1
|
Garcia JL, Rosa I, da Silva JP, Moleiro J, Claro I. Incidence and risk factors for neoplasia in inflammatory bowel disease. Asia Pac J Clin Oncol 2024; 20:559-564. [PMID: 36915954 DOI: 10.1111/ajco.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 03/15/2023]
Abstract
INTRODUCTION Inflammatory Bowel Disease (IBD) patients may have an increased risk of neoplasia. The aim was to evaluate the incidence of malignant neoplasia in IBD patients, associated risk factors and therapy adjustments. METHODS Unicentric retrospective cohort study. All patients followed for IBD in a tertiary portuguese hospital and oncological centre during 2015-2020 were included. RESULTS 318 patients were included female 55.0%, age at diagnosis = 37.24(±15,28), Crohn's disease 52.5%, Primary Sclerosing Cholangitis n = 7, family history of cancer n = 12, previous diagnosis of neoplasia n = 23(7.2%). 42 cancers were diagnosed in 35 patients (11.0%) - median of 12.0(IQR = 7.5-21.0) years after IBD diagnosis. Most affected organs were the skin (n = 15 in 11 patients; melanoma = 1), colon/rectum (n = 8 in 6 patients), prostate (n = 4), breast (n = 3) and anal canal (n = 2). In those with non-melanoma skin cancer, 6 were under active treatment with azathioprine and 2 had stopped it for more than two years. In the univariate analysis, the occurrence of neoplasia was positively associated with tobacco exposure (p = 0.022), age at IBD diagnosis (p = 0.021), and negatively with infliximab exposure (p = 0.046). In 9 cases, cancer treatment was different because of the IBD, while IBD treatment was changed in 9 patients. In those affected by cancer, in the univariate analysis, its cure/remission was negatively associated with tobacco exposure (p = 0.004) and positively with salicylates use (p = 0.007). CONCLUSION In IBD patients, cancer mostly affected the skin and the lower digestive system. As in the general population, tobacco exposure was a risk factor for the development of neoplasia.
Collapse
Affiliation(s)
- Joana Lemos Garcia
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Isadora Rosa
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | | | - Joana Moleiro
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Isabel Claro
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| |
Collapse
|
2
|
Adamowicz M, Abramczyk J, Kilanczyk E, Milkiewicz P, Łaba A, Milkiewicz M, Kempinska-Podhorodecka A. Modulation of miR-155-5p signalling via 5-ASA for the prevention of high microsatellite instability: an in vitro study using human epithelial cell lines. J Physiol Biochem 2024; 80:573-583. [PMID: 38985369 PMCID: PMC11502576 DOI: 10.1007/s13105-024-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
5-aminosalicylic acid (5-ASA) is a first-line treatment for maintaining colitis remission. It is a highly effective, safe, and well-tolerated drug with anti-inflammatory and chemo-preventive properties. While patients with primary sclerosing cholangitis (PSC) with concomitant ulcerative colitis are treated with 5-ASA, the molecular mechanisms underlying the drug's chemo-preventive effects are not entirely understood. We previously reported that bile acids and lipopolysaccharide-induced miR-155 expression was associated with downregulating mismatch repair (MMR) proteins in CACO-2 cell lines. Therefore, in this investigation, a set of in vitro functional studies was performed to show the possible mechanisms behind the epigenetic relationship between miR-155 and 5-ASA's prevention of high microsatellite instability (MSI-H). In transient transfection with miR-155Mimic, which behaves like endogenous miRNA, we confirmed the relationships between miR-155 and its target MMR in three human intestinal epithelial cell lines: CACO-2, NCM460D and HT-29. We have shown, for the first time, that 5-ASA modulates MLH1, MSH2, MSH6 in miR-155 transfected cells. These findings underline that chemoprotective 5-ASA therapy can effectively attenuate the expression of miR-155 and potentially prevent a development of MSI-H in a subset of colorectal cancers associated with PSC.
Collapse
Affiliation(s)
- Monika Adamowicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Joanna Abramczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Ewa Kilanczyk
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warszawa, Poland
- Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Alicja Łaba
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, 70-111, Poland
| | | |
Collapse
|
3
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
4
|
Mokhtari M, Khoshbakht S, Akbari ME, Moravveji SS. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment. BMC Med Genomics 2023; 16:328. [PMID: 38087279 PMCID: PMC10717810 DOI: 10.1186/s12920-023-01745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In recent years, drug screening has been one of the most significant challenges in the field of personalized medicine, particularly in cancer treatment. However, several new platforms have been introduced to address this issue, providing reliable solutions for personalized drug validation and safety testing. In this study, we developed a personalized drug combination protocol as the primary input to such platforms. METHODS To achieve this, we utilized data from whole-genome expression profiles of 6173 breast cancer patients, 312 healthy individuals, and 691 drugs. Our approach involved developing an individual pattern of perturbed gene expression (IPPGE) for each patient, which was used as the basis for drug selection. An algorithm was designed to extract personalized drug combinations by comparing the IPPGE and drug signatures. Additionally, we employed the concept of drug repurposing, searching for new benefits of existing drugs that may regulate the desired genes. RESULTS Our study revealed that drug combinations obtained from both specialized and non-specialized cancer medicines were more effective than those extracted from only specialized medicines. Furthermore, we observed that the individual pattern of perturbed gene expression (IPPGE) was unique to each patient, akin to a fingerprint. CONCLUSIONS The personalized drug combination protocol developed in this study offers a methodological interface between drug repurposing and combination drug therapy in cancer treatment. This protocol enables personalized drug combinations to be extracted from hundreds of drugs and thousands of drug combinations, potentially offering more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
5
|
Fadaly WAA, Nemr MTM, Zidan TH, Mohamed FEA, Abdelhakeem MM, Abu Jayab NN, Omar HA, Abdellatif KRA. New 1,2,3-triazole/1,2,4-triazole hybrids linked to oxime moiety as nitric oxide donor selective COX-2, aromatase, B-RAF V600E and EGFR inhibitors celecoxib analogs: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis and molecular modeling study. J Enzyme Inhib Med Chem 2023; 38:2290461. [PMID: 38061801 PMCID: PMC11003496 DOI: 10.1080/14756366.2023.2290461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A new series of bis-triazole 19a-l was synthesised for the purpose of being hybrid molecules with both anti-inflammatory and anti-cancer activities and assessed for cell cycle arrest, NO release. Compounds 19c, 19f, 19h, 19 l exhibited COX-2 selectivity indexes in the range of 18.48 to 49.38 compared to celecoxib S.I. = 21.10), inhibit MCF-7 with IC50 = 9-16 μM compared to tamoxifen (IC50 = 27.9 μM). and showed good inhibitory activity against HEP-3B with IC50 = 4.5-14 μM compared to sorafenib (IC50 = 3.5 μM) (HEP-3B). Moreover, derivatives 19e, 19j, 19k, 19 l inhibit HCT-116 with IC50 = 5.3-13.7 μM compared to 5-FU with IC50 = 4.8 μM (HCT-116). Compounds 19c, 19f, 19h, 19 l showed excellent inhibitory activity against A549 with IC50 = 3-4.5 μM compared to 5-FU with IC50 = 6 μM (A549). Compounds 19c, 19f, 19h, 19 l inhibit aromatase (IC50 of 22.40, 23.20, 22.70, 30.30 μM), EGFR (IC50 of 0.112, 0.205, 0.169 and 0.066 μM) and B-RAFV600E (IC50 of 0.09, 0.06, 0.07 and 0.05 μM).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Taha H Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Pharmacology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Zhang D, Duan S, He Z, Zhu Z, Li Z, Yi Q, Cai T, Li J, Chen N, Guo S. Sijunzi Decoction Targets IL1B and TNF to Reduce Neutrophil Extracellular Traps (NETs) in Ulcerative Colitis: Evidence from Silicon Prediction and Experiment Validation. Drug Des Devel Ther 2023; 17:3103-3128. [PMID: 37868820 PMCID: PMC10590142 DOI: 10.2147/dddt.s428814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose This study was conducted to explore the mechanism of Sijunzi Decoction (SJZ) in the treatment of ulcerative colitis (UC). Methods The study aimed to investigate the active components and targets of SJZ in the treatment of UC by screening databases such as TCMSP, GeneCards, OMIM, Distinct, TTD, and Drugbank. An online Venn tool, Cytoscape 3.7.2, and Autodock Tools were used to analyze the components and targets. The study also used a mouse model of UC to further investigate the effects of SJZ. HE staining, immunofluorescence, ELISA, qPCR, and Western blot were used to detect various indices. Results Eighty-three active components and 112 action targets were identified from SJZ, including 67 targets for treating UC-related NETs. The five core targets identified were AKT1, JUN, IL1B, PTGS2, and TNF, and molecular docking studies indicated that the five targets were well-docked with ginsenoside Rh2, isoflavones, and formononetin. Animal experiments demonstrated that SJZ could alleviate various parameters such as weight, colon length, spleen index, disease activity index, and intestinal pathology of the UC mice. Immunofluorescence and Western blot showed that SJZ could reduce the expression of IL1B and TNF in intestinal neutrophils while increasing the expression of Occludin. Cellular immunofluorescence suggests that SJZ can reduce the expression of TNF and IL1B in NETs. The qPCR results also suggested that SJZ could inhibit TNF signal. Furthermore, ELISA results suggested that SJZ could inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while promoting the expression of anti-inflammatory cytokines (IL-10, IL-37, TGF-β). Conclusion SJZ treats UC by reducing the content of intestinal NETs, with primary targets on the NETs being IL1B and TNFand suppress TNF signal. The practical components of SJZ may be ginsenoside Rh2, isoflavones, and formononetin.
