1
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
2
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
3
|
Stummer N, Weghuber D, Feichtinger RG, Huber S, Mayr JA, Kofler B, Neureiter D, Klieser E, Hochmann S, Lauth W, Schneider AM. Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease. Antioxidants (Basel) 2022; 11:2235. [PMID: 36421421 PMCID: PMC9686699 DOI: 10.3390/antiox11112235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) is a toxic gas that has important regulatory functions. In the colon, H2S can be produced and detoxified endogenously. Both too little and too much H2S exposure are associated with inflammatory bowel disease (IBD), a chronic intestinal disease mainly classified as Crohn's disease (CD) and ulcerative colitis (UC). As the pathogenesis of IBD remains elusive, this study's aim was to investigate potential differences in the expression of H2S-metabolizing enzymes in normal aging and IBD. Intestinal mucosal biopsies of 25 adults and 22 children with IBD along with those of 26 healthy controls were stained immunohistochemically for cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST), ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosulfate sulfurtransferase (TST). Expression levels were calculated by multiplication of the staining intensity and percentage of positively stained cells. Healthy adults showed an overall trend towards lower expression of H2S-metabolizing enzymes than healthy children. Adults with IBD also tended to have lower expression compared to controls. A similar trend was seen in the enzyme expression of children with IBD compared to controls. These results indicate an age-related decrease in the expression of H2S-metabolizing enzymes and a dysfunctional H2S metabolism in IBD, which was less pronounced in children.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - René G. Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sara Huber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes A. Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Wanda Lauth
- Department of Mathematics, Paris Lodron University, 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| |
Collapse
|
4
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
5
|
Zhu J, Yang G. H 2S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide 2021; 116:14-26. [PMID: 34428564 DOI: 10.1016/j.niox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network that not only provides mechanical support but also transduces essential molecular signals in organ functions. ECM is constantly remodeled to control tissue homeostasis, responsible for cell adhesion, cell migration, cell-to-cell communication, and cell differentiation, etc. The dysregulation of ECM components contributes to various diseases, including cardiovascular diseases, fibrosis, cancer, and neurodegenerative diseases, etc. Aberrant ECM remodeling is initiated by various stress, such as oxidative stress, inflammation, ischemia, and mechanical stress, etc. Hydrogen sulfide (H2S) is a gasotransmitter that exhibits a wide variety of cytoprotective and physiological functions through its anti-oxidative and anti-inflammatory actions. Amounting research shows that H2S can attenuate aberrant ECM remodeling. In this review, we discussed the implications and mechanisms of H2S in the regulation of ECM remodeling in cardiovascular diseases, and highlighted the potential of H2S in the prevention and treatment of cardiovascular diseases through attenuating adverse ECM remodeling.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
6
|
Gasotransmitters: Potential Therapeutic Molecules of Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3206982. [PMID: 34594474 PMCID: PMC8478550 DOI: 10.1155/2021/3206982] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.
Collapse
|
7
|
Cui J, Xu G, Bian F. H 2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome. Int J Cardiol 2021; 338:215-225. [PMID: 34157359 DOI: 10.1016/j.ijcard.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular remodeling and inflammation are involved in aortic aneurysm (AA) and aortic dissection (AD). TGF-β1 signaling is involved in tissue fibrosis, extracellular matrix remodeling and inflammation, which are linked with AA and AD. The inhibition of NLRP3 inflammasome suppresses AA and AD. Hydrogen sulfide (H2S) exerts anti-vascular remodeling and anti-inflammatory properties, but little is known about its action on AA and AD progression. METHODS The effect of H2S on AA and AD formation was investigated in Sprague-Dawley (SD) rat fed a normal diet supplemented with 0.25% β-aminopropionitrile (BAPN). HE staining, Masson's trichrome staining, Picrosirius red staining and EVG staining were to evaluate vascular remodeling in the aortic wall. Western blotting and IHC were to detect the expression of TGF-β1 and matrix metalloproteinases (MMPs) and NLRP3 inflammasome-associated proteins. The interaction between TGF-β1 signaling and NLRP3 inflammasome was explored in Human aortic vascular smooth muscle cells (HA-VSMCs). RESULTS H2S alleviated AA and AD progression. Specifically, it improved irregular tissue arrangement and vascular fibrosis, increased the expression of elastin fibers, decreased collagen deposition and the expression of TGF-β1 and matrix metalloproteinases (MMP-2/9). In addition, H2S inhibited the expression of proteins involved in NLRP3 inflammasome. Furthermore, H2S down-regulated TGF-β1 signaling and then ameliorated vascular fibrosis by preventing NLRP3 inflammasome activation. Finally, H2S inhibited NLRP3 inflammasome activation and decreased the level of IL-1β by disrupting TGF-β1 signaling. CONCLUSIONS These data support a crosstalk between TGF-β1 signaling and NLRP3 inflammasome. H2S inhibits AA and AD progression via blocking the crosstalk.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China
| | - Gao Xu
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Special Preparation of Vitiligo Xiangyang Key Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China.
