1
|
Blahut MR, Dawson ME, Kisgeropoulos EC, Ledinina AE, Mulder DW, King PW. Functional roles of the [2Fe-2S] clusters in Synechocystis PCC 6803 Hox [NiFe]-hydrogenase reactivity with ferredoxins. J Biol Chem 2024; 300:107936. [PMID: 39476964 DOI: 10.1016/j.jbc.2024.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024] Open
Abstract
The HoxEFUYH complex of Synechocystis PCC 6803 (S. 6803) consists of a HoxEFU ferredoxin:NAD(P)H oxidoreductase subcomplex and a HoxYH [NiFe]-hydrogenase subcomplex that catalyzes reversible H2 oxidation. Prior studies have suggested that the presence of HoxE is required for reactivity with ferredoxin; however, it is unknown how HoxE is functionally integrated into the electron transfer network of the HoxEFU:ferredoxin complex. Deciphering electron transfer pathways is challenged by the rich iron-sulfur cluster content of HoxEFU, which includes a [2Fe-2S] cluster in each subunit, along with multiple [4Fe-4S] clusters and a flavin cofactor. To resolve the role of HoxE, we determined the biophysical and thermodynamic properties of each [2Fe-2S] cluster in HoxEFU using steady-state and potentiometric EPR analysis in combination with square wave voltammetry (SWV). The temperature-dependence of the EPR signal for HoxE confirmed the coordination of a single [2Fe-2S] cluster that was shown by SWV to have an Em = -424 mV (versus SHE). Strikingly, when the Em of the HoxE [2Fe-2S] cluster was analyzed in HoxEFU titrations, it was shifted by >100 mV to an Em < -525 mV (versus SHE). EPR titrations of HoxEFU gave an Em value for the [2Fe-2S] cluster of HoxF, Em = -419 mV and HoxU, Em = -349 mV. These values were used to re-analyze the diaphorase kinetics in reactions performed with ferredoxins with varying Em's. The results are formulated into a model of HoxEFU:ferredoxin reactivity and the role of HoxE in mediating electron transfer within the HoxEFU:ferredoxin complex.
Collapse
Affiliation(s)
- Matthew R Blahut
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Michael E Dawson
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | | | | | - David W Mulder
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Lab, Golden, Colorado, USA.
| |
Collapse
|
2
|
Akiyama M, Osanai T. Regulation of organic acid and hydrogen production by NADH/NAD + ratio in Synechocystis sp. PCC 6803. Front Microbiol 2024; 14:1332449. [PMID: 38249449 PMCID: PMC10797119 DOI: 10.3389/fmicb.2023.1332449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Cyanobacteria serve as useful hosts in the production of substances to support a low-carbon society. Specifically, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) can produce organic acids, such as acetate, lactate, and succinate, as well as hydrogen, under dark, anaerobic conditions. The efficient production of these compounds appears to be closely linked to the regulation of intracellular redox balance. Notably, alterations in intracellular redox balance have been believed to influence the production of organic acids and hydrogen. To achieve these alterations, genetic manipulations involved overexpressing malate dehydrogenase (MDH), knocking out d-lactate dehydrogenase (DDH), or knocking out acetate kinase (AK), which subsequently modified the quantities and ratios of organic acids and hydrogen under dark, anaerobic conditions. Furthermore, the mutants generated displayed changes in the oxidation of reducing powers and the nicotinamide adenine dinucleotide hydrogen (NADH)/NAD+ ratio when compared to the parental wild-type strain. These findings strongly suggest that intracellular redox balance, especially the NADH/NAD+ ratio, plays a pivotal role in the production of organic acids and hydrogen in Synechocystis 6803.