Collapse
Affiliation(s)
- Dong Zhang
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Siwei Duan
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhangyou He
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zeming Zhu
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiping Li
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qincheng Yi
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Tiantian Cai
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Juanjuan Li
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Nan Chen
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Shaoju Guo
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Słoka J, Madej M, Strzalka-Mrozik B. Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules 2023; 28:5081. [PMID: 37446747 DOI: 10.3390/molecules28135081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemoprevention is one of the ways to fight colorectal cancer, which is a huge challenge in oncology. Numerous pieces of evidence indicate that chronic inflammation in the course of Crohn's disease or ulcerative colitis (UC) is a significant cancer risk factor. Epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs), including mesalazine, has beneficial effects on colitis-associated colorectal cancer. Mesalazine is a first-line therapy for UC and is also widely used for maintaining remission in UC. Data showed that mesalazine has antiproliferative properties associated with cyclooxygenase (COX) inhibition but can also act through COX-independent pathways. This review summarizes knowledge about mesalazine's molecular mechanisms of action and chemopreventive effect by which it could interfere with colorectal cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Joanna Słoka
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
8
|
Colorectal Cancer in Ulcerative Colitis: Mechanisms, Surveillance and Chemoprevention. Curr Oncol 2022; 29:6091-6114. [PMID: 36135048 PMCID: PMC9498229 DOI: 10.3390/curroncol29090479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ulcerative colitis (UC) are at a two- to three-fold increased risk of developing colorectal cancer (CRC) than the general population based on population-based data. UC-CRC has generated a series of clinical problems, which are reflected in its worse prognosis and higher mortality than sporadic CRC. Chronic inflammation is a significant contributor to the development of UC-CRC, so comprehending the relationship between the proinflammatory factors and epithelial cells together with downstream signaling pathways is the core to elucidate the mechanisms involved in developing of CRC. Clinical studies have shown the importance of early prevention, detection and management of CRC in patients with UC, and colonoscopic surveillance at regular intervals with multiple biopsies is considered the most effective way. The use of endoscopy with targeted biopsies of visible lesions has been supported in most populations. In contrast, random biopsies in patients with high-risk characteristics have been suggested during surveillance. Some of the agents used to treat UC are chemopreventive, the effects of which will be examined in cancers in UC in a population-based setting. In this review, we outline the current state of potential risk factors and chemopreventive recommendations in UC-CRC, with a specific focus on the proinflammatory mechanisms in promoting CRC and evidence for personalized surveillance.
Collapse
|
9
|
Mohammadian E, Foroumadi A, Hasanvand Z, Rahimpour E, Zhao H, Jouyban A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Odira HO, Mitema SO, Mapenay IM, Moriasi GA. Anti-inflammatory, Analgesic, and Cytotoxic Effects of The Phytexponent: A Polyherbal Formulation. J Evid Based Integr Med 2022; 27:2515690X221082986. [PMID: 35230885 PMCID: PMC8891872 DOI: 10.1177/2515690x221082986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Phytexponent is used to treat pain and inflammation in complementary and alternative medicine practices; however, empirical data supporting its pharmacological efficacy and safety is scanty, hence the present study. We used the carrageenan-induced paw oedema and the acetic acid-induced writhing techniques to determine the anti-inflammatory and analgesic efficacies, respectively, of the Phytexponent in Swiss albino mice models. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique was used to investigate the in vitro cytotoxic effects of the Phytexponent in the Vero E6 cell line. The Phytexponent exerted significant (P < .05) anti-inflammatory effects in the carrageenan-induced paw oedema mouse model in a dose- and time-dependent manner, with significantly higher efficacy at 250 mg/Kg BW, than indomethacin (4 mg/Kg BW), in the first, second, and third hour (P < .05). Besides, the Phytexponent significantly reduced the acetic acid-induced writhing frequency in mice (P < .05), in a dose-dependent manner, depicting its analgesic efficacy. Notably, the Phytexponent (at doses: 125 mg/Kg BW and 250 mg/Kg BW) exhibited significantly higher analgesic efficacy than the Indomethacin (P<.05). Moreover, the Phytexponent was not cytotoxic to Vero E6 cells (CC50 >1000 µg/ml) compared to cyclophosphamide (CC50 = 2.48 µg/ml). Thus, the Phytexponent has significant in vivo anti-inflammatory and analgesic efficacy in mice models and is not cytotoxic to Vero E6 cell line, depicting its therapeutic potential upon further empirical investigation.
Collapse
Affiliation(s)
- Halvince O. Odira
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Simon O. Mitema
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Isaac M. Mapenay
- Department of Public Health, Pharmacology, and Toxicology, College of Veterinary and Agricultural Sciences, University of Nairobi, Nairobi, Kenya
| | - Gervason A. Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
11
|
Takakura H, Horinaka M, Imai A, Aono Y, Nakao T, Miyamoto S, Iizumi Y, Watanabe M, Narita T, Ishikawa H, Mutoh M, Sakai T. Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. J Clin Biochem Nutr 2022; 70:93-102. [PMID: 35400827 PMCID: PMC8921728 DOI: 10.3164/jcbn.21-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.
Collapse
Affiliation(s)
- Hideki Takakura
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Mano Horinaka
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Ayaka Imai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Yuichi Aono
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Toshimasa Nakao
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Shingo Miyamoto
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Yosuke Iizumi
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Motoki Watanabe
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Takumi Narita
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Hideki Ishikawa
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences, National Cancer Center
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Prevention, Kyoto Prefectural University of Medicine
| |
Collapse
|
12
|
Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? Toxins (Basel) 2021; 13:toxins13120897. [PMID: 34941734 PMCID: PMC8703417 DOI: 10.3390/toxins13120897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Jean-Philippe Nougayrède
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
- Service de Bactériology-Hygiène, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
13
|
Suman S, Kumar S, Moon BH, Angdisen J, Kallakury BVS, Datta K, Fornace AJ. Effects of dietary aspirin on high-LET radiation-induced prostaglandin E2 levels and gastrointestinal tumorigenesis in Apc 1638N/+ mice. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:85-91. [PMID: 34689954 PMCID: PMC9808916 DOI: 10.1016/j.lssr.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 05/21/2023]
Abstract
Inevitable exposure to high-LET ionizing radiation (IR) present in galactic cosmic radiation (GCR) could enhance gastrointestinal (GI) cancer incidence among astronauts undertaking deep space exploration and GI-cancer mortality has been predicted to far exceed NASA's limit of < 3% REID (Radiation exposure-induced death) from cancer. Therefore, the development of countermeasure agents against high-LET radiation-induced GI cancer is needed to safeguard astronauts during and after an outer space mission. The cyclooxygenase-2/prostaglandin E2 (COX2/PGE2) mediated activation of pro-inflammatory and oncogenic signaling has been reported to play an important role in persistent inflammation and GI-tumorigenesis after high-LET radiation exposure. Therefore, aspirin, a well-known inhibitor of the COX/PGE2 pathway, was evaluated as a potential countermeasure against 28Si-induced PGE2 and tumorigenesis in Apc1638N/+, a murine model of human GI-cancer. Animals were fed either standard or aspirin supplemented diet (75, 150, or 300 mg/day of human equivalent dose) starting at the age of 4 weeks and continued till the end of the study, while mice were exposed to 28Si-ions (300 MeV/n; 69 keV/μm) at the age of 8 weeks. Serum PGE2 level, GI tumor size (>2mm2), number, and cluster (>5 adjoining tumors) were analyzed at 150 days post-exposure. Aspirin led to a significant reduction in PGE2 in a dose-dependent manner but did not reduce 28Si-induced GI tumorigenesis even at the highest (300 mg/day) dose. In summary, this study suggests that aspirin could reduce high-LET IR-induced pro-inflammatory PGE2 levels, however, lacks the ability to reduce high-LET IR-induced GI tumorigenesis in Apc1638N/+ mice.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Deissler H, Krammer H, Gillessen A. pH-dependent vs. constant release of mesalazine in the treatment of ulcerative colitis: Do drug delivery concepts determine therapeutic efficacy? (Review). Biomed Rep 2021; 15:96. [PMID: 34631051 PMCID: PMC8493545 DOI: 10.3892/br.2021.1472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have developed to become a major global health problem. Ulcerative colitis (UC) is one of two main types of IBD, and >90% of patients suffering from mild or moderate forms of UC are treated with mesalazine, a well-tolerated and cost-effective drug. To allow oral administration, the drug has to be protected from resorption before it can reach the affected sites in the colon. The drug is therefore released from most currently used medications either constantly slow (time-dependent) or triggered by an increased pH during gastrointestinal transition. Both variants are widely used in clinical practice and it is surprising that they have not yet been compared directly in a large clinical study. In this overview, the evidence that may suggest preferential use of one type of mesalazine formulation over the other in general or for defined subgroups of patients is summarized and evaluated. Data from in vitro modelling of drug release and measurements of drug concentrations in colonic mucosa suggest that in many cases, constant release and pH-dependent formulations are of similar therapeutic efficiency; however, pH-triggered release may be superior in patients with proctitis-type UC or sites of inflammation in the proximal colon. Additionally, patients with a long gastric residence time, slow small intestinal transition, disease-related diarrhea or sensitivity to systemic adverse effects may benefit more from pH-dependent release formulations. In general, medications based on both concepts show similar efficacies, but the pH-dependent release formulations seem to be more robust in the treatment of a not further classified group of patients with UC. Future comparative clinical studies are required to clearly define the subgroups of patients that should be treated preferably with constant or pH-dependent release formulations of mesalazine.