| |
Collapse
|
8
|
Nguyen ITN, Wiggenhauser LM, Bulthuis M, Hillebrands JL, Feelisch M, Verhaar MC, van Goor H, Joles JA. Cardiac Protection by Oral Sodium Thiosulfate in a Rat Model of L-NNA-Induced Heart Disease. Front Pharmacol 2021; 12:650968. [PMID: 33935760 PMCID: PMC8082682 DOI: 10.3389/fphar.2021.650968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Hypertension contributes to cardiac damage and remodeling. Despite the availability of renin-angiotensin system inhibitors and other antihypertensive therapies, some patients still develop heart failure. Novel therapeutic approaches are required that are effective and without major adverse effects. Sodium Thiosulfate (STS), a reversible oxidation product of hydrogen sulfide (H2S), is a promising pharmacological entity with vasodilator and anti-oxidant potential that is clinically approved for the treatment of calciphylaxis and cyanide poisoning. We hypothesized that Sodium Thiosulfate improves cardiac disease in an experimental hypertension model and sought to investigate its cardioprotective effects by direct comparison to the ACE-inhibitor lisinopril, alone and in combination, using a rat model of chronic nitric oxide (NO) deficiency. Systemic nitric oxide production was inhibited in Sprague Dawley rats by administering N-ω-nitro-l-arginine (L-NNA) with the food for three weeks, leading to progressive hypertension, cardiac dysfunction and remodeling. We observed that STS, orally administered via the drinking water, ameliorated L-NNA-induced heart disease. Treatment with STS for two weeks ameliorated hypertension and improved systolic function, left ventricular hypertrophy, cardiac fibrosis and oxidative stress, without causing metabolic acidosis as is sometimes observed following parenteral administration of this drug. STS and lisinopril had similar protective effects that were not additive when combined. Our findings indicate that oral intervention with a H2S donor such as STS has cardioprotective properties without noticeable side effects.
Collapse
Affiliation(s)
- Isabel T N Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lucas M Wiggenhauser
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Marian Bulthuis
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
9
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
10
|
Abstract
In the past, hydrogen sulfide (H2S) was considered as a poisonous gas or waste of the body. Later, researchers found that H2S-producing enzymes exist in mammals. Moreover, their findings indicated that endogenous H2S was associated with the occurrence of many diseases. Therefore, endogenous H2S is able to participate in the regulation of physiological and pathological functions of the body as a gas signaling molecule. In this review, we summarize the regulation mechanism of endogenous H2S on the body, such as proliferation, apoptosis, migration, angiogenesis, as well as vasodilation/vasoconstriction. Furthermore, we also analyze the relationship between H2S and some chronic diseases, including hypoxic pulmonary hypertension, myocardial infarction, ischemic perfusion kidney injury, diabetes, and chronic intestinal diseases. Finally, we discuss dietary restriction and drugs that target for H2S. Hence, H2S is expected to become a potential target for treatment of these chronic diseases.