Collapse
Affiliation(s)
| | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Khedr N, Elsayed KNM, Ibraheem IBM, Mohamed F. New insights into enhancement of bio-hydrogen production through encapsulated microalgae with alginate under visible light irradiation. Int J Biol Macromol 2023; 253:127270. [PMID: 37804894 DOI: 10.1016/j.ijbiomac.2023.127270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The production of green hydrogen is a promising alternative to fossil fuels. The current study focuses on the design of microalgae as a catalyst in bioelectrochemical systems for the generation of biohydrogen. Furthermore, the abovementioned target could be achieved by optimizing different parameters, including strains of microalgae, different optical filters, and their shapes. Synechocystis sp. PAK13 (Ba9), Micractinium sp. YACCYB33 (R4), and Desmodesmus intermedius (Sh42) were used and designed as free cells and immobilized microalgae for evaluating their performance for hydrogen production. Alginate was applied for immobilization not only for protecting the immobilized microalgae from stress but also for inhibiting the agglomeration of microalgae and improving stability. The amount of studied immobilized microalgae was 0.01 g/5 ml algae-dissolved in 10 ml alginate gel at 28 °C, 12 h of light (light intensity 30.4 μmol m-2 s-1), and 12 h of darkness with continual aeration (air bump in every strain flask) at pH = 7.2 ± 0.2 in 0.05 %wuxal buffer which has 3.7 ionic strength. Different modalities, including FTIR, UV, and SEM, were performed for the description of selected microalgae. The surface morphology of Ba9 with alginate composite (immobilized Ba9) appeared as a stacked layer with high homogeneity, which facilitates hydrogen production from water. The conversion efficiencies of the immobilized microalgae were evaluated by incident photon-to-current efficiency (IPCE). Under optical filters, the optimum IPCE value was ∼ 7 % at 460 nm for immobilized Ba9. Also, its number of hydrogen moles was calculated to be 16.03 mmol h-1 cm-2 under optical filters. The electrochemical stability of immobilized Ba9 was evaluated through repetitive 100 cycles as a short-term stability test, and the curve of chrono-amperometry after 30 min in 0.05 %wuxal at a constant potential of 0.9 V for 30 min of all studied samples confirmed the high stability of all sample and the immobilized Ba9 has superior activity than others.
Collapse
Affiliation(s)
- Noha Khedr
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Ibraheem B M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Chan CS, Dykes GE, Hoover RL, Limmer MA, Seyfferth AL. Gallionellaceae in rice root plaque: metabolic roles in iron oxidation, nutrient cycling, and plant interactions. Appl Environ Microbiol 2023; 89:e0057023. [PMID: 38009924 PMCID: PMC10734482 DOI: 10.1128/aem.00570-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.
Collapse
Affiliation(s)
- Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Gretchen E. Dykes
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Rene L. Hoover
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Matt A. Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Angelia L. Seyfferth
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Schumann C, Fernández Méndez J, Berggren G, Lindblad P. Novel concepts and engineering strategies for heterologous expression of efficient hydrogenases in photosynthetic microorganisms. Front Microbiol 2023; 14:1179607. [PMID: 37502399 PMCID: PMC10369191 DOI: 10.3389/fmicb.2023.1179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogen is considered one of the key enablers of the transition towards a sustainable and net-zero carbon economy. When produced from renewable sources, hydrogen can be used as a clean and carbon-free energy carrier, as well as improve the sustainability of a wide range of industrial processes. Photobiological hydrogen production is considered one of the most promising technologies, avoiding the need for renewable electricity and rare earth metal elements, the demands for which are greatly increasing due to the current simultaneous electrification and decarbonization goals. Photobiological hydrogen production employs photosynthetic microorganisms to harvest solar energy and split water into molecular oxygen and hydrogen gas, unlocking the long-pursued target of solar energy storage. However, photobiological hydrogen production has to-date been constrained by several limitations. This review aims to discuss the current state-of-the art regarding hydrogenase-driven photobiological hydrogen production. Emphasis is placed on engineering strategies for the expression of improved, non-native, hydrogenases or photosynthesis re-engineering, as well as their combination as one of the most promising pathways to develop viable large-scale hydrogen green cell factories. Herein we provide an overview of the current knowledge and technological gaps curbing the development of photobiological hydrogenase-driven hydrogen production, as well as summarizing the recent advances and future prospects regarding the expression of non-native hydrogenases in cyanobacteria and green algae with an emphasis on [FeFe] hydrogenases.
