1
|
Marondedze C, Elia G, Thomas L, Wong A, Gehring C. Citrullination of Proteins as a Specific Response Mechanism in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:638392. [PMID: 33897727 PMCID: PMC8060559 DOI: 10.3389/fpls.2021.638392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Arginine deimination, also referred to as citrullination of proteins by L-arginine deiminases, is a post-translational modification affecting histone modifications, epigenetic transcriptional regulation, and proteolysis in animals but has not been reported in higher plants. Here we report, firstly, that Arabidopsis thaliana proteome contains proteins with a specific citrullination signature and that many of the citrullinated proteins have nucleotide-binding regulatory functions. Secondly, we show that changes in the citrullinome occur in response to cold stress, and thirdly, we identify an A. thaliana protein with peptidyl arginine deiminase activity that was shown to be calcium-dependent for many peptide substrates. Taken together, these findings establish this post-translational modification as a hitherto neglected component of cellular reprogramming during stress responses.
Collapse
Affiliation(s)
- Claudius Marondedze
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Rijk Zwaan, De Lier, Netherlands
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Gweru, Zimbabwe
- Claudius Marondedze,
| | - Giuliano Elia
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ludivine Thomas
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
| | - Chris Gehring
- Division of Biological and Chemical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
- *Correspondence: Chris Gehring,
| |
Collapse
|
2
|
Marondedze C, Thomas L, Lilley KS, Gehring C. Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Front Mol Biosci 2020; 6:163. [PMID: 32039234 PMCID: PMC6985371 DOI: 10.3389/fmolb.2019.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
The spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Barcarolo MV, Garavaglia BS, Thomas L, Marondedze C, Gehring C, Gottig N, Ottado J. Proteome changes and physiological adaptations of the phytopathogen Xanthomonas citri subsp. citri under salt stress and their implications for virulence. FEMS Microbiol Ecol 2019; 95:5509571. [DOI: 10.1093/femsec/fiz081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- María Victoria Barcarolo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Betiana S Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Ludivine Thomas
- HM.Clause, rue Louis Saillant, 26801 Portes-lès-Valence, France
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia,
06121 Perugia, Italy
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR). Ocampo y Esmeralda, Rosario, 2000, Argentina
| |
Collapse
|
4
|
Marondedze C, Thomas L, Gehring C, Lilley KS. Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC PLANT BIOLOGY 2019; 19:139. [PMID: 30975080 PMCID: PMC6460520 DOI: 10.1186/s12870-019-1750-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/31/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are increasingly recognized as regulatory component of post-transcriptional gene expression. RBPs interact with mRNAs via RNA-binding domains and these interactions affect RNA availability for translation, RNA stability and turn-over thus affecting both RNA and protein expression essential for developmental and stimulus specific responses. Here we investigate the effect of severe drought stress on the RNA-binding proteome to gain insights into the mechanisms that govern drought stress responses at the systems level. RESULTS Label-free mass spectrometry enabled the identification 567 proteins of which 150 significantly responded to the drought-induced treatment. A gene ontology analysis revealed enrichment in the "RNA binding" and "RNA processing" categories as well as biological processes such as "response to abscisic acid" and "response to water deprivation". Importantly, a large number of the stress responsive proteins have not previously been identified as RBPs and include proteins in carbohydrate metabolism and in the glycolytic and citric acid pathways in particular. This suggests that RBPs have hitherto unknown roles in processes that govern metabolic changes during stress responses. Furthermore, a comparative analysis of RBP domain architectures shows both, plant specific and common domain architectures between plants and animals. The latter could be an indication that RBPs are part of an ancient stress response. CONCLUSION This study establishes mRNA interactome capture technique as an approach to study stress signal responses implicated in environmental changes. Our findings denote RBP changes in the proteome as critical components in plant adaptation to changing environments and in particular drought stress protein-dependent changes in RNA metabolism.
Collapse
Affiliation(s)
- Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Present Address: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054, Grenoble Cedex 9, France.