Collapse
Affiliation(s)
- Na Yang
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Yuan Liu
- Medical College, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Tianping Li
- Office of Educational Administration, Hunan Polytechnic of Environment and Biology, Hengyang, China
| | - Qinhui Tuo
- Medical College, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Gedik N, Krüger M, Thielmann M, Kottenberg E, Skyschally A, Frey UH, Cario E, Peters J, Jakob H, Heusch G, Kleinbongard P. Proteomics/phosphoproteomics of left ventricular biopsies from patients with surgical coronary revascularization and pigs with coronary occlusion/reperfusion: remote ischemic preconditioning. Sci Rep 2017; 7:7629. [PMID: 28794502 PMCID: PMC5550488 DOI: 10.1038/s41598-017-07883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) by repeated brief cycles of limb ischemia/reperfusion reduces myocardial ischemia/reperfusion injury. In left ventricular (LV) biopsies from patients undergoing coronary artery bypass grafting (CABG), only the activation of signal transducer and activator of transcription 5 was associated with RIPC’s cardioprotection. We have now used an unbiased, non-hypothesis-driven proteomics and phosphoproteomics approach to analyze LV biopsies from patients undergoing CABG and from pigs undergoing coronary occlusion/reperfusion without (sham) and with RIPC. False discovery rate-based statistics identified a higher prostaglandin reductase 2 expression at early reperfusion with RIPC than with sham in patients. In pigs, the phosphorylation of 116 proteins was different between baseline and early reperfusion with RIPC and/or with sham. The identified proteins were not identical for patients and pigs, but in-silico pathway analysis of proteins with ≥2-fold higher expression/phosphorylation at early reperfusion with RIPC in comparison to sham revealed a relation to mitochondria and cytoskeleton in both species. Apart from limitations of the proteomics analysis per se, the small cohorts, the sampling/sample processing and the number of uncharacterized/unverifiable porcine proteins may have contributed to this largely unsatisfactory result.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Marcus Krüger
- Institute for Genetics Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and University of Cologne, Cologne, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Experimental Gastroenterology, Department of Gastroenterology and Hepatology, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg- Essen, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center Essen, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Qu H, Wang Y, Wang Y, Yang T, Feng Z, Qu Y, Zhou H. Luhong formula inhibits myocardial fibrosis in a paracrine manner by activating the gp130/JAK2/STAT3 pathway in cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:28-37. [PMID: 28115285 DOI: 10.1016/j.jep.2017.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luhong formula (LHF)-a traditional Chinese medicine containing Cervus nippon Temminck, Carthamus tinctorius L., Cinnamomum cassia Presl, Codonopisis pilosula( Franch.) Nannf., Astragalus membranaceus ( Fisch.) Bge. var. mongholicus ( Bge.) Hsiao, Lepidium apetalum Willd-is used in the treatment of heart failure. AIM OF THE STUDY To investigate the antifibrotic efficacy of LHF in a myocardial infarction-induced rat model of heart failure and to determine its mechanism of action. MATERIAL AND METHODS Myocardial infarction was induced in rats by coronary artery ligation, and cardiac fibroblasts were isolated. Neonatal rat cardiomyocytes (NRCMs) were isolated from 2 to 3-day-old Sprague-Dawley male rats, and cardiomyocyte hypertrophy was induced by isoprenaline. Histological examination was carried out to estimate the degree of myocardial fibrosis. Expression of gp130/JAK2/STAT3 pathway proteins was measured by western blot. The mRNA levels of downstream genes of gp130/JAK2/STAT3 pathway (i.e., CTGF, TSP-1, and TIMP1) were determined by RT-PCR; while CTGF, TSP-1, and TIMP1 protein levels were measured by ELISA. To investigate paracrine effects, cell proliferation and collagen synthesis was measured after treating cardiac fibroblasts with the conditioned media from isoprenaline-treated NRCMs. RESULTS Histopathological changes showed that LHF inhibited myocardial fibrosis in heart failure rats. Treatment with LHF up-regulated gp130, JAK2, and STAT3 protein expression in heart tissue, and down-regulated CTGF, TSP-1, and TIMP1 gene expression. Isoprenaline-treated NRCMs displayed lower expression of the gp130, JAK2, and STAT3 pathway proteins and higher secretion of its downstream signaling molecules (CTGF, TSP-1, TIMP1). LHF inhibited cardiac fibroblast proliferation and collagen synthesis after treatment with the conditioned media from isoprenaline-treated NRCMs. CONCLUSION LHF treatment attenuates myocardial fibrosis in vivo. LHF inhibits cardiac fibroblasts proliferation and collagen synthesis in a paracrine manner by activating the gp130/JAK2/STAT3 pathway in cardiomyocytes, thereby inhibiting the secretion of downstream profibrogenic cytokines.