Collapse
Affiliation(s)
- Conrad Schumann
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Jorge Fernández Méndez
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
7
|
Khetkorn W, Raksajit W, Maneeruttanarungroj C, Lindblad P. Photobiohydrogen Production and Strategies for H 2 Yield Improvements in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:253-279. [PMID: 37009974 DOI: 10.1007/10_2023_216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Hydrogen gas (H2) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H2 being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H2 is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H2 is an important gas and raw material in many industrial applications. However, the high cost of the H2 production processes requiring the use of other energy sources is a significant disadvantage. At present, H2 can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O2 and H2. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH4) and in steam reforming generates CO2 and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Wuttinun Raksajit
- Faculty of Veterinary Technology, Program of Animal Health Technology, Kasetsart University, Bangkok, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Microorganisms as New Sources of Energy. ENERGIES 2022. [DOI: 10.3390/en15176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of fossil energy sources has a negative impact on the economic and socio-political stability of specific regions and countries, causing environmental changes due to the emission of greenhouse gases. Moreover, the stocks of mineral energy are limited, causing the demand for new types and forms of energy. Biomass is a renewable energy source and represents an alternative to fossil energy sources. Microorganisms produce energy from the substrate and biomass, i.e., from substances in the microenvironment, to maintain their metabolism and life. However, specialized microorganisms also produce specific metabolites under almost abiotic circumstances that often do not have the immediate task of sustaining their own lives. This paper presents the action of biogenic and biogenic–thermogenic microorganisms, which produce methane, alcohols, lipids, triglycerides, and hydrogen, thus often creating renewable energy from waste biomass. Furthermore, some microorganisms acquire new or improved properties through genetic interventions for producing significant amounts of energy. In this way, they clean the environment and can consume greenhouse gases. Particularly suitable are blue-green algae or cyanobacteria but also some otherwise pathogenic microorganisms (E. coli, Klebsiella, and others), as well as many other specialized microorganisms that show an incredible ability to adapt. Microorganisms can change the current paradigm, energy–environment, and open up countless opportunities for producing new energy sources, especially hydrogen, which is an ideal energy source for all systems (biological, physical, technological). Developing such energy production technologies can significantly change the already achieved critical level of greenhouse gases that significantly affect the climate.
Collapse
|
9
|
Velmurugan R, Incharoensakdi A. Metabolic transformation of cyanobacteria for biofuel production. CHEMOSPHERE 2022; 299:134342. [PMID: 35307390 DOI: 10.1016/j.chemosphere.2022.134342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
10
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
11
|
Patel A, Mulder DW, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. FRONTIERS IN CATALYSIS 2022; 2. [PMID: 36844461 PMCID: PMC9961374 DOI: 10.3389/fctls.2022.1089176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.
Collapse
Affiliation(s)
- Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Lupacchini S, Appel J, Stauder R, Bolay P, Klähn S, Lettau E, Adrian L, Lauterbach L, Bühler B, Schmid A, Toepel J. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab Eng 2021; 68:199-209. [PMID: 34673236 DOI: 10.1016/j.ymben.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.
Collapse
Affiliation(s)
- Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jens Appel
- Department of Biology, Botanical Institute, University Kiel, 24118, Kiel, Germany
| | - Ron Stauder
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Elisabeth Lettau
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, 10923, Berlin, Germany
| | - Lars Lauterbach
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany; Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen, 52074, Aachen, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
13
|
Ballesteros I, Terán P, Guamán-Burneo C, González N, Cruz A, Castillejo P. DNA barcoding approach to characterize microalgae isolated from freshwater systems in Ecuador. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1920296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel Ballesteros
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Paulina Terán
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | | | - Nory González
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Alejandra Cruz
- Ingeniería en Biotecnología. Facultad de Ingenierías y Ciencias Aplicadas, Universidad de las Américas, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
14
|
Nagarajan D, Dong CD, Chen CY, Lee DJ, Chang JS. Biohydrogen production from microalgae-Major bottlenecks and future research perspectives. Biotechnol J 2021; 16:e2000124. [PMID: 33249754 DOI: 10.1002/biot.202000124] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Indexed: 12/11/2022]
Abstract