Collapse
Affiliation(s)
| | - Heinrich Krammer
- Gastroenterological Practice, Center for Colon and Rectal Diseases, D-68165 Mannheim, Germany
| | - Anton Gillessen
- Department of Internal Medicine (Gastroenterology), Herz-Jesu Hospital, D-48165 Muenster, Germany
| |
Collapse
|
15
|
Beiranvand M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): an anti-ulcer and anti-oxidant drug. Inflammopharmacology 2021; 29:1279-1290. [PMID: 34410540 DOI: 10.1007/s10787-021-00856-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Mesalazine, also known as 5-aminosalicylic acid (5-ASA), is a synthetic drug from the family of nonsteroidal anti-inflammatory drugs (NSAIDs) used for inflammatory diseases of the gastrointestinal tract. However, 5-ASA has also been used for various other diseases due to its pharmacological effects, but they are usually scattered across various publications, which may limit further research and clinical use of this drug. This review is a summary of published information on the biological and pharmacological effects of 5-ASA with the aim of identifying its anti-oxidant role and medicinal use. 5-ASA data have been collected from 1987 to February 2021 using major databases such as Web of Science, PubMed, Elsevier, Wiley Online Library, Springer, Google Scholar, etc. According to research, the pharmacological and biological effects of 5-ASA include treatment of inflammatory bowel disease, and anti-oxidant, anti-inflammatory, antibacterial, antifungal, anticancer, anti-amyloid, gastric protection (gastroprotective), and antidiverticulosis properties. Numerous pharmacological studies have shown that 5-ASA is an anti-oxidant and anti-ulcer compound with high therapeutic potential that, if the appropriate dose is discovered, its chemical structure changes and its effectiveness is optimized, 5-ASA has been used experimentally for other diseases.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
16
|
Zarghampour A, Moradi M, Martinez F, Hemmati S, Rahimpour E, Jouyban A. Solubility study of mesalazine in the aqueous mixtures of a deep-eutectic solvent at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Veloso PM, Machado R, Nobre C. Mesalazine and inflammatory bowel disease - From well-established therapies to progress beyond the state of the art. Eur J Pharm Biopharm 2021; 167:89-103. [PMID: 34329709 DOI: 10.1016/j.ejpb.2021.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023]
Abstract
Inflammatory bowel disease incidence has been constantly rising for the past few decades. Current therapies attempt to mitigate its symptoms since no cure is established. The most commonly prescribed drug for these patients is 5-aminosalicylic acid (5-ASA). Due to the low rate and seriousness of side effects compared to other therapies, 5-ASA is still largely prescribed in many stages of inflammatory bowel disease, including scenarios where evidence suggests low effectiveness. Although commercialized formulations have come a long way in improving pharmacokinetics, it is still necessary to design and develop novel delivery systems capable of increasing effectiveness at different stages of the disease. In particular, micro- and nano-sized particles might be the key to its success in Crohn's disease and in more serious disease stages. This review provides an overview on the clinical significance of 5-ASA formulations, its limitations, challenges, and the most recent micro- and nanoparticle delivery systems being designed for its controlled release. Emergent alternatives for 5-ASA are also discussed, as well as the future prospects for its application in inflammatory bowel disease therapies.
Collapse
Affiliation(s)
- Pedro M Veloso
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
18
|
Tanweer S, Jamal S, Mehra S, Saqib N, Ahmad F, Faizan, Grover A, Grover S. Multifaceted role of drugs: a potential weapon to outsmart Mycobacterium tuberculosis resistance by targeting its essential ThyX. J Biomol Struct Dyn 2021; 40:8508-8517. [PMID: 33860725 DOI: 10.1080/07391102.2021.1913230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is one of the prominent cause of deaths across the world and multidrug-resistant and extensively drug-resistant TB continues to pose challenges for clinicians and public health centers. The risk of death is extremely high in individuals who have compromised immune systems, HIV infection, or diabetes. Research institutes and pharmaceutical companies have been working on repurposing existing drugs as effective therapeutic options against TB. The identification of suitable drugs with multi-target affinity profiles is a widely accepted way to combat the development of resistance. Flavin-dependent thymidylate synthase (FDTS), known as ThyX, is in the class of methyltransferases and is a possible target in the discovery of novel anti-TB drugs. In this study, we aimed to repurpose existing drugs approved by Food and Drug Administration (FDA) that could be used in the treatment of TB. An integrated screening was performed based on computational procedures: high-throughput molecular docking techniques, followed by molecular dynamics simulations of the target enzyme, ThyX. After performing in silico screening using a library of 3,967 FDA-approved drugs, the two highest-scoring drugs, Carglumic acid and Mesalazine, were selected as potential candidates that could be repurposed to treat TB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Tanweer
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Salma Jamal
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Seema Mehra
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Najumu Saqib
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Faraz Ahmad
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Faizan
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonam Grover
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
20
|
Treatments of inflammatory bowel disease toward personalized medicine. Arch Pharm Res 2021; 44:293-309. [PMID: 33763844 DOI: 10.1007/s12272-021-01318-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disease characterized by intestinal inflammation and epithelial injury. For the treatment of IBD, 5-aminosalicylic acids, corticosteroids, immunomodulators, and biologic agents targeting tumor necrosis factor (TNF)-α, α4β7-integrin, and interleukin (IL)-12/23 have been widely used. Especially, anti-TNF-α antibodies are the first biologic agents that presently remain at the forefront. However, 10-30% of patients resist biologic agents, including anti-TNF-α agents (primary non-responder; PNR), and 20-50% of primary responders develop treatment resistance within one year (secondary loss of response; SLR). Nonetheless, the etiologies of PNR and SLR are not clearly understood, and predictors of response to biologic agents are also not defined yet. Numerous studies are being performed to discover prediction markers of the response to biologic agents, and this review will introduce currently available therapeutic options for IBD, biologics under investigation, and recent studies exploring various predictive factors related to PNR and SLR.
Collapse
|
21
|
Cerón-Carrasco JP, Jacquemin D. Using Theory To Extend the Scope of Azobenzene Drugs in Chemotherapy: Novel Combinations for a Specific Delivery. ChemMedChem 2021; 16:1764-1774. [PMID: 33619857 DOI: 10.1002/cmdc.202100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms metabolize azobenzene compounds (Ph1 -N=N-Ph2 ) into free aniline products (Ph1 -NH2 +H2 N-Ph2 ), a process that has been largely investigated to reduce dyes residues in the textile industry. However, the action of bacterial core enzymes such as azoreductases (AzoR) might also help to deliver prodrugs that become active when they reach the colonic region, a mechanism with potential applications for the treatment of inflammatory bowel disease (IBD) and colorectal cancer. So far, three azo-bonded prodrugs of 5-aminosalicylic acid (5-ASA), for example, sulfasalazine, olsalazine and balsalazide, have been used for colon-targeted delivery. The present contribution describes the first rational design of a novel azobenzene prodrug thanks to a computational approach, with a focus on linking 5-ASA to another approved anti-inflammatory drug. The resulting prodrugs were assessed for their degradation upon AzoR action. Replacing the original carriers by irsogladine is found to improve action.
Collapse
Affiliation(s)
- José P Cerón-Carrasco
- Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia (UCAM) Campus los Jerónimos, 30107, Murcia, Spain
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Université de Nantes, 44000, Nantes, France
| |
Collapse
|
22
|
Belayneh YM, Amare GG, Meharie BG. Updates on the molecular mechanisms of aspirin in the prevention of colorectal cancer: Review. J Oncol Pharm Pract 2021; 27:954-961. [PMID: 33427041 DOI: 10.1177/1078155220984846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is one of the commonest malignancies worldwide. The estimated lifetime risk of the disease is about 5% with an incidence of one million new cases and 600,000 deaths worldwide every year. It is estimated that in 2019, approximately 134,490 new cases of colorectal cancer will be diagnosed with 49,190 mortalities. Though the disease is regarded as a disorder of the more developed world, the occurrence is steadily increasing in many developing countries. Since chronic inflammation is a known aggravating risk factor for colorectal cancer, anti-inflammatory agents such as aspirin have been used to prevent the development of colorectal cancer and related mortality. The potential mechanisms for the effect of aspirin in the prevention of colorectal cancer have been proposed and broadly classified as cyclooxygenase (COX) dependent and COX-independent. Some of the primary effectors of COX-dependent mechanisms in carcinogenesis are likely to be prostaglandins. In contrast to the reversible action of other nonsteroidal anti-inflammatory drugs, aspirin is known to irreversibly inactivate COX enzymes to suppress production of prostaglandins. COX-independent mechanisms of anticancer effects of aspirin include down-regulation of nuclear factor kappa B activity and Akt activation, modulation of Bcl-2 and Bax family proteins, suppression of vascular endothelial growth factor, induction of apoptosis, disruption of DNA repair mechanisms, and induction of spermidine/spermine N1-acetyltransferase that modulates polyamine catabolism.
