabolomic and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant) and d14 (a perception mutant). Both mutants displayed a series of metabolic and transcriptional alterations, especially in the lipid, flavonoid, and terpenoid pathways. Levels of several diterpenoid phytoalexins were substantially increased in d10 and d14, together with the induction of terpenoid gene cluster and the corresponding upstream transcription factor WRKY45, an established determinant of plant immunity. The fact that WRKY45 is a target of IPA1, which acted as a downstream transcription factor of SL signaling, suggests that SLs contribute to plant defense through WRKY45 and phytoalexins. Moreover, our data indicated that SLs may modulate rice metabolism through a vast number of clustered or tandemly duplicated genes. Our work revealed a central role of SLs in rice metabolism. Meanwhile, integrative analysis of the metabolome and transcriptome also suggested that SLs may contribute to metabolite-associated growth and defense.
Collapse
Affiliation(s)
- Xiujuan Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Kang Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Xiaoli Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- Correspondence: (C.F.); (J.L.)
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
- Correspondence: (C.F.); (J.L.)
| |
Collapse
|
31
|
Riccio BVF, Spósito L, Carvalho GC, Ferrari PC, Chorilli M. Resveratrol isoforms and conjugates: A review from biosynthesis in plants to elimination from the human body. Arch Pharm (Weinheim) 2020; 353:e2000146. [PMID: 32886393 DOI: 10.1002/ardp.202000146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.
Collapse
Affiliation(s)
- Bruno V F Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela C Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Priscileila C Ferrari
- Department of Pharmaceutical Sciences, Ponta Grossa State University (UEPG), Ponta Grossa, Paraná, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
32
|
García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. PLANTS 2020; 9:plants9060774. [PMID: 32575698 PMCID: PMC7357106 DOI: 10.3390/plants9060774] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Peter Palove-Balang
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia;
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
- Correspondence: ; Tel.: +34-954557145
| |
Collapse
|
33
|
Martin-Rivilla H, Garcia-Villaraco A, Ramos-Solano B, Gutierrez-Manero FJ, Lucas JA. Improving Flavonoid Metabolism in Blackberry Leaves and Plant Fitness by Using the Bioeffector Pseudomonas fluorescens N 21.4 and Its Metabolic Elicitors: A Biotechnological Approach for a More Sustainable Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6170-6180. [PMID: 32383861 DOI: 10.1021/acs.jafc.0c01169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Beneficial rhizobacterium Pseudomonas fluorescens N 21.4 and its metabolic elicitors inoculated to cultivars of blackberry (Rubus spp. Var. Loch Ness) reinforced the plants' immune system and improved their fitness by increasing photosynthesis, decreasing oxidative stress, and activating pathogenesis-related proteins. They also triggered the leaves' flavonoid metabolism, enhancing the accumulation of beneficial phenolic compounds such as kaempferols and quercetin derivatives. The elicitation of leaf secondary metabolism allows one to take advantage of the blackberry leaves (a current crop waste), following the premises of the circular economy, to isolate and obtain high added value compounds. The results of this work suggest the use of N 21.4 and/or its metabolic elicitors as plant inoculants as an effective and economically and environmentally friendly agronomic alternative practice in the exploitation of blackberry crops to obtain plants with a better immune system and to revalorize the leaf pruning as a potential source of polyphenols.