Collapse
Affiliation(s)
- Huiyan Qu
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Wang
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingjie Wang
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Yang
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhou Feng
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Qu
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhou
- Department of Cardiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Merz T, Stenzel T, Nußbaum B, Wepler M, Szabo C, Wang R, Radermacher P, McCook O. Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H 2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Med Exp 2017; 5:17. [PMID: 28321823 PMCID: PMC5359268 DOI: 10.1186/s40635-017-0131-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Downregulation of the hydrogen sulfide (H2S)-producing enzymes cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and/or 3-mercaptopyruvate sulfurtransferase (3-MST) is associated with chronic cardiovascular pathologies. Nevertheless, equivocal data are available on both the expression and function of these enzymes in coronary arteries (CA). We recently reported that atherosclerotic pigs subjected to sepsis developed impaired cardiac function, which coincided with decreased myocardial CSE expression and increased nitrotyrosine formation. To define the endogenous source(s) of H2S in the CA, we studied the expression of CBS, CSE, or 3-MST in the CA of pigs subjected to septic shock with/without pre-existing cardiovascular co-morbidity. METHODS Anesthetized and instrumented FBM "familial hypercholesterolemia Bretoncelles Meishan" pigs with high-fat diet-induced hypercholesterolemia and atherosclerosis were subjected to polymicrobial septic shock, or sham procedure, and subsequent intensive care therapy for 24 h. Young German domestic pigs were used as naïve controls. CSE, CBS, 3-MST, HO-1, eNOS, and nitrotyrosine expression was quantified by immunohistochemistry of formalin-fixed paraffin sections. RESULTS FBM pigs, in the absence of septic shock, showed decreased CSE expression in the media. This decrease became more pronounced after sepsis. The expression pattern of HO-1 resembled the pattern of CSE expression. CBS protein was not detected in the media of any of the CA examined but was localized to the adventitia and only in the atheromatous plaques containing foam cells of the CA, in regions that also displayed abundant nitrotyrosine formation. The CBS expression in the adventitia was not associated with nitrotyrosine formation. 3-MST expression was not found in any of the CA samples. CONCLUSIONS We hypothesize that (i) the reduced CSE expression in FBM pigs may contribute to their cardiovascular disease phenotype and moreover (ii) the further decrease in CA CSE expression in sepsis may contribute to the sepsis-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Tamara Merz
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany
| | - Tatjana Stenzel
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany
| | - Benedikt Nußbaum
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany.,Universitätsklinik Ulm, Klinik für Anästhesiologie, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Martin Wepler
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany.,Universitätsklinik Ulm, Klinik für Anästhesiologie, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX, 77555, USA
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Peter Radermacher
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany
| | - Oscar McCook
- Universitätsklinik Ulm, Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Helmholtzstrasse 8, 89081, Ulm, Germany. .,Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| |
Collapse
|
14
|
Huang P, Shen Z, Yu W, Huang Y, Tang C, Du J, Jin H. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats. Front Pharmacol 2017; 8:128. [PMID: 28360857 PMCID: PMC5352693 DOI: 10.3389/fphar.2017.00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 12/27/2022] Open
Abstract
The study aimed to examine the protective effect of hydrogen sulfide (H2S) on high-salt-induced oxidative stress and myocardial hypertrophy in salt-sensitive (Dahl) rats. Thirty male Dahl rats and 40 SD rats were included in the study. They were randomly divided into Dahl control (Dahl + NS), Dahl high salt (Dahl + HS), Dahl + HS + NaHS, SD + NS, SD + HS, SD + HS + NaHS, and SD + HS + hydroxylamine (HA). Rats in Dahl + NS and SD + NS groups were given chow with 0.5% NaCl and 0.9% normal saline intraperitoneally daily. Myocardial structure, α-myosin heavy chain (α-MHC) and β-myosin heavy chain (β-MHC) expressions were determined. Endogenous myocardial H2S pathway and oxidative stress in myocardial tissues were tested. Myocardial H2S pathway was downregulated with myocardial hypertrophy featured by increased heart weight/body weight and cardiomyocytes cross-sectional area, decreased α-MHC and increased β-MHC expressions in Dahl rats with high-salt diet (all P < 0.01), and oxidative stress in myocardial tissues was significantly activated, demonstrated by the increased contents of hydroxyl radical, malondialdehyde and oxidized glutathione and decreased total antioxidant capacity, carbon monoxide, catalase, glutathione, glutathione peroxidase, superoxide dismutase (SOD) activities and decreased SOD1 and SOD2 protein expressions (P < 0.05, P < 0.01). However, H2S reduced myocardial hypertrophy with decreased heart weight/body weight and cardiomyocytes cross-sectional area, increased α-MHC, decreased β-MHC expressions and inhibited oxidative stress in myocardial tissues of Dahl rats with high-salt diet. However, no significant difference was found in H2S pathway, myocardial structure, α-MHC and β-MHC protein and oxidative status in myocardial tissues among SD + NS, SD + HS, and SD + HS + NaHS groups. HA, an inhibitor of cystathionine β-synthase, inhibited myocardial H2S pathway (P < 0.01), and stimulated myocardial hypertrophy and oxidative stress in SD rats with high-salt diet. Hence, H2S inhibited myocardial hypertrophy in high salt-stimulated Dahl rats in association with the enhancement of antioxidant capacity, thereby inhibiting oxidative stress in myocardial tissues.
