1
|
Cavailles J, Vaca-Medina G, Wu-Tiu-Yen J, Labonne L, Evon P, Peydecastaing J, Pontalier PY. Impact of thermomechanical pretreatment by twin-screw extrusion on the properties of bio-based materials from sugarcane bagasse obtained by thermocompression. BIORESOURCE TECHNOLOGY 2024; 414:131642. [PMID: 39414167 DOI: 10.1016/j.biortech.2024.131642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The aim of this study was to produce binderless materials by thermocompression from lignocellulosic biomass pretreated using twin-screw extrusion. The impact of twin-screw extrusion pretreatment on sugarcane bagasse (SCB) was evaluated, along with the effects of two associated parameters: the liquid-to-solid (L/S) ratio and the screw profile, using three different mechanical shear rates. It was shown that twin-screw extrusion pretreatment resulted in materials with improved properties as compared to those obtained with untreated SCB. The mechanical properties and water resistance of materials obtained after pretreatment were mainly impacted by the screw profile. The flexural modulus increased from 5.3 to 6.1GPa and the flexural strength from 39.0 to 55.5 MPa. Water absorption (WA) from the thermocompressed materials ranged from 25 to 62 %, and thickness swelling (TS) from 24 to 67 %. Materials obtained with a 0.4 L/S ratio had lower flexural strength but the best water resistance. For the same L/S ratio, the use of a more shearing screw profile improved the material properties, especially the water resistance. The best material was produced with pretreated SCB using a 1.25 L/S ratio with the most restrictive screw profile, resulting in materials with a 5.6GPa flexural modulus, 55.5 MPa flexural strength, and WA and TS values of 44 % and 42 %, respectively.
Collapse
Affiliation(s)
- Julie Cavailles
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France; eRcane, La Réunion, Sainte-Clotilde, France.
| | - Guadalupe Vaca-Medina
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | | | - Laurent Labonne
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Philippe Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Pierre-Yves Pontalier
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| |
Collapse
|
2
|
Biswa Sarma J, Mahanta S, Tanti B. Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass. Arch Microbiol 2024; 206:448. [PMID: 39470782 DOI: 10.1007/s00203-024-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world's energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon-neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
Collapse
Affiliation(s)
- Janayita Biswa Sarma
- Department of Energy Engineering, Assam Science and Technology University, Jalukbari, Tetelia, Guwahati, 781011, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, 781022, Assam, India.
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Jalukbari, Guwahati, 781014, Assam, India
| |
Collapse
|
3
|
Sun Y, Liu M, Bai B, Liu Y, Sheng P, An J, Bao R, Liu T, Shi K. Effect of enzyme preparation and extrusion puffing treatment on sorghum straw silage fermentation. Sci Rep 2024; 14:25237. [PMID: 39448684 PMCID: PMC11502781 DOI: 10.1038/s41598-024-76469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, the effects on silage performance and microbial community of sorghum straw treated with the addition of enzymes (cellulase (CE), xylanase (XE)) and extrusion puffing technology, combined with SEM, XRD, and FTIR techniques, were thoroughly investigated. The results showed that the enzyme preparations, especially xylanase, significantly improved the nutritional value and fermentation efficiency of straw and enhanced the silage effect. Extruding significantly changes the surface structure of the straw, increasing the surface area and porosity, and promoting the attachment of microorganisms. This study not only optimized the sorghum straw silage performance but also provided technical support for the efficient use of straw resources, which is of great significance for the sustainable development of animal husbandry and the resource utilization of agricultural waste.
Collapse
Affiliation(s)
- Yuxin Sun
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| | - Mingjian Liu
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Baochao Bai
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichao Liu
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Panjie Sheng
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiangbo An
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruiying Bao
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China
| | - Tingyu Liu
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China.
| | - Kai Shi
- College of Grassland Science, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
4
|
Rahman AM, Bedsole CO, Akib YM, Hamilton J, Rahman TT, Shaw BD, Pei Z. Effects of Sodium Alginate and Calcium Chloride on Fungal Growth and Viability in Biomass-Fungi Composite Materials Used for 3D Printing. Biomimetics (Basel) 2024; 9:251. [PMID: 38667263 PMCID: PMC11047919 DOI: 10.3390/biomimetics9040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
To combat climate change, one approach is to manufacture products from biomass-fungi composite materials instead of petroleum-based plastics. These products can be used in packaging, furniture, and construction industries. A 3D printing-based manufacturing method was developed for these biomass-fungi composite materials, eliminating the need for molds, and enabling customized product design. However, previous studies on the 3D printing-based method showed significant shrinkage of printed samples. In this paper, an approach is proposed to reduce the shrinkage by incorporating ionic crosslinking into biomass-fungi composite materials. This paper reports two sets of experiments regarding the effects of sodium alginate (SA) and calcium chloride (CaCl2) on fungal growth and fungal viability. The first set of experiments was conducted using Petri dishes with fungi isolated from colonized biomass-fungi material and different concentrations of SA and CaCl2. Fungal growth was measured by the circumference of fungal colonies. The results showed that concentrations of SA and CaCl2 had significant effects on fungal growth and no fungal growth was observed on Petri dishes with 15% CaCl2. Some of these Petri dishes were also observed under confocal microscopy. The results confirmed the differences obtained by measuring the circumference of fungal colonies. The second set of experiments was conducted using Petri dishes with biomass-fungi mixtures that were treated with different concentrations of SA and exposure times in a CaCl2 (crosslinking) solution. Fungal viability was measured by counting colony-forming units. The results showed that the addition of the SA solution and exposure times in the crosslinking solution had statistically significant effects on fungal viability. The 2SA solution was prepared by dissolving 2 g of SA in 100 mL of water, the 5SA solution was prepared by dissolving 5 g of SA in 100 mL of water, and the crosslinking solution was prepared by dissolving 5 g of CaCl2 in 100 mL of water. The results also showed that fungal viability was not too low in biomass-fungi mixtures that included 2SA solution and were exposed to the crosslinking solution for 1 min.