Collapse
Affiliation(s)
- H Martin-Rivilla
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain
| | - A Garcia-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain
| | - B Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain
| | - F J Gutierrez-Manero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain
| | - J A Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
34
|
Singh J, Yadav AN. Natural Products as Fungicide and Their Role in Crop Protection. NATURAL BIOACTIVE PRODUCTS IN SUSTAINABLE AGRICULTURE 2020. [PMCID: PMC7212785 DOI: 10.1007/978-981-15-3024-1_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seeking solutions from nature for solving one and all problems is the age-old practice for mankind, and natural products are proved to be the most effective one for keeping up the balance of development as well as the “healthy, wealthy, and well” condition of mother nature. Fungal pathogens are proved to be a common and popular contaminant of agroecosystem that approximately causes 70–80% of total microbial crop loss. To meet the proper global increasing need of food products as a result of population explosion, managing agricultural system in an eco-friendly and profitable manner is the prime target; thus the word “sustainable agriculture” plays it part, and this package is highly effective when coupled with nature-derived fungicidal products that can minimize the event of fungal infections in agrarian ecosystem. Present study enlists the most common and effective natural products that might be of plant or microbial origin, their mode of action, day-by-day development of phytopathogenic resistance against the prevailing fungicides, and also their role in maintenance of sustainability of agricultural practices with special emphasis on their acceptance over the synthetic or chemical one. A large number of bioactive compounds ranging from direct plant (both cryptogams algae and moss and phanerogams)-derived natural extracts, essential oil of aromatic plants, and low-molecular-weight antimicrobial compounds known as phytoalexins to secondary metabolites that are both volatile and nonvolatile organic compounds of microbes (fungal and actinobacterial members) residing inside the host tissue, called endophyte, are widely used as agricultural bioweapons. The rhizospheric partners of plant, mycorrhizae, are also a prime agent of this chemical warfare and protect their green partners from fungal invaders and emphasize the concept of “sustainable agriculture.”
Collapse
Affiliation(s)
- Joginder Singh
- grid.449005.cDepartment of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | - Ajar Nath Yadav
- grid.448698.f0000 0004 0462 8006Department of Biotechnology, Eternal University, Sirmour, Himachal Pradesh India
| |
Collapse
|
35
|
|
36
|
Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi SF, Yousefi B, Jeandet P, Xu S, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv 2020; 38:107316. [PMID: 30458225 DOI: 10.1016/j.biotechadv.2018.11.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/28/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
Abstract
Plants, fungi, and microorganisms are equipped with biosynthesis machinery for producing thousands of secondary metabolites. These compounds have important functions in nature as a defence against predators or competitors as well as other ecological significances. The full utilization of these compounds for food, medicine, and other purposes requires a thorough understanding of their structures and the distinct biochemical pathways of their production in cellular systems. In this review, flavonoids as classical examples of secondary metabolites are employed to highlight recent advances in understanding how valuable compounds can be regulated at various levels. With extensive diversity in their chemistry and pharmacology, understanding the metabolic engineering of flavonoids now allows us to fine-tune the eliciting of their production, accumulation, and extraction from living systems. More specifically, recent advances in the shikimic acid and acetate biosynthetic pathways of flavonoids production from metabolic engineering point of view, from genes expression to multiple principles of regulation, are addressed. Specific examples of plants and microorganisms as the sources of flavonoids-based compounds with particular emphasis on therapeutic applications are also discussed.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Dunja Šamec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Luigi Milella
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Ipek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, - Vigo Campus, Vigo, Spain
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe Jeandet
- Unité de Recherche RIBP EA 4707, SFR Condorcet FR CNRS 3417, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP, 1039, 51687 Reims CEDEX, France
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
37
|
Xu W, Ma F, Li R, Zhou Q, Yao W, Jiao Y, Zhang C, Zhang J, Wang X, Xu Y, Wang Y. VpSTS29/STS2 enhances fungal tolerance in grapevine through a positive feedback loop. PLANT, CELL & ENVIRONMENT 2019; 42:2979-2998. [PMID: 31309591 DOI: 10.1111/pce.13600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 05/03/2023]
Abstract
Accumulation of stilbene phytoalexins stimulates resistance mechanisms against the grapevine fungus Uncinula necator. However, the defensive mechanisms triggered by stilbene synthase (STS) genes, remain largely unknown. Here, we report the function and molecular mechanism of the stilbene synthase gene VpSTS29/STS2 from Vitis pseudoreticulata in the regulation of plant responses to powdery mildew. Stilbene synthesis occurred mainly in root tips and mesophyll cells of transgenic grapevines via transport through the vascular bundles. Overexpression of VpSTS29/STS2 in Vitis vinifera increased the abundance of STSs in mesophyll tissue and resulted in the accumulation of biologically active resveratrol derivatives at the invasion site. Similarly, expression of VpSTS29/STS2 in Arabidopsis increased resistance to Golovinomyces cichoracearum. The VpSTS29/STS2-expressing Arabidopsis lines showed increased piceid accumulation together with more local hypersensitive reactions, inhibition of mycelial growth, and a reduced incidence of pathogens. Transcriptome profiling analyses demonstrated that VpSTS29/STS2-induced defences led to reprograming of global gene expression and activation of salicylic acid (SA) signalling, thus increasing expression of WRKY-MYB transcription factors and other defence response genes. We propose a model for resveratrol-mediated coordination of defence responses in which SA participates in a positive feedback loop.