Collapse
Affiliation(s)
- Pan Huang
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Zhizhou Shen
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Wen Yu
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First HospitalBeijing, China; Key Laboratory of Molecular Cardiology, Ministry of Education, Peking UniversityBeijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital Beijing, China
| |
Collapse
|
15
|
Zeng O, Li F, Li Y, Li L, Xiao T, Chu C, Yang J. Effect of Novel Gasotransmitter hydrogen sulfide on renal fibrosis and connexins expression in diabetic rats. Bioengineered 2016; 7:314-320. [PMID: 27575818 DOI: 10.1080/21655979.2016.1197743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To explore the effects of hydrogen sulfide (H2S) on renal fibrosis and the expressions of connexins and matrix metalloproteinase (MMP) in diabetic rats. METHOD SD rats were divided into 4 groups randomly: control group(n = 12), STZ group (n = 12), STZ+ H2S group (n = 12), and H2S group (n = 12). Diabetic model was induced by intraperitoneal injections of STZ. After 72 h after injection, the rats whose blood glucose were higher than 16.7 mmol/L. STZ+H2S group and H2S group were injected NaHS by intraperitoneal. Control group and STZ group were injected with the same dose of normal saline (NS) in equal doses every day. 8 weeks later, urine were collected. The expression of connexin and matrix metalloproteinase was analyzed by Western blot. We measured the Kidney hydroxyproline content by hydrolysis method. Type II collagen content was detected by immunohistochemical method and Masson staining. RESULTS Compared with the control group, collagen accumulation was markedly enhanced, and the content of type II collagen, kidney hydroxyproline and timp-2 were boosted in STZ group mice (P < 0.01), while the expressions of CX40,CX43, CX45, MMP-1 and MMP-2 were obviously deceased (P < 0.01). Compared with STZ group, the expressions of CX40, CX43, CX45, MMP-1 and MMP-2 were significantly increased (P < 0.01), while the content of type II collagen, kidney hydroxyproline and timp-2 expression were markedly deceased in STZ+H2S group. CONCLUSION H2S may attenuate renal fibrosis by up-regulating the expressions of CX40, CX43, CX45 and regulating the MMPs/TIMPs parameters.
Collapse
Affiliation(s)
- Ou Zeng
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Fang Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Yan Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Lin Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Ting Xiao
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Chun Chu
- b Department of Pharmacy , The Second Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Jun Yang
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| |
Collapse
|
16
|
Li D, Xiong Q, Peng J, Hu B, Li W, Zhu Y, Shen X. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα. Int J Mol Sci 2016; 17:ijms17050635. [PMID: 27136542 PMCID: PMC4881461 DOI: 10.3390/ijms17050635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H2S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H2S regulates ABCA1 expression. The effect of H2S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE−/− mice with a high-cholesterol diet. NaHS (an exogenous H2S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H2S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE−/− mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H2S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H2S. H2S may be a promising potential drug candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Dong Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qinghui Xiong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
- Improvinglife Biological Technology (Shanghai) Co., Ltd., Shanghai 201210, China.
| | - Jin Peng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| | - Wanzhen Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| | - Xiaoyan Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| |
Collapse
|
17
|
Wang MJ, Cai WJ, Zhu YC. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules. Life Sci 2016; 153:188-97. [PMID: 27071836 DOI: 10.1016/j.lfs.2016.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/20/2016] [Accepted: 03/31/2016] [Indexed: 02/01/2023]
Abstract
As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases.
Collapse
Affiliation(s)
- Ming-Jie Wang
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Cai
- Department of Basic Medicine, College of Medical Instruments and Foodstuff, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi-Chun Zhu
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
dl-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats. Nitric Oxide 2015; 49:56-66. [DOI: 10.1016/j.niox.2015.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
|