Collapse
Affiliation(s)
- Yaschilal Muche Belayneh
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Gedefew Getnet Amare
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Birhanu Geta Meharie
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
23
|
Tang-Fichaux M, Chagneau CV, Bossuet-Greif N, Nougayrède JP, Oswald É, Branchu P. The Polyphosphate Kinase of Escherichia coli Is Required for Full Production of the Genotoxin Colibactin. mSphere 2020; 5:e01195-20. [PMID: 33328353 PMCID: PMC7771237 DOI: 10.1128/msphere.01195-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Colibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Camille V Chagneau
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | | | - Éric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Service de Bactériologie-Hygiène, Toulouse, France
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
24
|
Nakase H. Optimizing the Use of Current Treatments and Emerging Therapeutic Approaches to Achieve Therapeutic Success in Patients with Inflammatory Bowel Disease. Gut Liver 2020; 14:7-19. [PMID: 30919602 PMCID: PMC6974326 DOI: 10.5009/gnl18203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
The current goal of inflammatory bowel disease (IBD) treatment is a symptom-free everyday life accompanied by mucosal healing with minimal use of corticosteroids. Recent therapeutic advances, particularly, the emergence of anti-tumor necrosis factor (anti-TNF) antibodies, have changed the natural history of IBD. Additionally, these advances also led to the emergence of the therapeutic concept of the “treat to target” strategy. With the development of new drugs and clinical trials, not only biologics but also small molecules have been applied to clinical practice to better individualize and optimize therapy. However, if newer drugs, including anti-TNF therapies, are recommended for all patients diagnosed with IBD, a significant number of patients will be overtreated. The basic goal of IBD treatment is still to make the best use of conventional treatments based on IBD pathophysiology. Thus, physicians should be familiar with the modes of action of the available drugs. In this review, the author discusses the existing data for many approved drugs and provide insights for optimizing current treatments for the management of patients with IBD in the era of biologics.
Collapse
Affiliation(s)
- Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
25
|
Jouyban K, Mazaher Haji Agha E, Hemmati S, Martinez F, Kuentz M, Jouyban A. Solubility of 5-aminosalicylic acid in N-methyl-2-pyrrolidone + water mixtures at various temperatures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Cai X, Huang W, Huang Y, Xia L, Liu M, Wang M, Wang W, Li Q. Design, Synthesis and Biological Evaluation of Camptothecin Conjugated with NSAIDs as Novel Dual-actin Antitumor Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190221103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
The single-agent therapy was unable to provide an effective control of the
malignant process, a well-established strategy to improve the efficacy of antitumor therapy is the
rational design of drug combinations aimed at achieving synergistic effects.
Objective:
The objective of this study is generating the new potential anticancer agents with
synergistic activity. Owing to the unique mechanism of action of Camptothecin (CPT), it has shown
abroad spectrum of anti-cancer activity against human malignancies, and growing evidence revealed
that Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) reduce the risk of different kinds of cancers.
So four CPT-NSAIDs conjugates were synthesized and evaluated.
Methods:
In this study, a series of novel CPT - NSAIDs derivatives were synthesized by
esterification. These new compounds were evaluated for in vitro antitumor activity against tumor
cell lines A549, Hela, HepG2, HCT116 by MTT assay. To probe the required stabilities as prodrugs,
stability tests were studied in human plasma. To further evaluate the stability of Ketoprofen-CPT
in vivo, the female SD rats were used to determine the pharmacokinetics following a single oral dose.
Results:
In vitro results showed that Ketoprofen-CPT and Naproxen-CPT conjugates possessed nice
efficacy. In a molecular docking model, the two conjugates interacted with Topo I-DNA through
hydrogen bonds, <pi>-<pi> stacking and so on.In human plasma results showed that the prodrug
was converted to ketoprofen and another compound. The female SD rats were used to determine the
pharmacokinetics following a single oral dose, the half-life (t1/2) of Ketoprofen-CPT was
approximately 12 h which was much longer than that of CPT.
Conclusion:
Good activity was noted for some compounds will be helpful for the design of dualaction
agents with most promising anti-cancer activity.
Collapse
Affiliation(s)
- Xingchen Cai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Weiwei Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yi Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Xia
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Mengke Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wenchao Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingyong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Hurst EA, Pang LY, Argyle DJ. The selective cyclooxygenase-2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effects in vitro independent of cyclooxygenase-2 expression levels. Vet Comp Oncol 2019; 17:194-207. [PMID: 30767381 DOI: 10.1111/vco.12470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The inducible inflammatory enzyme cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2 ) are prominent tumour promoters, and expression of COX-2 is elevated in a number of tumours of both humans and canines. Targeting COX-2 in cancer is an attractive option because of readily available non-steroidal anti-inflammatory drugs (NSAIDs), and there is a clear epidemiological link between NSAID use and cancer risk. In this study, we aim to establish the anti-tumourigenic effects of the selective, long-acting COX-2 inhibitor mavacoxib. We show here that mavacoxib is cytotoxic to a panel of human and canine osteosarcoma, mammary and bladder carcinoma cancer cell lines; that it can induce apoptosis and inhibit the migration of these cells. Interestingly, we establish that mavacoxib can exert these effects independently of elevated COX-2 expression. This study highlights the potential novel use of mavacoxib as a cancer therapeutic, suggesting that mavacoxib may be an effective anti-cancer agent independent of tumour COX-2 expression.
Collapse
Affiliation(s)
- Emma A Hurst
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Lisa Y Pang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - David J Argyle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Cao WT, Fan YH, Lv B. Intestinal microbial markers for diagnosis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:190-196. [DOI: 10.11569/wcjd.v27.i3.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is caused by immune, genetic, and environmental factors together. It is difficult to accurately diagnose IBD early because it is characterized by atypical symptoms at early stage and diverse lesions at late stage. The diagnosis is currently dependent on endoscopic and imaging examinations, but patients often have poor compliance. The characteristic change of gut microbiota in IBD suggests that it may become a new biomarker. In recent years, a number of clinical studies have focused on studying the role of characteristic changes of gut microbiota in the differential diagnosis, disease activity, and extra-intestinal manifestations of IBD. These studies have established a gut microbiota based diagnostic model with high sensitivity and specificity, but the model is susceptible to be influenced by external factors and needs to be further improved. This paper reviews the diagnostic value and clinical significance of gut microbiota in IBD.
Collapse
Affiliation(s)
- Wan-Ting Cao
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
29
|
Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol 2018; 58:52-62. [PMID: 30472477 DOI: 10.1016/j.canep.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
There is still insufficient data about the risk-benefit profile about recommending non-aspirin, non-steroidal anti-inflammatory drugs (NA-NSAIDs) for colorectal cancer (CRC) prevention, especially in people aged 40 years or older. This study specifically addressed the association between regular NA-NSAIDs use and CRC risk in the population aged 40 years or older, performing a comprehensive systematic review and meta-analysis of all published studies on this topic until April 2018, by a search of PubMed, Scopus and Web of science databases and clinical trial registries. Two reviewers independently selected studies based on predefined inclusion criteria and assessed study quality using the Newcastle-Otawa scale. The data was combined with the random effects model. Potential heterogeneity was calculated as Q statistic and I2 value. A total of 23 studies involving more than 1 million subjects contributed to the analysis. Pooled odds ratio (OR) of NA-NSAIDs effects on CRC risk was 0.74 (0.67-0.81), I2 = 75.9%, p < 0.001. Heterogeneity was explained by a number of variables including the quality of the studies. Significant protective effects of NA-NSAIDs use were found for women (risk reduction of 19%), higher doses (risk reduction of 18%), distal colon cancer (risk reduction of 22%) and white people (risk reduction from 31% to 41%). From the results NA-NSAIDs use appears to be CRC chemopreventive for a specific subgroup of the population.