Collapse
Affiliation(s)
- Weirong Xu
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Ruimin Li
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Qi Zhou
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Yuntong Jiao
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
38
|
Cardot C, Mappa G, La Camera S, Gaillard C, Vriet C, Lecomte P, Ferrari G, Coutos-Thévenot P. Comparison of the Molecular Responses of Tolerant, Susceptible and Highly Susceptible Grapevine Cultivars During Interaction With the Pathogenic Fungus Eutypa lata. FRONTIERS IN PLANT SCIENCE 2019; 10:991. [PMID: 31428114 PMCID: PMC6690011 DOI: 10.3389/fpls.2019.00991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 05/02/2023]
Abstract
Eutypa lata is the causal agent of eutypa dieback, one of the most destructive grapevine trunk disease that causes severe economic losses in vineyards worldwide. This fungus causes brown sectorial necrosis in wood which affect the vegetative growth. Despite intense research efforts made in the past years, no cure currently exists for this disease. Host responses to eutypa dieback are difficult to address because E. lata is a wood pathogen that causes foliar symptoms several years after infection. With the aim to classify the level of susceptibility of grapevine cultivars to the foliar symptoms caused by E. lata, artificial inoculations of Merlot, Cabernet Sauvignon, and Ugni Blanc were conducted over 3 years. Merlot was the most tolerant cultivar, whereas Ugni Blanc and Cabernet Sauvignon exhibited higher and differential levels of susceptibility. We took advantage of their contrasting phenotypes to explore their defense responses, including the activation of pathogenesis-related (PR) genes, oxylipin and phenylpropanoid pathways and the accumulation of stilbenes. These analyses were carried out using the millicell system that enables the molecular dialogue between E. lata mycelium and grapevine leaves to take place without physical contact. Merlot responded to E. lata by inducing the expression of a large number of defense-related genes. On the contrary, Ugni Blanc failed to activate such defense responses despite being able to perceive the fungus. To gain insight into the role of carbon partitioning in E. lata infected grapevine, we monitored the expression of plant genes involved in sugar transport and cleavage, and measured invertase activities. Our results evidence a coordinated up-regulation of VvHT5 and VvcwINV genes, and a stimulation of the cell wall invertase activity in leaves of Merlot elicited by E. lata, but not in Ugni Blanc. Altogether, this study indicates that the degree of cultivar susceptibility is associated with the activation of host defense responses, including extracellular sucrolytic machinery and hexose uptake during the grapevine/E. lata interaction. Given the role of these activities in governing carbon allocation through the plant, we postulate that the availability of sugar resources for either the host or the fungus is crucial for the outcome of the interaction.