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2 -emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.,Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Nanzih District, Kaohsiung, Taiwan
| | - Chun-Yen Chen
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.,Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| |
Collapse
|
15
|
Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radic Biol Med 2020; 161:1-14. [PMID: 32987125 DOI: 10.1016/j.freeradbiomed.2020.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Although ample evidence showed that exogenous hydrogen gas (H2) controls a diverse range of physiological functions in both animals and plants, the selective antioxidant mechanism, in some cases, is questioned. Importantly, most of the experiments on the function of H2 in plants were based on pharmacological approaches due to the synthesis pathway(s) in plants are still unclear. Here, we observed that the seedling growth inhibition of Arabidopsis caused by low doses of mannitol could progressively recover by recuperation, accompanied with the increased hydrogenase activity and H2 synthesis. To investigate the functions of endogenous H2, a hydrogenase gene (CrHYD1) for H2 biosynthesis from Chlamydomonas reinhardtii was expressed in Arabidopsis. Transgenic plants could intensify higher H2 synthesis compared with wild type and Arabidopsis transformed with the empty vector, and exhibited enhanced osmotic tolerance in both germination and post-germination stages. In response to mannitol, transgenic plants enhanced L-Cys desulfhydrase (DES)-dependent hydrogen sulfide (H2S) synthesis in guard cells and thereafter stomatal closure. The application of des mutant further highlights H2S acting as a downstream molecule of endogenous H2 control of stomatal closure. These results thus open a new window for increasing plant tolerance to osmotic stress.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziping Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuli Yu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
17
|
Sleutels T, Sebastião Bernardo R, Kuntke P, Janssen M, Buisman CJN, Hamelers HVM. Enhanced Phototrophic Biomass Productivity through Supply of Hydrogen Gas. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:861-865. [PMID: 33195732 PMCID: PMC7659310 DOI: 10.1021/acs.estlett.0c00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Industrial production of phototrophic microorganisms is often hindered by low productivity due to limited light availability and therefore requires large land areas. This letter demonstrates that supply of hydrogen gas (H2) increases in phototrophic biomass productivity compared to a culture growing on light only. Experiments were performed growing Synechocystis sp. in batch bottles, with and without H2 in the headspace, which were exposed to light intensities of 70 and 100 μmol/m2/s. At 70 μmol/m2/s with H2, the average increase in biomass was 96 mg DW/L/d, whereas at 100 μmol/m2/s without H2, the average increase in biomass was 27 mg DW/L/d. Even at lower light intensity, the addition of H2 tripled the biomass yield compared to growth under light only. Photoreduction and photosynthesis occurred simultaneously, as both H2 consumption and O2 production were measured during biomass growth. Photoreduction used 1.85 mmol of H2 to produce 1.0 mmol of biomass, while photosynthesis produced 1.95 mmol of biomass. After transferring the culture to the dark, growth ceased, also in the presence of H2, showing that both light and H2 were needed for growth. A renewable H2 supply for higher biomass productivity is attractive since the combined efficiency of photovoltaics and electrolysis exceeds the photosynthetic efficiency.
Collapse
Affiliation(s)
- Tom Sleutels
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911MA, The
Netherlands
| | - Rita Sebastião Bernardo
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911MA, The
Netherlands
| | - Philipp Kuntke
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911MA, The
Netherlands
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marcel Janssen
- Bioprocess
Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911MA, The
Netherlands
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Hubertus V. M. Hamelers
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden 8911MA, The
Netherlands
| |
Collapse
|
18
|
Abstract
The biological process of photosynthesis was critical in catalyzing the oxygenation of Earth’s atmosphere 2.5 billion years ago, changing the course of development of life on Earth. Recently, the fields of applied and synthetic photosynthesis have utilized the light-driven protein–pigment supercomplexes central to photosynthesis for the photocatalytic production of fuel and other various valuable products. The reaction center Photosystem I is of particular interest in applied photosynthesis due to its high stability post-purification, non-geopolitical limitation, and its ability to generate the greatest reducing power found in nature. These remarkable properties have been harnessed for the photocatalytic production of a number of valuable products in the applied photosynthesis research field. These primarily include photocurrents and molecular hydrogen as fuels. The use of artificial reaction centers to generate substrates and reducing equivalents to drive non-photoactive enzymes for valuable product generation has been a long-standing area of interest in the synthetic photosynthesis research field. In this review, we cover advances in these areas and further speculate synthetic and applied photosynthesis as photocatalysts for the generation of valuable products.