Collapse
Affiliation(s)
- Al Mazedur Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Jillian Hamilton
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.O.B.); (J.H.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (A.M.R.); (Y.M.A.); (T.T.R.)
| |
Collapse
|
5
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
7
|
Azizan A, Samsudin AA, Shamshul Baharin MB, Dzulkiflee MH, Rosli NR, Abu Bakar NF, Adlim M. Cellulosic fiber nanocomposite application review with zinc oxide antimicrobial agent nanoparticle: an opt for COVID-19 purpose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16779-16796. [PMID: 35084685 PMCID: PMC8793331 DOI: 10.1007/s11356-022-18515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/01/2022] [Indexed: 05/08/2023]
Abstract
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
Collapse
Affiliation(s)
- Amizon Azizan
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Aisyah Afiqah Samsudin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | | | - Muhammad Harith Dzulkiflee
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Nor Roslina Rosli
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala, 23111 Darussalam Banda Aceh, Kuala, Indonesia
| |
Collapse
|
8
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|
9
|
Chien HI, Tsai YH, David Wang HM, Dong CD, Huang CY, Kuo CH. Extrusion puffing pretreated cereals for rapid production of high-maltose syrup. Food Chem X 2022; 15:100445. [PMID: 36211773 PMCID: PMC9532787 DOI: 10.1016/j.fochx.2022.100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Extrusion puffing of cereals improved their water solubility and gelatinization. FTIR-ATR study revealed structural differences between native and puffed cereals. Extrusion puffing highly enhanced the efficiency of saccharification. The extruded-puffed cereals had a higher Vmax/Km value as compared to native. Extruded-puffed cereals showed potential for high-maltose syrup production.
In this study, cereals with high starch content, including brown rice, corn, and buckwheat were pretreated by extrusion. The physicochemical properties of extruded-puffed cereals obtained from different extrusion conditions were analyzed herein. The puffed extrudates exhibited lower bulk density, higher water solubility and gelatinization as compared to untreated cereals. The FTIR-ATR results confirmed a decrease in the crystalline structure of extruded-puffed cereals. A higher Vmax/Km value was observed in the enzymatic saccharification of puffed extrudates that significantly improved hydrolysis rate and yield. Finally, the high-maltose syrup was produced via the enzymatic hydrolysis of extruded-puffed cereals at high substrate concentrations (20 %). After hydrolysis for 180 min at an enzyme substrate ratio (E/S ratio) of 0.2, the syrup with dextrose equivalent (DE) value of 63, 62, and 61 were obtained from extruded-puffed brown rice, corn, and buckwheat, respectively. Our results showed the potential of using extruded-puffed cereals for producing high-maltose syrup.
Collapse
Affiliation(s)
- Hung-I Chien
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Corresponding authors at: Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
- Corresponding authors at: Department of Seafood Science, National Kaohsiung University of Science and Technology, 142 Haijhuan Road, Nan-Tzu District, Kaohsiung 811, Taiwan.
| |
Collapse
|
10
|
Yan M, Wu T, Ma J, Lu H, Zhou X. Characteristic comparison of lignocellulose nanofibrils from wheat straw having different mechanical pretreatments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Yan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
| | - Jinxia Ma
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| | - Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Jiangsu Province Key Lab of Biomass Energy and Materials Nanjing Jiangsu Province People's Republic of China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Xiaofan Zhou
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Nanjing Forestry University Nanjing People's Republic of China
| |
Collapse
|
11
|
Kupryaniuk K, Oniszczuk T, Combrzyński M, Lisiecka K, Janczak D. Influence of Modification of the Plasticizing System on the Extrusion-Cooking Process and Selected Physicochemical Properties of Rapeseed and Buckwheat Straws. MATERIALS 2022; 15:ma15145039. [PMID: 35888506 PMCID: PMC9322839 DOI: 10.3390/ma15145039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
The article discusses the effect of modification of the plasticizing system of a single-screw extruder on selected physicochemical properties of rapeseed straw and buckwheat straw. A TS-45 single-screw extruder (ZMCh Metalchem, Gliwice, Poland) with an L/D = 12 plasticizing system was used for the process. The shredded straws were moistened to four moisture levels: 20, 25, 30 and 35% dry matter. Three different rotational speeds of the extruder screw were applied for the test cycle: 70, 90 and 110 rpm. The following characteristics were determined for the extrusion-cooking process: efficiency and specific mechanical energy. Selected physical properties were determined for the extrudates obtained in the process: water absorption index (WAI), water solubility index (WSI), bulk density, and the efficiency of cumulative biogas and cumulative methane production expressed on dry mass, fresh mass, and fresh organic mass basis. It has been proved that the modification of the plasticizing system had a significant impact on the course of the process and the tested physicochemical properties. An important factor confirming the correctness of the modification is the increase in biogas efficiency. After modification, the highest yield of cumulative biogas from the fresh mass was 12.94% higher than in the sample processed before modification.
Collapse
Affiliation(s)
- Karol Kupryaniuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Correspondence: (T.O.); (M.C.)
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Correspondence: (T.O.); (M.C.)
| | - Katarzyna Lisiecka
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Damian Janczak
- Institute of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| |
Collapse
|
12
|
Arce C, Kratky L. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience 2022; 25:104610. [PMID: 35789853 PMCID: PMC9250023 DOI: 10.1016/j.isci.2022.104610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Lignocellulosic biomass (LCB) has the potential to replace fossil fuels, thanks to the concept of biorefinery. This material is formed mainly by cellulose, lignin, and hemicellulose. To maximize the valorization potential of this material, LCB needs to be pretreated. Milling is always performed before any other treatments. It does not produce chemical change and improves the efficiency of the upcoming processes. Additionally, it makes LCB easier to handle and increases bulk density and transfer phenomena of the next pretreatment step. However, this treatment is energy consuming, so it needs to be optimized. Several mills can be used, and the equipment selection depends on the characteristics of the material, the final size required, and the operational regime: continuous or batch. Among them, ball, knife, and hammer mills are the most used at the laboratory scale, especially before enzymatic or fermentative treatments. The continuous operational regime (knife and hammer mill) allows us to work with high volumes of raw material and can continuously reduce particle size, unlike the batch operating regime (ball mill). This review recollects the information about the application of these machines, the effect on particle size, and subsequent treatments. On the one hand, ball milling reduced particle size the most; on the other hand, hammer and knife milling consumed less energy. Furthermore, the latter reached a small final particle size (units of millimeters) suitable for valorization.