Collapse
|
30
|
Walana W, Wang JJ, Yabasin IB, Ntim M, Kampo S, Al-Azab M, Elkhider A, Dogkotenge Kuugbee E, Cheng JW, Gordon JR, Li F. IL-8 analogue CXCL8 (3-72) K11R/G31P, modulates LPS-induced inflammation via AKT1-NF-kβ and ERK1/2-AP-1 pathways in THP-1 monocytes. Hum Immunol 2018; 79:809-816. [PMID: 30125599 DOI: 10.1016/j.humimm.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022]
Abstract
IL-8 is elevated during inflammation, and it initiates cascade of down-stream reactions. Its antagonist, CXCL8 (3-72) K11R/G31P (G31P), represses inflammatory reactions via competitive binding to CXC chemokine family, preferentially G protein-couple receptors (GPCRs) CXCR1/2. This study reports the effect of G31P on the transcription profile of lipopolysaccharide (LPS) induced inflammation in THP-1 monocytes ex-vivo. LPS (1 µg/ml) induced elevation of IL-8 was significantly reduced by G31P (20 µg/ml and 30 µg/ml), with relatively increased inhibition of CXCR2 than CXCR1. Transcription of IL-1β, IL-6, and TNF-α were significantly inhibited, while IL-10 remained relatively unchanged. G31P treatment also had repressing effect on the inflammatory associated enzymes COX-2, MMP-2, and MMP-9. Significant restriction of c-Fos, and NF-kβ mRNA expression was observed, while that of c-Jun was marginally elevated. Conversely, SP-1 mRNA expression was seen to increase appreciably by G31P treatment. While the translation of pAKT, pERK1/2, and p65- NF-kβ were down-regulated by the G31P following THP-1 cells stimulation with LPS, reactive oxygen species (ROS) expression was on the positive trajectory. Collectively, the IL-8 analogue, G31P, modulates the inflammatory profile of LPS induced inflammation in THP-1 monocytes via AKT1-NF-kβ and ERK1/2-AP-1 pathways.
Collapse
Affiliation(s)
- Williams Walana
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Jing-Jing Wang
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Iddrisu Baba Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, Liaoning, PR China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | - Sylvanus Kampo
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116011, Liaoning, PR China
| | - Mahmoud Al-Azab
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | | | | | - Jya-Wei Cheng
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - John R Gordon
- The Division of Respirology, Critical Care and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada.
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
31
|
Ramadan A, Afifi N, Yassin NZ, Abdel-Rahman RF, Abd El-Rahman SS, Fayed HM. Mesalazine, an osteopontin inhibitor: The potential prophylactic and remedial roles in induced liver fibrosis in rats. Chem Biol Interact 2018; 289:109-118. [PMID: 29738702 DOI: 10.1016/j.cbi.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a major health issue leading to high morbidity and mortality. The potential anti-fibrotic activity and the effect of mesalazine on osteopontin (OPN), an extra cellular matrix (ECM) component were evaluated in TAA-induced liver fibrosis in rats. For this purpose, forty-two adult male Wistar rats were divided into six groups. All animals, except the normal control, were intraperitoneally injected with TAA (200 mg/kg) twice per week for 6 weeks. In the hepato-protective study, animals were administered mesalazine (50 and 100 mg/kg, orally) for 4 weeks before induction of liver fibrosis then concomitantly with TAA injection. In the hepato-therapeutic study, animals were administered mesalazine for 6 weeks after TAA discontinuation with the same doses. In both studies, mesalazine administration improved liver biomarkers through decreasing serum levels of AST, ALT and total bilirubin when compared to fibrotic group with significant increase in total protein and albumin levels. Mesalazine significantly decreased hepatic MDA level and counteracted the depletion of hepatic GSH content and SOD activity. Additionally, it limits the elevation of OPN and TGF-β1 concentrations and suppressed TNF-α as well as α-SMA levels in hepatic tissue homogenate. Histopathologically, mesalazine as a treatment showed a good restoration of the hepatic parenchymal cells with an obvious decreased intensity and retraction of fibrous proliferation, while as a prophylaxis it didn't achieve enough protection against the harmful effect of TAA, although it decreased the intensity of portal to portal fibrosis and pseudolobulation. Furthermore, mesalazine could suppress the expression of both α-SMA and caspase-3 in immunohistochemical sections. In conclusion, mesalazine could have a potential new indication as anti-fibrotic agent through limiting the oxidative damage and altering TNF-ɑ pathway as an anti-inflammatory drug with down-regulating TGF-β1, OPN, α-SMA and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- A Ramadan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nehal Afifi
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nemat Z Yassin
- Pharmacology Department, National Research Centre, Giza, Egypt
| | | | - Sahar S Abd El-Rahman
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Hany M Fayed
- Pharmacology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
32
|
Elieh Ali Komi D, Rambasek T, Bielory L. Clinical implications of mast cell involvement in allergic conjunctivitis. Allergy 2018; 73:528-539. [PMID: 29105783 DOI: 10.1111/all.13334] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2017] [Indexed: 01/27/2023]
Abstract
The conjunctiva is a common site for the allergic inflammatory response due to it being highly vascularized, having constant exposure to environmental pollutants and allergenic pollens and having a unique conjunctival associated lymphoid tissue. The primary morbidity of anterior surface conjunctival disorders that include allergic conjunctivitis and tear film disorders is associated with its high frequency of involvement rather than its severity, although the more chronic forms can involve the cornea and lead to sight-threatening conditions. Ocular allergy is associated with IgE-mediated mast cell activation in conjunctival tissue leading to the release of preformed mediators including histamine and proteases and subsequent de novo formation of lipid-derived mediators and cytokines that trigger a cascade of cellular and molecular events leading to extensive migration and infiltration of inflammatory cells to the ocular surface. The trafficking of neutrophils, eosinophils, and lymphocytes to the ocular surface is due to establishing various chemokine gradients (mainly CCL11, CCL24, CCL5, MCP-3, and MCP-4), cell surface expression of adhesion molecules (such as VCAM-1 the ligand for VLA-4), and leukocyte adhesion to vascular endothelium. The release of preformed mediators underlies the acute ocular surface response while the secondary influx of inflammatory cells leading to the recruitment and activation of eosinophils and the subsequent activation of Th2 and Th1 lymphocytes at the level of the conjunctiva reflects the late-phase reaction.
Collapse
Affiliation(s)
- D. Elieh Ali Komi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - T. Rambasek
- Ohio University Heritage College of Osteopathic Medicine; Athens OH USA
| | - L. Bielory
- Rutgers University Center for Environmental Prediction; New Brunswick NJ USA
- Thomas Jefferson University The Sidney Kimmel Medical College Philadelphia; Philadelphia PA USA
| |
Collapse
|
33
|
Witold K, Anna K, Maciej T, Jakub J. Adenomas - Genetic factors in colorectal cancer prevention. Rep Pract Oncol Radiother 2018; 23:75-83. [PMID: 29463957 PMCID: PMC5814382 DOI: 10.1016/j.rpor.2017.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 07/17/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is the second most common type of cancer both in Europe and Poland. During the last 30 years more than a 3-fold increase has been observed in Poland due to environmental and genetic factors. Almost all colorectal malignancies are related to the formation and malignant transformation of colorectal dysplasia and adenoma. Efforts aiming to decrease the number of colorectal cancer deaths are focused on the disease early detection. Genetic diagnosis for hereditary syndromes predisposing to colorectal cancer has been developed and is a part of the routine treatment. Most cancers are sporadic. They often develop from polyps in the colon. In addition to the genetic events described in the 1990s, showing the adenoma transformation into carcinoma that has been a prime example of malignant transformation for a long time, there are also other possibilities of neoplastic transformation. The recognition of colorectal cancer risk factors make sense as their nature is lifestyle- and diet-related. In this review paper those risk factors are presented and the prevention of colorectal cancer is discussed taking into account genetic factors.
Collapse
Affiliation(s)
- Kycler Witold
- Department of Oncological Surgery of Gastrointestinal Diseases, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Kubiak Anna
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Registry – The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Trojanowski Maciej
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Registry – The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Janowski Jakub
- Department of Oncological Surgery of Gastrointestinal Diseases, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
34
|
Afolabi IS, Olawole TD, Adams KA, Shopeju OA, Ezeaku MC. Anti-inflammatory effects and the molecular pattern of the therapeutic effects of dietary seeds of Adenanthera Pavonina in albino rats. AIP CONFERENCE PROCEEDINGS 2018; 1954:040016. [DOI: 10.1063/1.5033416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Mozolewski P, Jakóbkiewicz-Banecka J, Węgrzyn G, Banecki B, Gabig-Cimińska M. Non-steroidal anti-inflammatory drugs are safe with respect to the transcriptome of human dermal fibroblasts. Eur J Pharmacol 2017; 818:206-210. [PMID: 29074415 DOI: 10.1016/j.ejphar.2017.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) provide important benefits to millions of patients, but are associated with a number of serious adverse events. These adverse drug reactions are an important clinical issue and a serious public health risk. While most unfortunate responses in human to NSAIDs are mild and may disappear after decreasing the dose or withdrawal of the drug, some of them can produce serious outcomes. Currently, little is known regarding the effects of NSAIDs on global RNA expression in normal, non-transformed cells. Therefore, in this report, the effect of NSAIDs, COX-nonspecific and COX-2-specific inhibitors, indomethacin and nimesulide respectively, commonly used medications worldwide for the reduction of pain, fever, inflammation and stiffness, on transcriptomic signature of human dermal fibroblasts was investigated. A total of 3803 differentially expressed genes with a fold change greater than or equal to 1.3 and below than or equal to 0.7 for whole genome transcripts, with a P value of < 0.05 were identified in response to all applied conditions. We found that although the total number of deregulated genes was relatively high at such criteria, changes in fibroblast transcriptome profile after treatment at selected experimental conditions were however smallish, as the selected drugs slightly modulate transcriptome with only a few genes with expression altered a bit more than twice. Nevertheless, transcriptomic data has its own limitations and it cannot reflect all post-transcriptional changes, which in turn may cause same risks, especially for a long time of medication.