Collapse
|
19
|
Wu Q, Su N, Huang X, Ling X, Yu M, Cui J, Shabala S. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:771-778. [PMID: 32522330 DOI: 10.1071/fp19107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
The aim of this study was to investigate effects of the hydrogen-rich water (HRW) on the vegetable growth, and explore the possibility of applying HRW for protected cultivation of vegetables. Results showed that compared with control, HRW treatment significantly promoted fresh weight, hypocotyl length and root length of mung bean seedlings. The strongest stimulation was observed for 480 μM H2 (60% of saturated HRW concentration) treatment. This concentration was used in the following experiments. The enhanced cell elongation was correlated with the changes in the level of endogenous phytohormones. In the dark-grown hypocotyls and roots of mung bean seedlings, HRW significantly increased the content of IAA and GA3. Addition of GA3 enhanced the hypocotyl elongation only. uniconazole, an inhibitor of GA3 biosynthesis, inhibited HRW-induced hypocotyl elongation, but did not affect root elongation. Exogenous application of IAA promoted HRW effects on elongation of both the hypocotyl and the root, while the IAA biosynthesis inhibitor TIBA negated the above affects. The general nature of HRW-induced growth-promoting effects was further confirmed in experiments involving cucumber and radish seedlings. Taken together, HRW treatment promoted growth of seedlings, by stimulating elongation of hypocotyl and root cells, via HRW-induced increase in GA and IAA content in the hypocotyl and the root respectively.
Collapse
Affiliation(s)
- Qi Wu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Xiaoping Ling
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding authors. ;
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas. 7001, Australia; and Corresponding authors. ;
| |
Collapse
|
20
|
Wu Q, Huang L, Su N, Shabala L, Wang H, Huang X, Wen R, Yu M, Cui J, Shabala S. Calcium-Dependent Hydrogen Peroxide Mediates Hydrogen-Rich Water-Reduced Cadmium Uptake in Plant Roots. PLANT PHYSIOLOGY 2020; 183:1331-1344. [PMID: 32366640 PMCID: PMC7333692 DOI: 10.1104/pp.20.00377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 05/03/2023]
Abstract
Hydrogen gas (H2) has a possible signaling role in many developmental and adaptive plant responses, including mitigating the harmful effects of cadmium (Cd) uptake from soil. We used electrophysiological and molecular approaches to understand how H2 ameliorates Cd toxicity in pak choi (Brassica campestris ssp. chinensis). Exposure of pak choi roots to Cd resulted in a rapid increase in the intracellular H2 production. Exogenous application of hydrogen-rich water (HRW) resulted in a Cd-tolerant phenotype, with reduced net Cd uptake and accumulation. We showed that this is dependent upon the transport of calcium ions (Ca2+) across the plasma membrane and apoplastic generation of hydrogen peroxide (H2O2) by respiratory burst oxidase homolog (BcRbohD). The reduction in root Cd uptake was associated with the application of exogenous HRW or H2O2 This reduction was abolished in the iron-regulated transporter1 (Atirt1) mutant of Arabidopsis (Arabidopsis thaliana), and pak choi pretreated with HRW showed decreased BcIRT1 transcript levels. Roots exposed to HRW had rapid Ca2+ influx, and Cd-induced Ca2+ leakage was alleviated. Two Ca2+ channel blockers, gadolinium ion (Gd3+) and lanthanum ion (La3+), eliminated the HRW-induced increase in BcRbohD expression, H2O2 production, and Cd2+ influx inhibition. Collectively, our results suggest that the Cd-protective effect of H2 in plants may be explained by its control of the plasma membrane-based NADPH oxidase encoded by RbohD, which operates upstream of IRT1 and regulates root Cd uptake at both the transcriptional and functional levels. These findings provide a mechanistic explanation for the alleviatory role of H2 in Cd accumulation and toxicity in plants.