Collapse
Affiliation(s)
- Chloé Cardot
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
- INRA, UMR 1065 SAVE (Santé et Agroécologie du Vignoble), Université de Bordeaux, Villenave d’Ornon, France
- BNIC (Bureau National Interprofessionnel du Cognac – Station Viticole), Cognac, France
| | - Gaetan Mappa
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Sylvain La Camera
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Cécile Gaillard
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Cécile Vriet
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Pascal Lecomte
- INRA, UMR 1065 SAVE (Santé et Agroécologie du Vignoble), Université de Bordeaux, Villenave d’Ornon, France
| | - Gérald Ferrari
- BNIC (Bureau National Interprofessionnel du Cognac – Station Viticole), Cognac, France
| | - Pierre Coutos-Thévenot
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
39
|
Deice Raasch-Fernandes L, Bonaldo SM, de Jesus Rodrigues D, Magela Vieira-Junior G, Regina Freitas Schwan-Estrada K, Rocco da Silva C, Gabriela Araújo Verçosa A, Lopes de Oliveira D, Wender Debiasi B. Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PLoS One 2019; 14:e0211020. [PMID: 30653617 PMCID: PMC6336429 DOI: 10.1371/journal.pone.0211020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/02/2018] [Indexed: 01/31/2023] Open
Abstract
Cutaneous secretions produced by amphibians of the family Bufonidae are rich sources of bioactive compounds that can be useful as new chemical templates for agrochemicals. In crop protection, the use of elicitors to induce responses offers the prospect of durable, broad-spectrum disease control using the plant's own resistance. Therefore, we evaluated the potential of methanolic extracts of cutaneous secretions of two species of amphibians of the family Bufonidae found in the Amazon biome-Rhaebo guttatus (species 1) and Rhinella marina (species 2)-in the synthesis of phytoalexins in soybean cotyledons, bean hypocotyls, and sorghum mesocotyls. Additionally, changes in the enzyme activity of β-1,3-glucanase, peroxidase (POX), and polyphenol oxidase (PPO) and in the total protein content of soybean cotyledons were determined. In the soybean cultivar 'TMG 132 RR', our results indicated that the methanolic extract of R. guttatus cutaneous secretions suppressed glyceollin synthesis and β-1,3-glucanase activity and increased POX and PPO activities at higher concentrations and total protein content at a concentration of 0.2 mg/mL. On the other hand, the methanolic extract of R. marina cutaneous secretions induced glyceollin synthesis in the soybean cultivars 'TMG 132 RR' and 'Monsoy 8372 IPRO' at 0.1-0.2 mg/mL and 0.2 mg/mL, respectively. The methanolic extract of R. marina cutaneous secretions also increased the specific activity of POX and PPO in 'Monsoy 8372 IPRO' and 'TMG 132 RR', respectively, and decreased the activity of β-1,3-glucanases in 'Monsoy 8372 IPRO'. At 0.3 mg/mL, it stimulated phaseolin synthesis. The extracts did not express bioactivity in the synthesis of deoxyanthocyanidins in sorghum mesocotyls. The study in soybean suggests that the bioactivity in defense responses is influenced by cultivar genotypes. Therefore, these results provide evidence that extracts of cutaneous secretions of these amphibians species may contribute to the bioactivity of defense metabolites in plants.
Collapse
Affiliation(s)
- Livia Deice Raasch-Fernandes
- Postgraduate Program in Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Solange Maria Bonaldo
- Federal University of Mato Grosso and the Postgraduate Program in Environmental Sciences, Sinop, Mato Grosso State, Brazil
| | - Domingos de Jesus Rodrigues
- Federal University of Mato Grosso and the Postgraduate Program in Environmental Sciences, Sinop, Mato Grosso State, Brazil
| | | | | | - Camila Rocco da Silva
- Graduate Program in Agronomy, State University of Maringá, Maringá, Paraná State, Brazil
| | - Ana Gabriela Araújo Verçosa
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Daiane Lopes de Oliveira
- Institute of Agrarian and Environmental Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| | - Bryan Wender Debiasi
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso State, Brazil
| |
Collapse
|
40
|
Jeandet P, Clément C, Cordelier S. Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:375-378. [PMID: 30615188 PMCID: PMC6322570 DOI: 10.1093/jxb/ery446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article comments on: Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L. 2019. VvWRKY8 negatively regulates VvSTS through direct interaction with VvMYB14 to balance resveratrol biosynthesis in grapevine. Journal of Experimental Botany 70, 715–729.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
- Correspondence:
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | - Sylvain Cordelier
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| |
Collapse
|
41
|
Reim S, Rohr AD, Winkelmann T, Weiß S, Liu B, Beerhues L, Schmitz M, Hanke MV, Flachowsky H. Genes Involved in Stress Response and Especially in Phytoalexin Biosynthesis Are Upregulated in Four Malus Genotypes in Response to Apple Replant Disease. FRONTIERS IN PLANT SCIENCE 2019; 10:1724. [PMID: 32180775 PMCID: PMC7059805 DOI: 10.3389/fpls.2019.01724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/09/2019] [Indexed: 05/17/2023]
Abstract