Collapse
Affiliation(s)
- Paweł Mozolewski
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
36
|
Bonovas S, Fiorino G, Lytras T, Nikolopoulos G, Peyrin-Biroulet L, Danese S. Editorial: evidence is growing for protective effects of 5-aminosalicylates against colitis-associated cancer-authors' reply. Aliment Pharmacol Ther 2017; 45:1554-1555. [PMID: 28503864 DOI: 10.1111/apt.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- S Bonovas
- Department of Gastroenterology, IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| | - G Fiorino
- Department of Gastroenterology, IBD Center, Humanitas Clinical and Research Center, Milan, Italy
| | - T Lytras
- Hellenic Center for Disease Control and Prevention, Athens, Greece
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
- Barcelona Institute for Global Health, Barcelona, Spain
| | | | - L Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - S Danese
- Department of Gastroenterology, IBD Center, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
37
|
Bonovas S, Fiorino G, Lytras T, Nikolopoulos G, Peyrin-Biroulet L, Danese S. Systematic review with meta-analysis: use of 5-aminosalicylates and risk of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2017; 45:1179-1192. [PMID: 28261835 DOI: 10.1111/apt.14023] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/12/2017] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The relationship of 5-aminosalicylates' use with the risk of colorectal neoplasia in patients with inflammatory bowel disease (IBD) has been the focus of a growing body of research. AIM To investigate this association through an updated meta-analysis of observational studies. METHODS PubMed, Scopus and major conference proceedings were searched up to December 2016. The identified studies were evaluated for publication bias and heterogeneity. Pooled relative risk (RR) estimates were calculated using random-effect models. Detailed subgroup analyses were performed. The GRADE approach was used to assess the quality of evidence. RESULTS Thirty-one independent observational studies including 2137 cases of colorectal neoplasia (of which 76% were cancers) were incorporated. Between-study heterogeneity was moderate, while strong suspicion of small-study effects was raised. The overall analysis revealed a protective association between 5-aminosalicylates' use and colorectal neoplasia (RR = 0.57, 95% CI: 0.45-0.71). When the analysis was stratified according to study design and setting, the association was significant in cohort (RR = 0.65, 95% CI: 0.43-0.99; n = 10) and case-control studies (RR = 0.53, 95% CI: 0.40-0.70; n = 21), population-based (RR = 0.70, 95% CI: 0.52-0.94; n = 12) and hospital-based studies (RR = 0.46, 95% CI: 0.34-0.61; n = 19). Exposure to 5-aminosalicylates was protective against cancer (RR = 0.58, 95% CI: 0.45-0.74) and dysplasia (RR = 0.54, 95% CI: 0.35-0.84). The reduction in colorectal neoplasia risk was strong in ulcerative colitis (RR = 0.50, 95% CI: 0.38-0.64), but nonsignificant in Crohn's disease (RR = 0.76, 95% CI: 0.43-1.33). Mesalazine (mesalamine) use was protective (RR = 0.70, 95% CI: 0.51-0.94) with evidence of a dose-effect. The effect of sulfasalazine was marginally nonsignificant (RR = 0.72, 95% CI: 0.51-1.01). CONCLUSIONS Our findings support a potential chemopreventive role of 5-aminosalicylates in IBD. Further, high-quality prospective research is warranted.
Collapse
Affiliation(s)
- S Bonovas
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy
| | - G Fiorino
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy
| | - T Lytras
- Hellenic Center for Disease Control and Prevention, Athens, Greece.,Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona, Spain
| | | | - L Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - S Danese
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
38
|
Oh-oka K, Kojima Y, Uchida K, Yoda K, Ishimaru K, Nakajima S, Hemmi J, Kano H, Fujii-Kuriyama Y, Katoh R, Ito H, Nakao A. Induction of Colonic Regulatory T Cells by Mesalamine by Activating the Aryl Hydrocarbon Receptor. Cell Mol Gastroenterol Hepatol 2017; 4:135-151. [PMID: 28593185 PMCID: PMC5453907 DOI: 10.1016/j.jcmgh.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mesalamine is a first-line drug for treatment of inflammatory bowel diseases (IBD). However, its mechanisms are not fully understood. CD4+ Foxp3+ regulatory T cells (Tregs) play a potential role in suppressing IBD. This study determined whether the anti-inflammatory activity of mesalamine is related to Treg induction in the colon. METHODS We examined the frequencies of Tregs in the colons of wild-type mice, mice deficient for aryl hydrocarbon receptor (AhR-/- mice), and bone marrow-chimeric mice lacking AhR in hematopoietic cells (BM-AhR-/- mice), following oral treatment with mesalamine. We also examined the effects of mesalamine on transforming growth factor (TGF)-β expression in the colon. RESULTS Treatment of wild-type mice with mesalamine increased the accumulation of Tregs in the colon and up-regulated the AhR target gene Cyp1A1, but this effect was not observed in AhR-/- or BM-AhR-/- mice. In addition, mesalamine promoted in vitro differentiation of naive T cells to Tregs, concomitant with AhR activation. Mice treated with mesalamine exhibited increased levels of the active form of TGF-β in the colon in an AhR-dependent manner and blockade of TGF-β signaling suppressed induction of Tregs by mesalamine in the colon. Furthermore, mice pretreated with mesalamine acquired resistance to dextran sodium sulfate-induced colitis. CONCLUSIONS We propose a novel anti-inflammatory mechanism of mesalamine for colitis: induction of Tregs in the colon via the AhR pathway, followed by TGF-β activation.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- Aryl Hydrocarbon Receptor
- BM, bone marrow
- DSS, dextran sodium sulfate
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- IBD, inflammatory bowel disease
- IFN, interferon
- IL, interleukin
- LPL, lamina propria lymphocytes
- MLN, mesenteric lymph nodes
- Mesalamine
- PBS, phosphate-buffered saline
- Q-PCR, quantitative polymerase chain reaction
- RPMI, Roswell Park Memorial Institute
- Regulatory T Cells
- TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin
- TGF, transforming growth factor
- TGF-β
- TNF, tumor necrosis factor
- Tregs, regulatory T cells
- WT, wild-type
- XRE, xenobiotic responsive element
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Kyoko Oh-oka
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuko Kojima
- The Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kimiko Yoda
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shotaro Nakajima
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jun Hemmi
- Food Science Research Laboratories, Division of Research and Development, Meiji Co, Ltd, Kanagawa, Japan
| | - Hiroshi Kano
- Food Science Research Laboratories, Division of Research and Development, Meiji Co, Ltd, Kanagawa, Japan
| | | | - Ryohei Katoh
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Ito
- Food Science Research Laboratories, Division of Research and Development, Meiji Co, Ltd, Kanagawa, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan,Correspondence Address correspondence to: Atsuhito Nakao, MD, PhD, Department of Immunology, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan. fax: 81-55-273-9542.Department of ImmunologyFaculty of MedicineUniversity of Yamanashi1110, ShimokatoChuoYamanashi 409-3898Japan
| |
Collapse
|
39
|
Bezzio C, Festa S, Saibeni S, Papi C. Chemoprevention of colorectal cancer in ulcerative colitis: digging deep in current evidence. Expert Rev Gastroenterol Hepatol 2017; 11:339-347. [PMID: 28165825 DOI: 10.1080/17474124.2017.1292129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with ulcerative colitis (UC) have an increased risk of developing colorectal cancer (CRC). Surveillance colonoscopy is currently recommended for patients with long-standing extensive colitis for reducing CRC risk. Chemoprevention is an attractive complementary strategy. Areas covered: Inflammation is a major determinant of CRC risk and is potentially modifiable. Reducing inflammation is supposed to reduce CRC risk. Several medications have been evaluated in this setting: 5-ASA, thiopurines, anti-TNFα agents and ursodeoxycholic acid (UCDA) in patients with associated primary sclerosing cholangitis (PSC). This review offers a critical evaluation of current evidence of the potential chemopreventive effect of such medications. Expert commentary: No randomized controlled trials have been performed and the available evidence come from observational studies. Although biological plausibility supports a chemopreventive role of the aforementioned agents, the overall evidence of efficacy is weak because of several methodological limitations of the studies. Indirect epidemiological evidence, biologic plausibility and results of meta-analyses reasonably support a potential chemopreventive effect of 5-ASA. Available evidence does not support a specific chemopreventive effect of purine analogues and anti-TNFα medications, despite their efficacy in the management of inflammatory bowel disease. Data addressing UDCA and folate supplementation are inconclusive. Limited data are available for statins.