Collapse
Affiliation(s)
- Qi Wu
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Liping Huang
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Haiyang Wang
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Xin Huang
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Ruiyu Wen
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Min Yu
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sergey Shabala
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
21
|
Artz JH, Tokmina-Lukaszewska M, Mulder DW, Lubner CE, Gutekunst K, Appel J, Bothner B, Boehm M, King PW. The structure and reactivity of the HoxEFU complex from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2020; 295:9445-9454. [PMID: 32409585 PMCID: PMC7363133 DOI: 10.1074/jbc.ra120.013136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
Cyanobacterial Hox is a [NiFe] hydrogenase that consists of the hydrogen (H2)-activating subunits HoxYH, which form a complex with the HoxEFU assembly to mediate reactions with soluble electron carriers like NAD(P)H and ferredoxin (Fdx), thereby coupling photosynthetic electron transfer to energy-transforming catalytic reactions. Researchers studying the HoxEFUYH complex have observed that HoxEFU can be isolated independently of HoxYH, leading to the hypothesis that HoxEFU is a distinct functional subcomplex rather than an artifact of Hox complex isolation. Moreover, outstanding questions about the reactivity of Hox with natural substrates and the site(s) of substrate interactions and coupling of H2, NAD(P)H, and Fdx remain to be resolved. To address these questions, here we analyzed recombinantly produced HoxEFU by electron paramagnetic resonance spectroscopy and kinetic assays with natural substrates. The purified HoxEFU subcomplex catalyzed electron transfer reactions among NAD(P)H, flavodoxin, and several ferredoxins, thus functioning in vitro as a shuttle among different cyanobacterial pools of reducing equivalents. Both Fdx1-dependent reductions of NAD+ and NADP+ were cooperative. HoxEFU also catalyzed the flavodoxin-dependent reduction of NAD(P)+, Fdx2-dependent oxidation of NADH and Fdx4- and Fdx11-dependent reduction of NAD+. MS-based mapping identified an Fdx1-binding site at the junction of HoxE and HoxF, adjacent to iron-sulfur (FeS) clusters in both subunits. Overall, the reactivity of HoxEFU observed here suggests that it functions in managing peripheral electron flow from photosynthetic electron transfer, findings that reveal detailed insights into how ubiquitous cellular components may be used to allocate energy flow into specific bioenergetic products.
Collapse
Affiliation(s)
- Jacob H Artz
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | | | - Jens Appel
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Marko Boehm
- Botanical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| |
Collapse
|
22
|
Roumezi B, Avilan L, Risoul V, Brugna M, Rabouille S, Latifi A. Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen-fixing cyanobacterium Nostoc PCC 7120. Microb Cell Fact 2020; 19:65. [PMID: 32156284 PMCID: PMC7063810 DOI: 10.1186/s12934-020-01320-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background The ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen (H2) is a promising alternative for renewable, clean-energy production. However, the most recent, related studies point out that much improvement is needed for sustainable cyanobacterial-based H2 production to become economically viable. In this study, we investigated the impact of induced O2-consumption on H2 photoproduction yields in the heterocyte-forming, N2-fixing cyanobacterium Nostoc PCC7120. Results The flv3B gene, encoding a flavodiiron protein naturally expressed in Nostoc heterocytes, was overexpressed. Under aerobic and phototrophic growth conditions, the recombinant strain displayed a significantly higher H2 production than the wild type. Nitrogenase activity assays indicated that flv3B overexpression did not enhance the nitrogen fixation rates. Interestingly, the transcription of the hox genes, encoding the NiFe Hox hydrogenase, was significantly elevated, as shown by the quantitative RT-PCR analyses. Conclusion We conclude that the overproduced Flv3B protein might have enhanced O2-consumption, thus creating conditions inducing hox genes and facilitating H2 production. The present study clearly demonstrates the potential to use metabolic engineered cyanobacteria for photosynthesis driven H2 production.
Collapse
Affiliation(s)
- Baptiste Roumezi
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie Bactérienne, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Véronique Risoul
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie Bactérienne, Marseille, France
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, 06230, Villefranche-sur-Mer, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, 66650, Banyuls-sur-Mer, France
| | - Amel Latifi
- Aix Marseille Univ, CNRS, LCB, Laboratoire de Chimie Bactérienne, Marseille, France.