Apple replant disease (ARD) is a soil-borne disease, which is of particular importance for fruit tree nurseries and fruit growers. The disease manifests by a poor vegetative development, stunted growth, and reduced yield in terms of quantity and quality, if apple plants (usually rootstocks) are replanted several times at the same site. Genotype-specific differences in the reaction of apple plants to ARD are documented, but less is known about the genetic mechanisms behind this symptomatology. Recent transcriptome analyses resulted in a number of candidate genes possibly involved in the plant response. In the present study, the expression of 108 selected candidate genes was investigated in root and leaf tissue of four different apple genotypes grown in untreated ARD soil and ARD soil disinfected by γ-irradiation originating from two different sites in Germany. Thirty-nine out of the 108 candidate genes were differentially expressed in roots by taking a p-value of < 0.05 and a fold change of > 1.5 as cutoff. Sixteen genes were more than 4.5-fold upregulated in roots of plants grown in ARD soil. The four genes MNL2 (putative mannosidase); ALF5 (multi antimicrobial extrusion protein); UGT73B4 (uridine diphosphate (UDP)-glycosyltransferase 73B4), and ECHI (chitin-binding) were significantly upregulated in roots. These genes seem to be related to the host plant response to ARD, although they have never been described in this context before. Six of the highly upregulated genes belong to the phytoalexin biosynthesis pathway. Their genotype-specific gene expression pattern was consistent with the phytoalexin content measured in roots. The biphenyl synthase (BIS) genes were found to be useful as early biomarkers for ARD, because their expression pattern correlated well with the phenotypic reaction of the Malus genotypes investigated.
Collapse
Affiliation(s)
- Stefanie Reim
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Annmarie-Deetja Rohr
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology Section, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology Section, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
- *Correspondence: Traud Winkelmann,
| | - Stefan Weiß
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology Section, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Benye Liu
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michaela Schmitz
- Department of Natural Sciences, Hochschule Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Magda-Viola Hanke
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dresden, Germany
| |
Collapse
|
42
|
Galeano Garcia P, Neves Dos Santos F, Zanotta S, Eberlin MN, Carazzone C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules 2018; 23:E3330. [PMID: 30558273 PMCID: PMC6320815 DOI: 10.3390/molecules23123330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Tomato crops suffer attacks of various pathogens that cause large production losses. Late blight caused by Phytophthora infestans is a devastating disease in tomatoes because of its difficultly to control. Here, we applied metabolomics based on liquid chromatography⁻mass spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60, 72 and 96 h after inoculation (hpi). MALDI-MS and LC-MS profiles of metabolites combined with multivariate data analysis are able to detect early-late blight-infected tomato plants, and metabolomics based on LC-MS discriminates infection times in asymptomatic plants. We found the metabolite tomatidine as an important biomarker of infection, saponins as early infection metabolite markers and isocoumarin as early and late asymptomatic infection marker along the post infection time. MALDI-MS and LC-MS analysis can therefore be used as a rapid and effective method for the early detection of late blight-infected tomato plants, offering a suitable tool to guide the correct management and application of sanitary defense approaches. LC-MS analysis also appears to be a suitable tool for identifying major metabolites of asymptomatic late blight-infected tomato plants.
Collapse
Affiliation(s)
- Paula Galeano Garcia
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
- Bioprospección de los Productos Naturales Amazónicos, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Fábio Neves Dos Santos
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Samantha Zanotta
- Laboratório de Diagnostico Fitopatológico, Instituto Biológico, São Paulo 04014-900, Brazil.
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
43
|
Biogenetic Conversion of Wyerone and Dihydrowyerone into Wyerone Epoxide in Vicia faba Cotyledons and Screening of Antibacterial Activity. J CHEM-NY 2018. [DOI: 10.1155/2018/7160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Vicia faba is a plant that belongs to the family Fabaceae. Cotyledons of this plant produce compounds called phytoalexins as a result of fungal and bacterial infection or stress factors. The phytoalexins are furanoacetylenic compounds. They include wyerone, wyerol, wyerone acid, their dihydro derivatives, and wyerone epoxide. These compounds have antimicrobial activities mainly against fungi. Objective. The purpose of this study was to elucidate the biogenetic conversion of wyerone and dihydrowyerone to wyerone epoxide in V. faba and to investigate the antibacterial activities of some of these phytoalexins. Materials and Methods. Seeds of Vicia faba were used. Labelled wyerone and dihydrowyerone were obtained by treating CuCl2-induced cotyledons with sodium (2-14C) acetate and separated by TLC and HPLC. Labelled wyerone and dihydrowyerone were then applied to induced bean cotyledons to establish any possible interconversion to wyerone epoxide. Antibacterial activity of wyerone, wyerone acid, and wyerone epoxide was investigated by disc diffusion test against a panel of microorganisms. Zones of inhibition were reported. Results. The radiolabeling studies showed that 12.4% of 14C-wyerone, and 6.01% of 14C-dihydrowyerone were incorporated into wyerone epoxide. This indicates that wyerone epoxide was most probably derived from wyerone and dihydrowyerone. In addition, a new compound, 11-hydroxywyerone was isolated for the first time. Additionally, this study showed that wyerone, wyerone epoxide, and wyerone acid had no antibacterial activity against Gram-negative bacteria but were active against Gram-positive bacteria.