Collapse
|
13
|
An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass. ENERGIES 2022. [DOI: 10.3390/en15093002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lignocellulosic biomass is both low cost and abundant, and unlike energy crops, can escape associated ethical dilemmas such as arable land use and food security issues. However, their usage as raw material in a biorefinery implies an inherent upstream pretreatment step to access compounds of interest derived from lignocellulosic biomass. Importantly, the efficiency of this step is determinant for the downstream processes, and while many pretreatment methods have been explored, extrusion is both a very flexible and promising technology. Extrusion is well-known in both the polymer and pharmaceutical industries and has been used since the 18th century. However, as a pretreatment method for lignocellulosic biomass, extrusion is relatively new. The first use for this purpose dates back to the 1990s. Extrusion enjoys a high degree of flexibility due to the many available parameters, but an understanding of extrusion requires a knowledge of these parameters and the different relationships between them. In this paper, we present a concise overview of lignocellulosic biomass extrusion by reviewing key extrusion parameters and their associated extruder design components and operating conditions.
Collapse
|
14
|
Ji H, Wang L, Tao F, Yao Z, Li X, Dong C, Pang Z. A hydrotrope pretreatment for stabilized lignin extraction and high titer ethanol production. BIORESOUR BIOPROCESS 2022; 9:40. [PMID: 38647740 PMCID: PMC10992416 DOI: 10.1186/s40643-022-00530-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
The biomass pretreatment strategies using organic acids facilitate lignin removal and enhance the enzymatic digestion of cellulose. However, lignin always suffers a severe and irreversible condensation. The newly generated C-C bonds dramatically affect its further upgrading. In this study, we used a recyclable hydrotrope (p-Toluenessulfonic acid, p-TsOH) to dissolve lignin under mild condition and stabilized lignin with a quenching agent (formaldehyde, FA) during extraction, achieving both value-added lignin extraction and efficient enzymatic saccharification of cellulose. Approximately 63.7% of lignin was dissolved by 80% (wt. %) p-TsOH with 1.5% FA addition at 80 °C, 30 min. The obtained lignin was characterized by FTIR spectroscopy, TGA, 2D HSQC NMR spectroscopy, and GPC. The results indicated that the extracted lignin exhibited excellent properties, such as light color, a low molecular weight (Mw, 5371 g/mol), and a narrow polydispersity (Mw/Mn, 1.63). The pretreated substrate was converted to ethanol via a quasi-simultaneous saccharification and fermentation process (Q-SSF). After fermentation of 60 h, the ethanol concentration reached 38.7 ± 3.3 g/L which was equivalent to a theoretical ethanol yield of 82.9 ± 2.2% based on the glucan content, while the residual glucose concentration was only 4.69 ± 1.4 g/L. In short, this pretreatment strategy protected lignin to form new C-C linkages and improved the enzymatic saccharification of glucan for high-titer ethanol production.
Collapse
Affiliation(s)
- Hairui Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Le Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Zhipeng Yao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China.
| | - Zhiqiang Pang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue road, Jinan, 250353, China
| |
Collapse
|
15
|
Bichot A, Raouche S, Faulds CB, Mechin V, Bernet N, Delgenès JP, García-Bernet D. Effects of successive microwave and enzymatic treatments on the release of p-hydroxycinnamic acids from two types of grass biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Lan K, Xu Y, Kim H, Ham C, Kelley SS, Park S. Techno-economic analysis of producing xylo-oligosaccharides and cellulose microfibers from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 340:125726. [PMID: 34426244 DOI: 10.1016/j.biortech.2021.125726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
This study assesses the economic performance of a biorefinery producing xylo-oligosaccharides (XOS) from miscanthus by autohydrolysis and purification based on a rigorous model developed in ASPEN Plus. Varied biorefinery capacities (50-250 oven dry metric ton (ODMT)/day) and three XOS content levels (80%, 90%, 95%) are analyzed. The XOS minimum selling price (XOS MSP) is varied between $3,430-$7,500, $4,030-$8,970, and $4,840-$10,640 per metric ton (MT) for 80%, 90%, and 95% content, respectively. The results show that increasing biorefinery capacity can significantly reduce the XOS MSP and higher purity leads to higher XOS MSP due to less yield, and higher capital and operating costs. This study also explores another system configuration to produce high-value byproducts, cellulose microfiber, by utilizing the cellulose to produce microfiber instead of combusting for energy recovery. The XOS MSP of cellulose microfiber case is $2,460-$7,040/MT and thus exhibits potential economic benefits over the other cases.
Collapse
Affiliation(s)
- Kai Lan
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Yiling Xu
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Choonghyun Ham
- Starch & Sweetener R&D Center, Daesang Corporation, Icheon-si, Gyeonggi-do 17384, Republic of Korea
| | - Stephen S Kelley
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Sunkyu Park
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
17
|
Li J, Lawton DJW, Sacripante GG, Thompson MR, Marway HS. Process Intensification of Thermoplastic Lignocellulose Production through High-Solids Reactive Extrusion Enabled by a Novel Recycle Loop. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinlei Li
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | | | - Guerino G. Sacripante
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Michael R. Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Heera S. Marway
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
18
|
Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries. CLEAN TECHNOLOGIES 2021. [DOI: 10.3390/cleantechnol3010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting raw material needs of processing industries and helping transit from a linear to a circular economy and thereby meet the global sustainability criteria. The sugar platform route in the biochemical conversion process is one of the promising and extensively studied methods, which consists of four major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of these conversion steps has multiple challenges. Among them, the challenges associated with the pretreatment are the most significant for the overall process because this is the most expensive step in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the sustainable valorization of each biomass component. However, the development of a universal pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial variations in compositions and structures of biopolymers among these feedstocks. In this review, we have discussed some promising pretreatment methods, their processing and chemicals requirements, and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass resources availability and process intensification ideas for the lignocellulosic-based chemical industry have been discussed from a circularity and sustainability standpoint.
