1
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Rais Y, Fu Z, Drabovich AP. Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clin Proteomics 2021; 18:19. [PMID: 34384361 PMCID: PMC8358260 DOI: 10.1186/s12014-021-09325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
Molecular diagnostics of the coronavirus disease of 2019 (COVID-19) now mainly relies on the measurements of viral RNA by RT-PCR, or detection of anti-viral antibodies by immunoassays. In this review, we discussed the perspectives of mass spectrometry-based proteomics as an analytical technique to identify and quantify proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to enable basic research and clinical studies on COVID-19. While RT-PCR and RNA sequencing are indisputably powerful techniques for the detection of SARS-CoV-2 and identification of the emerging mutations, proteomics may provide confirmatory diagnostic information and complimentary biological knowledge on protein abundance, post-translational modifications, protein-protein interactions, and the functional impact of the emerging mutations. Pending advances in sensitivity and throughput of mass spectrometry and liquid chromatography, shotgun and targeted proteomic assays may find their niche for the differential quantification of viral proteins in clinical and environmental samples. Targeted proteomic assays in combination with immunoaffinity enrichments also provide orthogonal tools to evaluate cross-reactivity of serology tests and facilitate development of tests with the nearly perfect diagnostic specificity, this enabling reliable testing of broader populations for the acquired immunity. The coronavirus pandemic of 2019-2021 is another reminder that the future global pandemics may be inevitable, but their impact could be mitigated with the novel tools and assays, such as mass spectrometry-based proteomics, to enable continuous monitoring of emerging viruses, and to facilitate rapid response to novel infectious diseases.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Extraction and purification of the H9N2 virus nucleoprotein: A simple and practical method. Med J Islam Repub Iran 2018; 32:128. [PMID: 30815423 PMCID: PMC6387826 DOI: 10.14196/mjiri.32.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
Background: Avian Influenza disease annually entails a significant economic loss to the poultry industry around the world. Influenza virus is a polymorphic virus of the orthomyxoviridae family (single-stranded RNA genome), and nucleoprotein (NP) is the structural and internal protein of the virus. The aim of the work was to purify nucleoprotein for further investigations with a simple, low-cost, fast and practical method. Methods: In this study, H9N2 influenza virus was isolated in specific pathogen-free embryonated chicken eggs by allantoically inoculating 103 to 105 egg-infective doses (EID50) for 9 to 11 days, purified by 10% (W/V) polyethylene glycol (PEG) 6000 with a sucrose gradient of 60% to 30%. The influenza virus proteins were collected and prepared as fractions by preparative electrophoresis. Finally, the purified NP was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot procedures. Results: The protein analysis with SDS-PAGE and silver nitrate staining indicated that the desired samples contained purified nucleoprotein and lacked other viral proteins. The results of the investigation of lyophilized fractions containing nucleoprotein on the SDS-PAGE revealed the absence of viral RNA in nucleoprotein and its high purity. Conclusion: According to this study, purified nucleoprotein can be used to produce nucleoprotein vaccines, as well as to study structural, molecular and diagnostic and therapeutic materials.
Collapse
|
4
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
5
|
Majchrzykiewicz-Koehorst JA, Heikens E, Trip H, Hulst AG, de Jong AL, Viveen MC, Sedee NJA, van der Plas J, Coenjaerts FEJ, Paauw A. Rapid and generic identification of influenza A and other respiratory viruses with mass spectrometry. J Virol Methods 2015; 213:75-83. [PMID: 25500183 PMCID: PMC7113647 DOI: 10.1016/j.jviromet.2014.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 12/03/2022]
Abstract
The rapid identification of existing and emerging respiratory viruses is crucial in combating outbreaks and epidemics. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reliable identification method in bacterial diagnostics, but has not been used in virological diagnostics. Mass spectrometry systems have been investigated for the identification of respiratory viruses. However, sample preparation methods were laborious and time-consuming. In this study, a reliable and rapid sample preparation method was developed allowing identification of cultured respiratory viruses. Tenfold serial dilutions of ten cultures influenza A strains, mixed samples of influenza A virus with human metapneumovirus or respiratory syncytial virus, and reconstituted clinical samples were treated with the developed sample preparation method. Subsequently, peptides were subjected to MALDI-TOF MS and liquid chromatography tandem mass spectrometry (LC-MS/MS). The influenza A strains were identified to the subtype level within 3h with MALDI-TOF MS and 6h with LC-MS/MS, excluding the culturing time. The sensitivity of LC-MS/MS was higher compared to MALDI-TOF MS. In addition, LC-MS/MS was able to discriminate between two viruses in mixed samples and was able to identify virus from reconstituted clinical samples. The development of an improved and rapid sample preparation method allowed generic and rapid identification of cultured respiratory viruses by mass spectrometry.
Collapse
Affiliation(s)
- Joanna A Majchrzykiewicz-Koehorst
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Esther Heikens
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Hein Trip
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Albert G Hulst
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Ad L de Jong
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Norbert J A Sedee
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Jan van der Plas
- Expert Centre Force Health Protection, Health Care Division, Support Command, Ministry of Defence, Korte Molenweg 3, Building 37, 3941 PW Doorn, The Netherlands
| | - Frank E J Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Armand Paauw
- Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
6
|
Mass spectrometric analysis revealing phosphorylation modifications of periostin. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Donis RO. Antigenic analyses of highly pathogenic avian influenza a viruses. Curr Top Microbiol Immunol 2014; 385:403-40. [PMID: 25190014 DOI: 10.1007/82_2014_422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
In response to the ongoing threat to animal and human health posed by HPAI endemic in poultry, Asia (H5N1) and North America (H7N3) have revived efforts to reduce pandemic risk by disease control at the source and improved pandemic vaccines. Discovery of conserved neutralization epitopes in the HA, which mediate broad protection within and across HA subtypes have changed the paradigm of "broadly reactive" or "universal" vaccine design. Development of such vaccines would benefit from comparative antigenic analysis of viruses with increasing divergence within (and between) HA subtypes. A review of recent work to define the antigenic properties of HPAI viruses revealed data generated through an array of experimental approaches. This information has supported diagnostics and vaccine development for animal and human health. Further harmonization of analytical methods is needed to determine the antigenic relationships among multiple lineages of rapidly evolving HPAI viruses.
Collapse
Affiliation(s)
- Ruben O Donis
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road NE Mailstop A20, Atlanta, GA, 30333, USA,
| |
Collapse
|