Collapse
|
44
|
Engineering stilbene metabolic pathways in microbial cells. Biotechnol Adv 2018; 36:2264-2283. [PMID: 30414914 DOI: 10.1016/j.biotechadv.2018.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Numerous in vitro and in vivo studies on biological activities of phytostilbenes have brought to the fore the remarkable properties of these compounds and their derivatives, making them a top storyline in natural product research fields. However, getting stilbenes in sufficient amounts for routine biological activity studies and make them available for pharmaceutical and/or nutraceutical industry applications, is hampered by the difficulty to source them through synthetic chemistry-based pathways or extraction from the native plants. Hence, microbial cell cultures have rapidly became potent workhorse factories for stilbene production. In this review, we present the combined efforts made during the past 15 years to engineer stilbene metabolic pathways in microbial cells, mainly the Saccharomyces cerevisiae baker yeast, the Escherichia coli and the Corynebacterium glutamicum bacteria. Rationalized approaches to the heterologous expression of the partial or the entire stilbene biosynthetic routes are presented to allow the identification and/or bypassing of the major bottlenecks in the endogenous microbial cell metabolism as well as potential regulations of the genes involved in these metabolic pathways. The contributions of bioinformatics to synthetic biology are developed to highlight their tremendous help in predicting which target genes are likely to be up-regulated or deleted for controlling the dynamics of precursor flows in the tailored microbial cells. Further insight is given to the metabolic engineering of microbial cells with "decorating" enzymes, such as methyl and glycosyltransferases or hydroxylases, which can act sequentially on the stilbene core structure. Altogether, the cellular optimization of stilbene biosynthetic pathways integrating more and more complex constructs up to twelve genetic modifications has led to stilbene titers ranging from hundreds of milligrams to the gram-scale yields from various carbon sources. Through this review, the microbial production of stilbenes is analyzed, stressing both the engineering dynamic regulation of biosynthetic pathways and the endogenous control of stilbene precursors.
Collapse
|
45
|
Abstract
Resveratrol is among the best-known secondary plant metabolites because of its antioxidant, anti-inflammatory, and anticancer properties. It also is an important allelopathic chemical widely credited with the protection of plants from pathogens. The ecological role of resveratrol in natural habitats is difficult to establish rigorously, because it does not seem to accumulate outside plant tissue. It is likely that bacterial degradation plays a key role in determining the persistence, and thus the ecological role, of resveratrol in soil. Here, we report the isolation of an Acinetobacter species that can use resveratrol as a sole carbon source from the rhizosphere of peanut plants. Both molecular and biochemical techniques indicate that the pathway starts with the conversion of resveratrol to 3,5-dihydroxybenzaldehyde and 4-hydroxybenzaldehyde. The aldehydes are oxidized to substituted benzoates that subsequently enter central metabolism. The gene that encodes the enzyme responsible for the oxidative cleavage of resveratrol was cloned and expressed in Escherichia coli to establish its function. Its physiological role in the resveratrol catabolic pathway was established by knockouts and by the reverse transcription-quantitative PCR (RT-qPCR) demonstration of expression during growth on resveratrol. The results establish the presence and capabilities of resveratrol-degrading bacteria in the rhizosphere of the peanut plants and set the stage for studies to evaluate the role of the bacteria in plant allelopathy.IMPORTANCE In addition to its antioxidant properties, resveratrol is representative of a broad array of allelopathic chemicals produced by plants to inhibit competitors, herbivores, and pathogens. The bacterial degradation of such chemicals in the rhizosphere would reduce the effects of the chemicals. Therefore, it is important to understand the activity and ecological role of bacteria that biodegrade resveratrol near the plants that produce it. This study describes the isolation from the peanut rhizosphere of bacteria that can grow on resveratrol. The characterization of the initial steps in the biodegradation process sets the stage for the investigation of the evolution of the catabolic pathways responsible for the biodegradation of resveratrol and its homologs.