Collapse
|
19
|
Abstract
The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
Collapse
|
20
|
|
21
|
Mechanochemical and Size Reduction Machines for Biorefining. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225345. [PMID: 33207746 PMCID: PMC7696896 DOI: 10.3390/molecules25225345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
In recent years, we have witnessed an increasing interest in the application of mechanochemical methods for processing materials in biomass refining techniques. Grinding and mechanical pretreatment are very popular methods utilized to enhance the reactivity of polymers and plant raw materials; however, the choice of devices and their modes of action is often performed through trial and error. An inadequate choice of equipment often results in inefficient grinding, low reactivity of the product, excess energy expenditure, and significant wear of the equipment. In the present review, modern equipment employing various types of mechanical impacts, which show the highest promise for mechanochemical pretreatment of plant raw materials, is examined and compared—disc mills, attritors and bead mills, ball mills, planetary mills, vibration and vibrocentrifugal mills, roller and centrifugal roller mills, extruders, hammer mills, knife mills, pin mills, disintegrators, and jet mills. The properly chosen type of mechanochemical activation (and equipment) allows an energetically and economically sound enhancement of the reactivity of solid-phase polymers by increasing the effective surface area accessible to reagents, reducing the amount of crystalline regions and the diffusion coefficient, disordering the supramolecular structure of the material, and mechanochemically reacting with the target substances.
Collapse
|
22
|
Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion. ENERGIES 2020. [DOI: 10.3390/en13174517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work addresses for the first time the study of olive stone (OS) biomass pretreatment by reactive extrusion technology using NaOH as the chemical agent. It is considered as a first step in the biological conversion process of the carbohydrates contained in the material into bio-based products. OS is a sub-product of the olive oil extraction process that could be used in a context of a multi-feedstock and multi-product biorefinery encompassing all residues generated around the olive oil production sector. OS biomass is pretreated in a twin-screw extruder at varying temperatures—100, 125 and 150 °C and NaOH/biomass ratios of 5% and 15% (dry weight basis), in order to estimate the effectiveness of the process to favour the release of sugars by enzymatic hydrolysis. The results show that alkaline extrusion is effective in increasing the sugar release from OS biomass compared to the raw material, being necessary to apply conditions of 15% NaOH/biomass ratio and 125 °C to attain the best carbohydrate conversion rates of 55.5% for cellulose and 57.7% for xylan in relation to the maximum theoretical achievable. Under these optimal conditions, 31.57 g of total sugars are obtained from 100 g of raw OS.
Collapse
|
23
|
Morales-Huerta JC, Jaramillo-Soto G, Manero O, Bárzana E, Vivaldo-Lima E. Modeling of Pretreatment and Acid/Alkaline Hydrolyses of Lignocellulosic Biomasses in Twin-Screw Extruders. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Carlos Morales-Huerta
- Departamento de Ingenierı́a Quı́mica, Facultad de Quı́mica, Universidad Nacional Autónoma de México, CU, 04510, México City, México
| | - Gabriel Jaramillo-Soto
- Departamento de Ingenierı́a Quı́mica, Facultad de Quı́mica, Universidad Nacional Autónoma de México, CU, 04510, México City, México
| | - Octavio Manero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU, 04510 México City, México
| | - Eduardo Bárzana
- Departamento de Alimentos y Biotecnologı́a, Facultad de Quı́mica, Universidad Nacional Autónoma de México, CU, 04510 México City, México
| | - Eduardo Vivaldo-Lima
- Departamento de Ingenierı́a Quı́mica, Facultad de Quı́mica, Universidad Nacional Autónoma de México, CU, 04510, México City, México
- Institute for Polymer Research, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Akermann A, Weiermüller J, Christmann J, Guirande L, Glaser G, Knaus A, Ulber R. Brewers' spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp. lactis. Eng Life Sci 2020; 20:168-180. [PMID: 32874180 PMCID: PMC7447884 DOI: 10.1002/elsc.201900143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
Brewers' spent grain (BSG) is a low-cost by-product of the brewing process. BSG liquor names the liquid components of BSG, mainly glucose, maltose, and long-chain α-1,4-glycosidic bond glucose oligomers. These substances should be separated in existing BSG biorefineries, as they might lead to an increased formation of microbe-inhibiting compounds in well-established hydrothermal/enzymatic saccharification processes. In most cases, this liquid fraction is discarded. The present study presents for the first time an optimized process with BSG liquor for the purpose of producing bulk chemicals (e.g., lactate) in relevant concentrations. The process comprises the application of yeast extract, produced from own brewing processes, as the sole supplemented complex constituent in a simultaneous fermentation and saccharification process. Kinetic parameters for the final optimized process conditions with the organism Lactobacillus delbrueckii subsp. lactis were: maximum specific growth rate µmax = 0.47 h-1, maximum lactate concentration cLac, max = 79.06 g L-1, process yield YPS = 0.89 gLac gSugar -1, lactate production rate qP = 4.18 gLac gCDW -1 h-1, and productivity P 15 h = 4.93 gLac L-1 h-1. BSG liquor, linked with yeast extract from Brewers' yeast, can be a promising substrate for further bioprocess engineering tasks and contribute to a holistic and sustainable usage of Brewers' spent grain.
Collapse
Affiliation(s)
- Alexander Akermann
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Jens Weiermüller
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Jens Christmann
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Léa Guirande
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Gregor Glaser
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| | - Annette Knaus
- TU Kaiserslautern, Department of Civil EngineeringResource Efficient Wastewater TechnologyKaiserslauternGermany
| | - Roland Ulber
- TU Kaiserslautern, Department of Mechanical and Process EngineeringChair of Bioprocess EngineeringKaiserslauternGermany
| |
Collapse
|
25
|
Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 298:122476. [PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
Collapse
Affiliation(s)
- Revathy Sankaran
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ricardo Andres Parra Cruz
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Harshini Pakalapati
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
26
|
Villasante J, Pérez-Carrillo E, Heredia-Olea E, Metón I, Almajano MP. In Vitro Antioxidant Activity Optimization of Nut Shell ( Carya illinoinensis) by Extrusion Using Response Surface Methods. Biomolecules 2019; 9:E883. [PMID: 31888291 PMCID: PMC6995571 DOI: 10.3390/biom9120883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
The pecan (Carya illinoinensis) nut shell is an important byproduct of the food processing industry that has not been previously explored as an antioxidant compound. This work aims to study the effect of the extrusion temperature and screw speed on the moisture content, water and oil absorption index, water solubility index, color, phenolic compounds, condensed tannin compounds, and antioxidant activity of pecan nut shell extrudates. Extrusion variables were adjusted using a response surface methodology. Extrusion, performed at 70 °C and 150 rpm, almost doubled the concentration of polyphenols in the non-extruded shell and significantly increased radical scavenging activity. Compounds in extrudates, performed at 70 °C and 150 rpm, were quantified by high-performance liquid chromatography (HPLC) with a diode-array detector (DAD) and identified by liquid chromatography coupled with time-of-flight mass spectrometry (LC-MSD-TOF). Extrusion significantly increased most phenolic acid compounds, including gallic acid, ellagic acid pentose, ellagic acid, dimethyl ellagic acid rhamnoside, and dimethyl ellagic acid. The soluble fiber in extrudates was more than three-fold higher than in the control. Therefore, extrusion at 70 °C and 150 rpm increased the concentration of phenolic compounds, antioxidant activity, and total dietary and soluble fiber. Our findings support the notion that extruded pecan nut shell can be used in clean-label products and improve their nutraceutical value.