Collapse
Affiliation(s)
- Cristina Bezzio
- a Gastroenterology Unit , Rho Hospital, ASST Rhodense , Garbagnate Milanese , Italy
| | - Stefano Festa
- b IBD Unit , San Filippo Neri Hospital , Rome , Italy
| | - Simone Saibeni
- a Gastroenterology Unit , Rho Hospital, ASST Rhodense , Garbagnate Milanese , Italy
| | - Claudio Papi
- b IBD Unit , San Filippo Neri Hospital , Rome , Italy
| |
Collapse
|
40
|
Harmon BE, Wirth MD, Boushey CJ, Wilkens LR, Draluck E, Shivappa N, Steck SE, Hofseth L, Haiman CA, Le Marchand L, Hébert JR. The Dietary Inflammatory Index Is Associated with Colorectal Cancer Risk in the Multiethnic Cohort. J Nutr 2017; 147:430-438. [PMID: 28179489 DOI: 10.3945/jn.116.242529] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Diet is known to influence systemic inflammation, a recognized risk factor for colorectal cancer (CRC). Studies in ethnically diverse populations that examine the association between dietary inflammatory potential and CRC incidence are limited.Objectives: We used the Dietary Inflammatory Index to clarify the relation between the inflammatory potential of diet and CRC incidence across racial/ethnic groups. We hypothesized that proinflammatory diets would be associated with an increased risk of CRC, and that these associations may differ across racial/ethnic groups.Methods: The Multiethnic Cohort (MEC) follows a prospective study design. It includes 190,963 white, African-American, native Hawaiian, Japanese-American, and Latino men and women aged 45-75 y at recruitment and followed over 20 y. Participants completed a food frequency questionnaire from which energy-adjusted Dietary Inflammatory Index (E-DII) scores were computed and categorized into quartiles. CRC incidence was documented through linkage to cancer registry programs. Cox proportional hazards regression was used to estimate HRs and 95% CIs, adjusting for known or expected CRC risk factors.Results: Among all participants, more-proinflammatory diets (highest quartile compared with lowest quartile) were associated with an increased risk of CRC (HR: 1.21; 95% CI: 1.11, 1.32). However, the effect size was larger for men (HR: 1.28; 95% CI: 1.13, 1.45) than for women (HR: 1.16; 95% CI: 1.02, 1.33), although the interaction term for sex was not statistically significant (P-interaction = 0.17). When stratified by race/ethnicity, the association was significantly different between groups for men (P-interaction = 0.01), although not for women (P-interaction = 0.20). Significant associations with HRs ranging from 2.33 to 1.04 were observed in white, Japanese-American, and Latino men, and native Hawaiian women.Conclusions: Overall, more-proinflammatory diets, as identified by the E-DII, were associated with increased CRC risk in MEC participants across racial/ethnic groups. This study adds to the evidence suggesting that diets with high proinflammatory potential may increase CRC risk.
Collapse
Affiliation(s)
- Brook E Harmon
- School of Public Health, University of Memphis, Memphis, TN;
| | - Michael D Wirth
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | | | | | - Emma Draluck
- School of Public Health, University of Memphis, Memphis, TN
| | - Nitin Shivappa
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Susan E Steck
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Lorne Hofseth
- South Carolina College of Pharmacy, University of South Carolina, Columbia, SC; and
| | - Christopher A Haiman
- Cancer Center, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| | | | - James R Hébert
- Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
41
|
Cho YH, Kim NH, Khan I, Yu JM, Jung HG, Kim HH, Jang JY, Kim HJ, Kim DI, Kwak JH, Kang SC, An BJ. Anti-inflammatory Potential of Quercetin-3-O-β-D-(“2”-galloyl)-glucopyranoside and Quercetin Isolated from Diospyros kaki
calyx via Suppression of MAP Signaling Molecules in LPS-induced RAW 264.7 Macrophages. J Food Sci 2016; 81:C2447-C2456. [DOI: 10.1111/1750-3841.13497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yong-Hun Cho
- Dept. of Cosmeceutical Science; DaeguHanny Univ; Gyeongsan 712-715 Korea
| | - Na-Hyung Kim
- Dept. of Oriental Pharmacy; Wonkwang Uni; Iksan-city Jeonbuk 570-749 Republic of Korea
| | - Imran Khan
- Dept. of Biotechnology; Daegu Univ; Kyoungsan, Kyoungbook 38453 Republic of Korea
| | - Jae Myo Yu
- Dept. of Cosmeceutical Science; DaeguHanny Univ; Gyeongsan 712-715 Korea
- Korea Promotion Inst. for Traditional Medicine Industry; Gyeongsan 712-260 Korea
| | - Hyun Gug Jung
- Center for Functional Connectomics; Korea Inst. of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Han Hyuk Kim
- Advanced Medical Fusion Textile Center; Gyeongbuk Technopark Foundation; Gyeongsan 7I2-2I0 Korea
| | - Jae Yoon Jang
- Korea Promotion Inst. for Traditional Medicine Industry; Gyeongsan 712-260 Korea
| | | | - Dong-in Kim
- Korea Promotion Inst. for Traditional Medicine Industry; Gyeongsan 712-260 Korea
| | - Jae-Hoon Kwak
- Korea Promotion Inst. for Traditional Medicine Industry; Gyeongsan 712-260 Korea
| | - Sun Chul Kang
- Dept. of Biotechnology; Daegu Univ; Kyoungsan, Kyoungbook 38453 Republic of Korea
| | - Bong Jeun An
- Korea Promotion Inst. for Traditional Medicine Industry; Gyeongsan 712-260 Korea
| |
Collapse
|
42
|
Ranjbarnejad T, Saidijam M, Tafakh MS, Pourjafar M, Talebzadeh F, Najafi R. Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Hum Exp Toxicol 2016; 36:692-700. [PMID: 27481098 DOI: 10.1177/0960327116660865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Colorectal cancer is the fourth leading cause of death. Various natural compounds are known to have antitumor properties. Garcinol, a polyisoprenylated benzophenone, has antioxidant and anti-inflammatory properties. In the current study, we investigated the anticancer activity of garcinol on human colorectal adenocarcinoma cell line (HT-29) human colon cancer cells. METHODS HT-29 cells were treated with various concentrations of garcinol for 24 h. The effect of garcinol on HT-29 cells proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; the mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were examined by quantitative real-time polymerase chain reaction; apoptosis was detected by proportion of sub-G1 cell; caspase 3 activity and prostaglandin E2 (PGE2) level were determined by enzyme-linked immunosorbent assay and HT-29 cells migration was assessed using scratch test. RESULTS Garcinol preconditioning markedly decreased the expression of mPGES-1, HIF-1α, VEGF, CXCR4, MMP-2, and MMP-9. The proportion of cells in sub-G1 phase and caspase 3 activity were increased by garcinol treatment whereas the cell proliferation, PGE2 level, and cell migration were decreased in these cells, compared to the control group. CONCLUSION Our findings suggest that garcinol plays a critical role in elevating apoptosis and inhibiting HT-29 cells proliferation, angiogenesis, and invasion by suppressing the mPGES-1/PGE2/HIF-1α signaling pathways.
Collapse
Affiliation(s)
- T Ranjbarnejad
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Saidijam
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Sadat Tafakh
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Pourjafar
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - F Talebzadeh
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - R Najafi
- Research center for molecular medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
43
|
Friis S, Kesminiene A, Espina C, Auvinen A, Straif K, Schüz J. European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer. Cancer Epidemiol 2015; 39 Suppl 1:S107-19. [PMID: 26390952 DOI: 10.1016/j.canep.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events.
Collapse
Affiliation(s)
- Søren Friis
- Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 2100 Copenhagen, and Department of Clinical Epidemiology, Faculty of Health, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Anssi Auvinen
- School of Health Sciences, University of Tampere, FI-33014 Tampere, Finland; STUK-Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, FI-00881 Helsinki, Finland
| | - Kurt Straif
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
44
|
Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS One 2015; 10:e0142182. [PMID: 26558612 PMCID: PMC4641600 DOI: 10.1371/journal.pone.0142182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/19/2015] [Indexed: 01/02/2023] Open
Abstract
Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and efficacy in the treatment of several epithelial cancer types on account of established human toxicity profiles and novel activities against Rho-family GTPases.
Collapse
|
45
|
Impact of aspirin on clinical outcomes for African American men with prostate cancer undergoing radiation. TUMORI JOURNAL 2015; 102:65-70. [PMID: 26429642 DOI: 10.5301/tj.5000424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 01/18/2023]
Abstract
AIMS AND BACKGROUND Preclinical and clinical studies have suggested that aspirin (ASA) may exhibit antineoplastic activity. Particularly in prostate cancer, several reports have suggested that ASA plays a role in improved outcomes. Therefore, we studied the role of ASA in a uniquely African American population, which is known to harbor more aggressive and biologically different disease compared to the general population. METHODS We identified 289 African American men with prostate cancer who were treated with definitive radiation therapy to a dose of ≥7560 cGy. The median follow-up was 76 months. Kaplan-Meier analysis was used to analyze biochemical failure-free survival (bFFS), distant progression-free survival (DMPFS), and prostate cancer-specific survival (PCSS). Multivariate Cox regression was used to analyze the impact of covariates on all endpoints. RESULTS There were 147 men who were ASA+ and 142 who were ASA-. The 7-year bFFS was 80.9% for ASA+ men and 70.3% for ASA- men (p = 0.03). On multivariate analysis, ASA use was associated with a significant reduction in biochemical recurrences (hazard ratio [HR] 0.56, 95% confidence interval [CI] 0.34-0.93, p = 0.03). The 7-year DMPFS was 98.4% for ASA+ and 91.8% for ASA- men (p = 0.04). On multivariate analysis, ASA use was associated with a decreased risk of distant metastases (HR 0.23, 95% CI 0.06-0.91, p = 0.04). The 7-year PCSS was 99.3% for ASA+ and 96.9% for ASA- men (p = 0.07). CONCLUSIONS In this study, ASA use was associated with improved biochemical outcomes and reduced distant metastases. This indicates that ASA appears to play an important antineoplastic role in African American men.