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Present Address: HM.Clause, rue Louis Saillant, 26802, Portes-lès-Valence, France
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 74 Borgo XX Giugno, 06121, Perugia, Italy
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
5
|
Mata CI, Fabre B, Parsons HT, Hertog MLATM, Van Raemdonck G, Baggerman G, Van de Poel B, Lilley KS, Nicolaï BM. Ethylene Receptors, CTRs and EIN2 Target Protein Identification and Quantification Through Parallel Reaction Monitoring During Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:1626. [PMID: 30467512 PMCID: PMC6235968 DOI: 10.3389/fpls.2018.01626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene receptors which is the first step in the complex ethylene signal transduction pathway. Much progress has been made in elucidating the mechanism of this pathway, but there is still a lot to be done in the proteomic quantification of the main proteins involved, particularly during fruit ripening. This work focuses on the mass spectrometry based identification and quantification of the ethylene receptors (ETRs) and the downstream components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2 (EIN2). We used tomato as a model fruit to study changes in protein abundance involved in the ethylene signal transduction during fruit ripening. In order to detect and quantify these low abundant proteins located in the membrane of the endoplasmic reticulum, we developed a workflow comprising sample fractionation and MS analysis using parallel reaction monitoring. This work shows the feasibility of the identification and absolute quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four ripening stages of tomato. In parallel, gene expression was analyzed through real-time qPCR. Correlation between transcriptomic and proteomic profiles during ripening was only observed for three of the studied proteins, suggesting that the other signaling proteins are likely post-transcriptionally regulated. Based on our quantification results we were able to show that the protein levels of SlETR3 and SlETR4 increased during ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed either stable levels that could sustain, or decreasing levels that could promote fruit ripening.
Collapse
Affiliation(s)
- Clara I. Mata
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bertrand Fabre
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Harriet T. Parsons
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Maarten L. A. T. M. Hertog
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Geert Van Raemdonck
- Centre for Proteomics and Mass Spectrometry, University of Antwerp, Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics and Mass Spectrometry, University of Antwerp, Antwerp, Belgium
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bart M. Nicolaï
- Postharvest Group, Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Alqurashi M, Thomas L, Gehring C, Marondedze C. A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes 2017; 5:proteomes5030022. [PMID: 28820483 PMCID: PMC5620539 DOI: 10.3390/proteomes5030022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched, suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.
Collapse
Affiliation(s)
- May Alqurashi
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ludivine Thomas
- HM. Clause, rue Louis Saillant, Z.I. La Motte, BP83, 26802 Portes-lès-Valence, France.
| | - Chris Gehring
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/BIG, 17, avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
7
|
Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8:908. [PMID: 28579981 PMCID: PMC5437161 DOI: 10.3389/fmicb.2017.00908] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Probiotic bacteria are known to harbor intrinsic and mobile genetic elements that confer resistance to a wide variety of antibiotics. Their high amounts in dietary supplements can establish a reservoir of antibiotic resistant genes in the human gut. These resistant genes can be transferred to pathogens that share the same intestinal habitat thus resulting in serious clinical ramifications. While antibiotic resistance of probiotic bacteria from food, human and animal sources have been well-documented, the resistant profiles of probiotics from dietary supplements have only been recently studied. These products are consumed with increasing regularity due to their health claims that include the improvement of intestinal health and immune response as well as prevention of acute and antibiotic-associated diarrhea and cancer; but, a comprehensive risk assessment on the spread of resistant genes to human health is lacking. Here, we highlight recent reports of antibiotic resistance of probiotic bacteria isolated from dietary supplements, and propose complementary strategies that can shed light on the risks of consuming such products in the context of a global widespread of antibiotic resistance. In concomitant with a broader screening of antibiotic resistance in probiotic supplements is the use of computational simulations, live imaging and functional genomics to harvest knowledge on the evolutionary behavior, adaptations and dynamics of probiotics studied in conditions that best represent the human gut including in the presence of antibiotics. The underlying goal is to enable the health benefits of probiotics to be exploited in a responsible manner and with minimal risk to human health.
Collapse
Affiliation(s)
- Min Zheng
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Ruijia Zhang
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuechen Tian
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuan Zhou
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xutong Pan
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Aloysius Wong
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| |
Collapse
|
8
|
The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 2016; 6:29766. [PMID: 27405932 PMCID: PMC4942612 DOI: 10.1038/srep29766] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category 'RNA-binding', have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.
Collapse
|
9
|
Alqurashi M, Gehring C, Marondedze C. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism. Int J Mol Sci 2016; 17:E852. [PMID: 27258261 PMCID: PMC4926386 DOI: 10.3390/ijms17060852] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.
Collapse
Affiliation(s)
- May Alqurashi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Cambridge Centre for Proteomics, Cambridge System Biology, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge System Biology, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|