Collapse
Affiliation(s)
- Juliana Villasante
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain;
| | - Esther Pérez-Carrillo
- Centro de Biotecnologia FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; (E.P.-C.); (E.H.-O.)
| | - Erick Heredia-Olea
- Centro de Biotecnologia FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; (E.P.-C.); (E.H.-O.)
| | - Isidoro Metón
- Biochemistry and Molecular Biology Section, Biochemistry and Physiology Department, Universitat de Barcelona, Joan XXII 27-31, 08028 Barcelona, Spain;
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain;
| |
Collapse
|
27
|
Lisiecka K, Wójtowicz A. The Influence of Fresh Kale Addition on Selected Properties of Corn Snacks. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractEnrichment of snack foods with plant ingredients has become very popular. Corn extrudates with fresh kale leaves are an example of a healthy snack food. During the study, these snacks were produced by extrusion-cooking and contained from 5 % to 20 % of fresh kale leaves in their recipe. For the obtained extrudates, the following parameters were determined: extrusion efficiency, specific mechanical energy requirement, bulk density, specific density, water absorption index, water solubility index, radial expansion ratio, cutting force, as well as the color coordinates on the CIE-Lab scale. It was observed that the addition of fresh kale leaves led to a significant decrease in processing efficiency as well as the expansion ratio, water solubility index and brightness of supplemented snacks. Increased density, cutting force and greenness of snacks was observed with increasing amounts of kale in the recipe.
Collapse
Affiliation(s)
- Katarzyna Lisiecka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, Lublin20-612, Poland
| | - Agnieszka Wójtowicz
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, Lublin20-612, Poland
| |
Collapse
|
28
|
Carrozza CF, Papa G, Citterio A, Sebastiano R, Simmons BA, Singh S. One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. BIORESOURCE TECHNOLOGY 2019; 294:122214. [PMID: 31605914 DOI: 10.1016/j.biortech.2019.122214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
The use of bio-derived ionic liquids (e.g., cholinium lysinate) in a one-pot process was evaluated on overall sugar and lignin yields as a function of two model woody and herbaceous feedstocks, switchgrass and poplar, with emphasis on the study of physical and chemical alterations in lignin structure, by performing a detailed mass balance analysis and chemical characterization. Multiple chromatographic and spectroscopic analytical techniques were applied tracking lignin reactivity and partitioning during the ionic liquid one-pot conversion. Depolymerization efficiency of the lignin-rich residue derived from the whole process was investigated as a function of different temperatures and pressures during catalytic hydrogenolysis by Ni(SO)4. This study validates the potential of ionic liquid one pot process as an integrated approach for full exploitation of lignocellulosic feedstocks. The insights gained will contribute to the design of future conversion routes for efficient biomass deconstruction and lignin valorization.
Collapse
Affiliation(s)
- Chiara Francesca Carrozza
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Milano, IT, Italy
| | - Gabriella Papa
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Attilio Citterio
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Milano, IT, Italy
| | - Roberto Sebastiano
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" Milano, IT, Italy
| | - Blake A Simmons
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Seema Singh
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA; Biological and Engineering Science Center, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, USA.
| |
Collapse
|
29
|
Sugiono S, Masruri M, Estiasih T, Widjarnako SB. Structural and Rheological Characteristics of Alginate from Sargassum cristaefolium Extracted by Twin Screw Extruder. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1665603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sugiono Sugiono
- Department of Fisheries Science, Faculty of Agriculture, Madura Islamic University, Pamekasan, Indonesia
| | - Masruri Masruri
- Department of Chemistry, Faculty of Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Teti Estiasih
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
| | - Simon Bambang Widjarnako
- Department of Food Science and Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
30
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Sugiono S, Masruri M, Estiasih T, Widjanarko SB. Optimization of extrusion-assisted extraction parameters and characterization of alginate from brown algae ( Sargassum cristaefolium). Journal of Food Science and Technology 2019; 56:3687-3696. [PMID: 31413396 DOI: 10.1007/s13197-019-03829-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
The aim of this research is to investigate the effects of brown algae to solution ratio, feed rate, and pH on the multiple responses of Sargassum cristaefolium alginate extracted using twin screw extruder. Box-Behnken design was used to find out the optimum extrusion-assisted extraction parameters based on the responses of residence time distribution (RTD), yield, intrinsic viscosity, and molecular weight. The result showed that alginate extrusion-assisted extraction parameters affected on the movement of algae in the screw channel and physicochemical properties of S. cristaefolium alginate. The alginate extrusion-assisted extraction parameters have quadratic effect on the responses of RTD, yield, intrinsic viscosity and molecular weight. The predicted values at the optimum extrusion parameters as independent variables are the use of brown algae to solution ratio (3.11), feed rate (2.95 rpm), and pH 10.3. The M/G ratio of S. cristaefolium alginate based on fractions analysis is 0.29 (M/G ratio < 1), indicating that S. cristaefolium alginate contains guluronate fraction of 77.10% and manuronate fraction of 22.90%. Intrinsic viscosity of S. cristaefolium alginate in aqueous solution was determined and shown shear-thinning pseudoplastic.