Collapse
|
46
|
Liu Z, Fan M, Li C, Xu JH. Dynamic gene amplification and function diversification of grass-specific O-methyltransferase gene family. Genomics 2018; 111:687-695. [PMID: 29689291 DOI: 10.1016/j.ygeno.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The plant O-methyltransferases are dependent on S-Adenosyl-l-methionine, which can catalyze a variety of secondary metabolites. Here we identified different number of OMT genes from the respective grass genomes. Phylogenetic analysis showed that this OMT gene family is a grass-specific gene family that is different from COMT. Most of genes were expanded by tandem and segment duplication after the species split from their progenitor. Furthermore, genes from Group I and two clusters from group II are only present in Panicoideae, which included Bx10 and Bx7 involved in the benzoxazinoids pathway, suggesting these genes could participate in insect resistance in Panicoideae. Gene expression profiles showed that OMT genes were preferentially expressed in vegetative stages, especially in roots. These results revealed that this grass-specific OMT gene family could affect the development of vegetative stages, and be involved in the benzoxazinoids pathway or suberin biosynthesis that was different from COMT.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
48
|
Florez JC, Mofatto LS, do Livramento Freitas-Lopes R, Ferreira SS, Zambolim EM, Carazzolle MF, Zambolim L, Caixeta ET. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. PLANT MOLECULAR BIOLOGY 2017; 95:607-623. [PMID: 29094279 DOI: 10.1007/s11103-017-0676-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.
Collapse
Affiliation(s)
- Juan Carlos Florez
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Luciana Souto Mofatto
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Rejane do Livramento Freitas-Lopes
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Sávio Siqueira Ferreira
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eunize Maciel Zambolim
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Laércio Zambolim
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eveline Teixeira Caixeta
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
- Embrapa Café, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
| |
Collapse
|
49
|
Tyunin AP, Nityagovsky NN, Grigorchuk VP, Kiselev KV. Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis
treated with cinnamic and caffeic acids. Biotechnol Appl Biochem 2017; 65:150-155. [DOI: 10.1002/bab.1564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Alexey P. Tyunin
- Laboratory of Biotechnology; Institute of Biology and Soil Science; Far Eastern Branch of the Russian Academy of Sciences; Vladivostok Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology; Institute of Biology and Soil Science; Far Eastern Branch of the Russian Academy of Sciences; Vladivostok Russia
- Department of Biochemistry and Biotechnology; Far Eastern Federal University; Vladivostok Russia
| | - Valeria P. Grigorchuk
- Laboratory of Biotechnology; Institute of Biology and Soil Science; Far Eastern Branch of the Russian Academy of Sciences; Vladivostok Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology; Institute of Biology and Soil Science; Far Eastern Branch of the Russian Academy of Sciences; Vladivostok Russia
- Department of Biochemistry and Biotechnology; Far Eastern Federal University; Vladivostok Russia
| |
Collapse
|
50
|
Woźniak A, Drzewiecka K, Kęsy J, Marczak Ł, Narożna D, Grobela M, Motała R, Bocianowski J, Morkunas I. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation. Molecules 2017; 22:E1404. [PMID: 28837107 PMCID: PMC6151543 DOI: 10.3390/molecules22091404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea (Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid (Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum. Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Kinga Drzewiecka
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland.
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| | - Marcin Grobela
- Department of Ecology and Environmental Protection, Laboratory of Environmental Analyses, the Institute of Plant Protection National Research Institute, Węgorka 20, 60-101 Poznań, Poland.
| | - Rafał Motała
- Department of Ecology and Environmental Protection, Laboratory of Environmental Analyses, the Institute of Plant Protection National Research Institute, Węgorka 20, 60-101 Poznań, Poland.
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|