Collapse
|
46
|
Nonsteroidal anti-inflammatory medications are cytostatic against human vestibular schwannomas. Transl Res 2015; 166:1-11. [PMID: 25616959 PMCID: PMC4458444 DOI: 10.1016/j.trsl.2014.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 01/04/2023]
Abstract
Vestibular schwannomas (VSs) are the most common tumors of the cerebellopontine angle. Significant clinical need exists for pharmacotherapies against VSs. Motivated by previous findings that immunohistochemical expression of cyclooxygenase 2 (COX-2) correlates with VS growth rate, we investigated the role of COX-2 in VSs and tested COX-2 inhibiting salicylates against VSs. COX-2 was found to be aberrantly expressed in human VS and primary human VS cells in comparison with control human nerve specimens and primary Schwann cells (SCs), respectively. Furthermore, levels of prostaglandin E2, the downstream enzymatic product of COX-2, were correlated with primary VS culture proliferation rate. Because COX-2 inhibiting salicylates such as aspirin are well tolerated and frequently clinically used, we assessed their repurposing for VS. Changes in proliferation, cell death, and cell viability were analyzed in primary VS cultures treated with aspirin, sodium salicylate, or 5-aminosalicylic acid. These drugs neither increased VS cell death nor affected healthy SCs. The cytostatic effect of aspirin in vitro was in concurrence with our previous clinical finding that patients with VS taking aspirin demonstrate reduced tumor growth. Overall, this work suggests that COX-2 is a key modulator in VS cell proliferation and survival and highlights salicylates as promising pharmacotherapies against VS.
Collapse
|
47
|
Abstract
There are numerous gaseous substances that can act as signaling molecules, but the best characterized of these are nitric oxide, hydrogen sulfide and carbon monoxide. Each has been shown to play important roles in many physiological and pathophysiological processes. This article is focused on the effects of these gasotransmitters in the context of inflammation. There is considerable overlap in the actions of nitric oxide, hydrogen sulfide and carbon monoxide with respect to inflammation, and these mediators appear to act primarily as anti-inflammatory substances, promoting resolution of inflammatory processes. They also have protective and pro-healing effects in some tissues, such as the gastrointestinal tract and lung. Over the past two decades, significant progress has been made in the development of novel anti-inflammatory and cytoprotective drugs that release of one or more of these gaseous mediators.
Collapse
|
48
|
Wirth MD, Shivappa N, Steck SE, Hurley TG, Hébert JR. The dietary inflammatory index is associated with colorectal cancer in the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Br J Nutr 2015; 113:1819-27. [PMID: 25871645 PMCID: PMC4466003 DOI: 10.1017/s000711451500104x] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Diet is a strong moderator of systemic inflammation, an established risk factor for colorectal cancer (CRC). The dietary inflammatory index (DII) measures the inflammatory potential of individuals' diets. The association between the DII and incident CRC was examined, using the National Institutes of Health-American Associations of Retired Persons Diet and Health Study individuals (n 489,422) aged 50-74 years at recruitment, starting between 1995-6, and followed for a mean of 9·1 (sd 2·9) years. Baseline data from a FFQ were used to calculate the DII; higher scores are more pro-inflammatory, and lower scores are more anti-inflammatory. First, primary CRC diagnoses were identified through linkage to state cancer registries. Anatomic location and disease severity also were examined. Cox proportional hazards models estimated CRC hazard ratios (HR) and 95% CI using quartile 1 as the referent. DII quartile 4 compared to quartile 1 was associated with CRC risk among all subjects (HR 1·40, 95% CI 1·28, 1·53; P for trend < 0·01). Statistically significant associations also were observed for each anatomic site examined, for moderate and poorly differentiated tumours, and at each cancer stage among all subjects. Effects were similar when stratified by sex; however, results were statistically significant only in males. The only result reaching statistical significance in females was risk of moderately differentiated CRC tumours (DII quartile 4 v. quartile 1 HR 1·26, 95% CI 1·03, 1·56). Overall, the DII was associated with CRC risk among all subjects. The DII may serve as a novel way to evaluate dietary risk for chronic disorders associated with inflammation, such as CRC.
Collapse
Affiliation(s)
- Michael D Wirth
- The South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina,915 Greene Street, Suite 200,Columbia,SC29223,USA
| | - Nitin Shivappa
- The South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina,915 Greene Street, Suite 200,Columbia,SC29223,USA
| | - Susan E Steck
- The South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina,915 Greene Street, Suite 200,Columbia,SC29223,USA
| | - Thomas G Hurley
- The South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina,915 Greene Street, Suite 200,Columbia,SC29223,USA
| | - James R Hébert
- The South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina,915 Greene Street, Suite 200,Columbia,SC29223,USA
| |
Collapse
|
49
|
Tsioulias GJ, Go MF, Rigas B. NSAIDs and Colorectal Cancer Control: Promise and Challenges. ACTA ACUST UNITED AC 2015; 1:295-301. [PMID: 26688785 DOI: 10.1007/s40495-015-0042-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The chemoprevention of colorectal cancer (CRC) is a realistic option given the low acceptance and cost of screening colonoscopy. NSAIDs, currently not recommended for CRC prevention, are the most promising agents. Here, we review relevant work and assess the chemopreventive potential of NSAIDs. The chemopreventive efficacy of NSAIDs is established by epidemiological and interventional studies as well as analyses of cardiovascular-prevention randomized clinical trials. The modest chemopreventive efficacy of NSAIDs is compounded by their significant toxicity that can be cumulative. Efforts to overcome these limitations include the use of drug combinations; the emphasis on the early stages of colon carcinogenesis such as aberrant crypt foci, which may require shorter periods of drug administration; and the development of several families of chemically modified NSAIDs such as derivatives of sulindac, nitro-NSAIDs and phospho-NSAIDs, with some of them appearing to have higher safety and efficacy than conventional NSAIDs and thus to be better candidate agents. The successful development of NSAIDs as chemopreventive agents will likely require a combination of the following: identification of subjects at high risk and/or those most likely to benefit from chemoprevention; optimization of the timing, dose and duration of administration of the chemopreventive agent; novel NSAID derivatives and/or combinations of agents; and agents that may prevent other diseases in addition to CRC. Ultimately, the clinical implementation of NSAIDs for the prevention of CRC will depend on a strategy that drastically shifts the currently unacceptable risk/benefit ratio in favor of chemoprevention.
Collapse
Affiliation(s)
- George J Tsioulias
- Department of Surgery, Medical Sciences Building G530, Rutgers Medical School of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, Tel: 973-676-1000 x1801
| | - Mae F Go
- Gastroenterology Section, VA Southern Nevada Healthcare System, 6900 N. Pecos Rd, North Las Vegas, NV 89086, Tel: 702-791-9000
| | - Basil Rigas
- Stony Brook University, HSC, L4, Room 169, Stony Brook, NY 11794-8430, Tel: 631-638-2141
| |
Collapse
|
50
|
Rigas B, Tsioulias GJ. The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: a cause for optimism. J Pharmacol Exp Ther 2015; 353:2-8. [PMID: 25589413 DOI: 10.1124/jpet.114.220806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a serious yet preventable disease. The low acceptance and cost of colonoscopy as a screening method or CRC make chemoprevention an important option. Nonsteroidal anti-inflammatory drugs (NSAIDs), not currently recommended for CRC prevention, have the potential to evolve into the agents of choice for this indication. Here, we discuss the promise and challenge of NSAIDs for this chemopreventive application.Multiple epidemiologic studies, randomized clinical trials (RCTs) of sporadic colorectal polyp recurrence, RCTs in patients with hereditary colorectal cancer syndromes, and pooled analyses of cardiovascular-prevention RCTs linked to cancer outcomes have firmly established the ability of conventional NSAIDs to prevent CRC. NSAIDs, however, are seriously limited by their toxicity,which can become cumulative with their long-term administration for chemoprevention, whereas drug interactions in vulnerable elderly patients compound their safety. Newer, chemically modified NSAIDs offer the hope of enhanced efficacy and safety.Recent work also indicates that targeting earlier stages of colorectal carcinogenesis, such as the lower complexity aberrant crypt foci, is a promising approach that may only require relatively short use of chemopreventive agents. Drug combination approaches exemplified by sulindac plus difluoromethylornithine appear very efficacious. Identification of those at risk or most likely to benefit from a given intervention using predictive biomarkers may usher in personalized chemoprevention. Agents that offer simultaneous chemoprevention of diseases in addition to CRC, e.g., cardiovascular and/or neurodegenerative diseases,may have a much greater potential for a broad clinical application.
Collapse
Affiliation(s)
- Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA. basil.rigas@stonybrookmedicine
| | | |
Collapse
|