Collapse
Affiliation(s)
- Sugiono Sugiono
- 1Doctoral Degree of Agricultural Product Technology, Brawijaya University, Malang, 65145 Indonesia.,Department of Fisheries Science, Faculty of Agriculture, Madura Islamic University, Pamekasan, Indonesia
| | - Masruri Masruri
- 3Department of Chemistry, Faculty of Sciences, Brawijaya University, Malang, 65145 Indonesia
| | - Teti Estiasih
- 4Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, 65145 Indonesia
| | - Simon Bambang Widjanarko
- 4Department of Food Science and Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, 65145 Indonesia
| |
Collapse
|
32
|
Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11133604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various methods of physical, chemical and combined physicochemical pre-treatments for lignocellulosic biomass waste valorisation to value-added feedstock/solid fuels for downstream processes in chemical industries have been reviewed. The relevant literature was scrutinized for lignocellulosic waste applicability in advanced thermochemical treatments for either energy or liquid fuels. By altering the overall naturally occurring bio-polymeric matrix of lignocellulosic biomass waste, individual components such as cellulose, hemicellulose and lignin can be accessed for numerous downstream processes such as pyrolysis, gasification and catalytic upgrading to value-added products such as low carbon energy. Assessing the appropriate lignocellulosic pre-treatment technology is critical to suit the downstream process of both small- and large-scale operations. The cost to operate the process (temperature, pressure or energy constraints), the physical and chemical structure of the feedstock after pre-treatment (decomposition/degradation, removal of inorganic components or organic solubilization) or the ability to scale up the pre-treating process must be considered so that the true value in the use of bio-renewable waste can be revealed.
Collapse
|
33
|
Kucharska K, Łukajtis R, Słupek E, Cieśliński H, Rybarczyk P, Kamiński M. Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis. Molecules 2018; 23:molecules23113029. [PMID: 30463326 PMCID: PMC6278490 DOI: 10.3390/molecules23113029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/11/2023] Open
Abstract
The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by Enterobacter aerogenes ATCC 13048 with a final result of 22.99 mL H₂/g energy poplar (0.6 mol H₂/mol TRS).
Collapse
Affiliation(s)
- Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| | - Rafał Łukajtis
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| | - Piotr Rybarczyk
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| | - Marian Kamiński
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
34
|
Marone A, Trably E, Carrère H, Prompsy P, Guillon F, Joseph-Aimé M, Barakat A, Fayoud N, Bernet N, Escudié R. Enhancement of corn stover conversion to carboxylates by extrusion and biotic triggers in solid-state fermentation. Appl Microbiol Biotechnol 2018; 103:489-503. [PMID: 30406449 DOI: 10.1007/s00253-018-9463-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022]
Abstract
Solid-state fermentation is a potential technology for developing lignocellulosic biomass-based biorefineries. This work dealt with solid-state fermentation for carboxylates production from corn stover, as building blocks for a lignocellulosic feedstock-based biorefinery. The effect of extrusion pretreatment, together with the action of a microbial consortia and hydrolytic enzymes as biotic triggers, was investigated on corn stover conversion, microbial metabolic pathways, and populations. The extrusion caused changes in the physical and morphological characteristics, without altering the biochemical composition of the corn stover. Extrusion also led to remarkable differences in the composition of the indigenous microbial population of the substrate. Consequently, it affected the structure of community developed after fermentation and the substrate conversion yield, which increased by 118% (from 23 ± 4 gCOD/kgVSi obtained with raw substrate to 51 ± 1 gCOD/kgVSi with extruded corn stover) with regard to self-fermentation experiments. The use of activated sludge as inoculum further increased the total substrate conversion into carboxylates, up to 60 ± 2 gCOD/kgVSi, and shaped the microbial communities (mainly composed of bacteria from the Clostridia and Bacteroidia classes) with subsequent homogenization of the fermentation pathways. The addition of hydrolytic enzymes into the reactors further increased the corn stover conversion, leading to a maximum yield of 142 ± 1 gCOD/kgVSi. Thus, extrusion pretreatment combined with the use of an inoculum and enzyme addition increased by 506% corn stover conversion into carboxylates. Beside biomass pretreatment, the results of this study indicated that biotic factor greatly impacted solid-state fermentation by shaping the microbial communities and related metabolic pathways.
Collapse
Affiliation(s)
- Antonella Marone
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France.,GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Eric Trably
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France.
| | - Hélène Carrère
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France
| | - Pacôme Prompsy
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France
| | | | | | - Abdellatif Barakat
- UMR, IATE, CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060, Montpellier, France
| | - Nour Fayoud
- UMR, IATE, CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060, Montpellier, France.,Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nicolas Bernet
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France
| | - Renaud Escudié
- LBE, INRA, Univ Montpellier, 102 Avenue des Etangs, F-11100, Narbonne, France
| |
Collapse
|
35
|
Jamaldheen SB, Sharma K, Rani A, Moholkar VS, Goyal A. Comparative analysis of pretreatment methods on sorghum (Sorghum durra) stalk agrowaste for holocellulose content. Prep Biochem Biotechnol 2018; 48:457-464. [DOI: 10.1080/10826068.2018.1466148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sumitha Banu Jamaldheen
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India
- DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kedar Sharma
- DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, India
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Aruna Rani
- DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, India
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Vijayanand S. Moholkar
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Arun Goyal
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India
- DBT PAN-IIT Center for Bioenergy, Indian Institute of Technology Guwahati, Guwahati, India
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
36
|
Chang JJ, Anandharaj M, Ho CY, Tsuge K, Tsai TY, Ke HM, Lin YJ, Ha Tran MD, Li WH, Huang CC. Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:157. [PMID: 29930703 PMCID: PMC5991470 DOI: 10.1186/s13068-018-1151-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in Bacillus subtilis. RESULTS According to the proteomic analysis of Clostridium thermocellum ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (cipA), a cell-surface anchor gene (sdbA), two exoglucanase genes (celK and celS), two endoglucanase genes (celA and celR), and two xylanase genes (xynC and xynZ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in Bacillus method. This is the first study to express the whole CipA along with cellulolytic enzymes in B. subtilis. Each operon was successfully expressed in B. subtilis RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon. CONCLUSIONS In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.
Collapse
Affiliation(s)
- Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 402 Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Cheng-Yu Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Kenji Tsuge
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017 Japan
| | - Tsung-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Minh Dung Ha Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
37
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
38
|
Khatri V, Meddeb-Mouelhi F, Adjallé K, Barnabé S, Beauregard M. Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:144. [PMID: 29796085 PMCID: PMC5960114 DOI: 10.1186/s13068-018-1145-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/09/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. RESULTS Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. CONCLUSIONS Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.
Collapse
Affiliation(s)
- Vinay Khatri
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada
- PROTEO, Université Laval, Québec, QC G1V 4G2 Canada
| | - Fatma Meddeb-Mouelhi
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada
- PROTEO, Université Laval, Québec, QC G1V 4G2 Canada
| | - Kokou Adjallé
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada
| | - Simon Barnabé
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada
| | - Marc Beauregard
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7 Canada
- PROTEO, Université Laval, Québec, QC G1V 4G2 Canada
| |
Collapse
|
39
|
Naidu DS, Hlangothi SP, John MJ. Bio-based products from xylan: A review. Carbohydr Polym 2018; 179:28-41. [DOI: 10.1016/j.carbpol.2017.09.064] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
|
40
|
Li T, Lyu G, Liu Y, Lou R, Lucia LA, Yang G, Chen J, Saeed HAM. Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin (Salix matsudana cv. Zhuliu). Int J Mol Sci 2017; 18:E2266. [PMID: 29143790 PMCID: PMC5713236 DOI: 10.3390/ijms18112266] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
Deep eutectic solvents (DESs) are a potentially high-value lignin extraction methodology. DESs prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBD)-lactic acid (Lac), glycerol, and urea-were evaluated for isolation of willow (Salix matsudana cv. Zhuliu) lignin. DESs types, mole ratio of ChCl to HBD, extraction temperature, and time on the fractionated DES-lignin yield demonstrated that the optimal DES-lignin yield (91.8 wt % based on the initial lignin in willow) with high purity of 94.5% can be reached at a ChCl-to-Lac molar ratio of 1:10, extraction temperature of 120 °C, and time of 12 h. Fourier transform infrared spectroscopy (FT-IR) , 13C-NMR, and 31P-NMR showed that willow lignin extracted by ChCl-Lac was mainly composed of syringyl and guaiacyl units. Serendipitously, a majority of the glucan in willow was preserved after ChCl-Lac treatment.
Collapse
Affiliation(s)
- Tengfei Li
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
| | - Gaojin Lyu
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
| | - Yu Liu
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
| | - Rui Lou
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Lucian A Lucia
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
- Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA.
| | - Guihua Yang
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
| | - Jiachuan Chen
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
| | - Haroon A M Saeed
- Key Lab of Pulp and Paper Science and Technology of the Ministry of Education, Qilu University of Technology, Jinan 250353, Shandong, China.
- Center of Fibers, Papers and Recycling, Faculty of Textiles, University of Gezira, Box 20, Wad Medani 79371, Sudan.
| |
Collapse
|
41
|
Croat JR, Karki B, Berhow M, Iten L, Muthukumarappan K, Gibbons WR. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal. J Appl Microbiol 2017; 123:362-371. [PMID: 28703403 DOI: 10.1111/jam.13507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/12/2017] [Accepted: 06/04/2017] [Indexed: 11/26/2022]
Abstract
AIMS The objective of this study was to determine the optimal pretreatment and fungal strain to reduce glucosinolates (GLS), fibre and residual sugars while increasing the nutritional value of canola meal. METHODS AND RESULTS Submerged incubation conditions were used to evaluate four pretreatment methods (extrusion, hot water cook, dilute acid and dilute alkali) and three fungal cultures (Aureobasidium pullulans Y-2311-1, Fusarium venenatum NRRL-26139 and Trichoderma reesei NRRL-3653) in hexane-extracted (HE) and cold-pressed (CP) canola meal. CONCLUSIONS The combination of extrusion pretreatment followed by incubation with T. reesei resulted in the greatest overall improvement to HE canola meal, increasing protein to 51·5%, while reducing NDF, GLS and residual sugars to 18·6%, 17·2 μmol l-1 g-1 and 5% w/w, respectively. Extrusion pretreatment and incubation with F. venenatum performed the best with CP canola meal, resulting in 54·4% protein while reducing NDF, GLS and residual sugars to 11·6%, 6·7 μmol l-1 g-1 and 3·8% w/w respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The work is significant in that it provides a method of reducing GLS (up to 98%) and neutral detergent fibre (up to 65%) while increasing the protein content (up to 45%) of canola meal. This novel pretreatment and submerged incubation process could be used to produce a canola product with higher nutritional value for livestock consumption.
Collapse
Affiliation(s)
- J R Croat
- Biology & Microbiology Department, South Dakota State University, Brookings, SD, USA
| | - B Karki
- Agricultural & Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - M Berhow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - L Iten
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - K Muthukumarappan
- Agricultural & Biosystems Engineering Department, South Dakota State University, Brookings, SD, USA
| | - W R Gibbons
- Biology & Microbiology Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
42
|
A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work evaluates a two-step pretreatment process based on steam explosion and extrusion technologies for the optimal fractionation of lignocellulosic biomass. Two-step pretreatment of barley straw resulted in overall glucan, hemicellulose and lignin recovery yields of 84%, 91% and 87%, respectively. Precipitation of the collected lignin-rich liquid fraction yielded a solid residue with high lignin content, offering possibilities for subsequent applications. Moreover, hydrolysability tests showed almost complete saccharification of the pretreated solid residue, which when combined with the low concentration of the generated inhibitory compounds, is representative of a good pretreatment approach. Scheffersomyces stipitis was capable of fermenting all of the glucose and xylose from the non-diluted hemicellulose fraction, resulting in an ethanol concentration of 17.5 g/L with 0.34 g/g yields. Similarly, Saccharomyces cerevisiae produced about 4% (v/v) ethanol concentration with 0.40 g/g yields, during simultaneous saccharification and fermentation (SSF) of the two-step pretreated solid residue at 10% (w/w) consistency. These results increased the overall conversion yields from a one-step steam explosion pretreatment by 1.4-fold, showing the effectiveness of including an extrusion step to enhance overall biomass fractionation and carbohydrates conversion via microbial fermentation processes.
Collapse
|
43
|
Kumar R, Sharma RK, Singh AP. Cellulose based grafted biosorbents - Journey from lignocellulose biomass to toxic metal ions sorption applications - A review. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. BIORESOUR BIOPROCESS 2017; 4:7. [PMID: 28163994 PMCID: PMC5241333 DOI: 10.1186/s40643-017-0137-9] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
Collapse
Affiliation(s)
- Adepu Kiran Kumar
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand, 388 120 Gujarat India
| |
Collapse
|
45
|
Rai M, Ingle AP, Gaikwad S, Dussán KJ, da Silva SS. Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. NANOTECHNOLOGY FOR BIOENERGY AND BIOFUEL PRODUCTION 2017. [DOI: 10.1007/978-3-319-45459-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Lewis A, Waters JC, Stanton J, Hess J, Salas-de la Cruz D. Macromolecular Interactions Control Structural and Thermal Properties of Regenerated Tri-Component Blended Films. Int J Mol Sci 2016; 17:E1989. [PMID: 27916801 PMCID: PMC5187789 DOI: 10.3390/ijms17121989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
With a growing need for sustainable resources research has become highly interested in investigating the structure and physical properties of biomaterials composed of natural macromolecules. In this study, we assessed the structural, morphological, and thermal properties of blended, regenerated films comprised of cellulose, lignin, and hemicellulose (xylan) using the ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl). Attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray scattering, and thermogravimetric analysis (TGA) were used to qualitatively and quantitatively measure bonding interactions, morphology, and thermal stability of the regenerated films. The results demonstrated that the regenerated films' structural, morphological, and thermal character changed as a function of lignin-xylan concentration. The decomposition temperature rose according to an increase in lignin content and the surface topography of the regenerated films changed from fibrous to spherical patterns. This suggests that lignin-xylan concentration alters the self-assembly of lignin and the cellulose microfibril development. X-ray scattering confirms the extent of the morphological and molecular changes. Our data reveals that the inter- and intra-molecular interactions with the cellulose crystalline domains, along with the amount of disorder in the system, control the microfibril dimensional characteristics, lignin self-assembly, and possibly the overall material's structural and thermal properties.
Collapse
Affiliation(s)
- Ashley Lewis
- Department of Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - Joshua C Waters
- Department of Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - John Stanton
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - Joseph Hess
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| | - David Salas-de la Cruz
- Department of Chemistry, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
- Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ 08102, USA.
| |
Collapse
|
47
|
Yan Q, Wang Y, Rodiahwati W, Spiess A, Modigell M. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw. Bioprocess Biosyst Eng 2016; 40:221-229. [PMID: 27761655 DOI: 10.1007/s00449-016-1689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10-3 1/h for the non-treated material over 2.3 × 10-3 1/h for the alkaline-soaked material to 26.9 × 10-3 1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.
Collapse
Affiliation(s)
- Qingqi Yan
- Aachener Verfahrenstechnik, Mechanical Process Engineering, RWTH Aachen University, Turmstr. 46, 52064, Aachen, Germany.
| | - Yumei Wang
- Aachener Verfahrenstechnik, Enzyme Process Technology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany.,DWI Leibniz Institute for Interactive Materials Research, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Wawat Rodiahwati
- Department of Chemical and Process Engineering, Thai-German Graduate School of Engineering, King Mongkut's University of Technology, North Bangkok, Bangkok, 10800, Thailand
| | - Antje Spiess
- Aachener Verfahrenstechnik, Enzyme Process Technology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany.,DWI Leibniz Institute for Interactive Materials Research, Forckenbeckstr. 50, 52074, Aachen, Germany.,Institute of Biochemical Engineering (IBVT), TU Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Michael Modigell
- Aachener Verfahrenstechnik, Mechanical Process Engineering, RWTH Aachen University, Turmstr. 46, 52064, Aachen, Germany
| |
Collapse
|
48
|
Review of Alkali-Based Pretreatment To Enhance Enzymatic Saccharification for Lignocellulosic Biomass Conversion. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01907] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Vandenbossche V, Brault J, Hernandez-Melendez O, Evon P, Barzana E, Vilarem G, Rigal L. Suitability assessment of a continuous process combining thermo-mechano-chemical and bio-catalytic action in a single pilot-scale twin-screw extruder for six different biomass sources. BIORESOURCE TECHNOLOGY 2016; 211:146-153. [PMID: 27015021 DOI: 10.1016/j.biortech.2016.03.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
A process has been validated for the deconstruction of lignocellulose on a pilot scale installation using six types of biomass selected for their sustainability, accessibility, worldwide availability, and differences of chemical composition and physical structure. The process combines thermo-mechano-chemical and bio-catalytic action in a single twin-screw extruder. Three treatment phases were sequentially performed: an alkaline pretreatment, a neutralization step coupled with an extraction-separation phase and a bioextrusion treatment. Alkaline pretreatment destructured the wall polymers after just a few minutes and allowed the initial extraction of 18-54% of the hemicelluloses and 9-41% of the lignin. The bioextrusion step induced the start of enzymatic hydrolysis and increased the proportion of soluble organic matter. Extension of saccharification for 24h at high consistency (20%) and without the addition of new enzyme resulted in the production of 39-84% of the potential glucose.
Collapse
Affiliation(s)
- Virginie Vandenbossche
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, Toulouse, France.
| | - Julien Brault
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, Toulouse, France
| | | | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, Toulouse, France
| | - Eduardo Barzana
- Facultad de Quimica, Universidad National Autónoma de México, 04510 México D.F., Mexico
| | - Gérard Vilarem
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, Toulouse, France
| | - Luc Rigal
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, Toulouse, France
| |
Collapse
|
50
|
Kim SM, Dien BS, Singh V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:97. [PMID: 27141232 PMCID: PMC4852465 DOI: 10.1186/s13068-016-0505-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
Production of advanced biofuels from woody and herbaceous feedstocks is moving into commercialization. Biomass needs to be pretreated to overcome the physicochemical properties of biomass that hinder enzyme accessibility, impeding the conversion of the plant cell walls to fermentable sugars. Pretreatment also remains one of the most costly unit operations in the process and among the most critical because it is the source of chemicals that inhibit enzymes and microorganisms and largely determines enzyme loading and sugar yields. Pretreatments are categorized into hydrothermal (aqueous)/chemical, physical, and biological pretreatments, and the mechanistic details of which are briefly outlined in this review. To leverage the synergistic effects of different pretreatment methods, conducting two or more pretreatments consecutively has gained attention. Especially, combining hydrothermal/chemical pretreatment and mechanical refining, a type of physical pretreatment, has the potential to be applied to an industrial plant. Here, the effects of the combined pretreatment (combined hydrothermal/chemical pretreatment and mechanical refining) on energy consumption, physical structure, sugar yields, and enzyme dosage are summarized.
Collapse
Affiliation(s)
- Sun Min Kim
- />Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Bruce S. Dien
- />Bioenergy Research Unit, Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, Peoria, IL 61604 USA
| | - Vijay Singh
- />Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|