| |
Collapse
|
23
|
Mus F, Colman DR, Peters JW, Boyd ES. Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free Radic Biol Med 2019; 140:250-259. [PMID: 30735835 DOI: 10.1016/j.freeradbiomed.2019.01.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Biological nitrogen fixation via the activity of nitrogenase is one of the most important biological innovations, allowing for an increase in global productivity that eventually permitted the emergence of higher forms of life. The complex metalloenzyme termed nitrogenase contains complex iron-sulfur cofactors. Three versions of nitrogenase exist that differ mainly by the presence or absence of a heterometal at the active site metal cluster (either Mo or V). Mo-dependent nitrogenase is the most common while V-dependent or heterometal independent (Fe-only) versions are often termed alternative nitrogenases since they have apparent lower activities for N2 reduction and are expressed in the absence of Mo. Phylogenetic data indicates that biological nitrogen fixation emerged in an anaerobic, thermophilic ancestor of hydrogenotrophic methanogens and later diversified via lateral gene transfer into anaerobic bacteria, and eventually aerobic bacteria including Cyanobacteria. Isotopic evidence suggests that nitrogenase activity existed at 3.2 Ga, prior to the advent of oxygenic photosynthesis and rise of oxygen in the atmosphere, implying the presence of favorable environmental conditions for oxygen-sensitive nitrogenase to evolve. Following the proliferation of oxygenic phototrophs, diazotrophic organisms had to develop strategies to protect nitrogenase from oxygen inactivation and generate the right balance of low potential reducing equivalents and cellular energy for growth and nitrogen fixation activity. Here we review the fundamental advances in our understanding of biological nitrogen fixation in the context of the emergence, evolution, and taxonomic distribution of nitrogenase, with an emphasis placed on key events associated with its emergence and diversification from anoxic to oxic environments.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
24
|
Hoschek A, Toepel J, Hochkeppel A, Karande R, Bühler B, Schmid A. Light‐Dependent and Aeration‐Independent Gram‐Scale Hydroxylation of Cyclohexane to Cyclohexanol by CYP450 Harboring
Synechocystis
sp. PCC 6803. Biotechnol J 2019; 14:e1800724. [DOI: 10.1002/biot.201800724] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/01/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Hoschek
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Jörg Toepel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Adrian Hochkeppel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| | - Andreas Schmid
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research GmbH‐UFZ Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
25
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives. Appl Microbiol Biotechnol 2018; 103:567-575. [PMID: 30446778 DOI: 10.1007/s00253-018-9514-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Strictly anaerobic bacteria of the Clostridium genus have attracted great interest as potential cell factories for molecular hydrogen production purposes. In addition to being a useful approach to this process, dark fermentation has the advantage of using the degradation of cheap agricultural residues and industrial wastes for molecular hydrogen production. However, many improvements are still required before large-scale hydrogen production from clostridial metabolism is possible. Here we review the literature on the basic biological processes involved in clostridial hydrogen production, and present the main advances obtained so far in order to enhance the hydrogen productivity, as well as suggesting some possible future prospects.
Collapse
|
27
|
Fixen KR, Pal Chowdhury N, Martinez‐Perez M, Poudel S, Boyd ES, Harwood CS. The path of electron transfer to nitrogenase in a phototrophic alpha‐proteobacterium. Environ Microbiol 2018; 20:2500-2508. [DOI: 10.1111/1462-2920.14262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Saroj Poudel
- Department of Microbiology and ImmunologyMontana State UniversityBozeman MT USA
| | - Eric S. Boyd
- Department of Microbiology and ImmunologyMontana State UniversityBozeman MT USA
| | | |
Collapse
|
28
|
Veaudor T, Ortega-Ramos M, Jittawuttipoka T, Bottin H, Cassier-Chauvat C, Chauvat F. Overproduction of the cyanobacterial hydrogenase and selection of a mutant thriving on urea, as a possible step towards the future production of hydrogen coupled with water treatment. PLoS One 2018; 13:e0198836. [PMID: 29879209 PMCID: PMC5991728 DOI: 10.1371/journal.pone.0198836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Using a combination of various types of genetic manipulations (promoter replacement and gene cloning in replicating plasmid expression vector), we have overproduced the complex hydrogenase enzyme in the model cyanobacterium Synechocystis PCC6803. This new strain overproduces all twelve following proteins: HoxEFUYH (hydrogen production), HoxW (maturation of the HoxH subunit of hydrogenase) and HypABCDEF (assembly of the [NiFe] redox center of HoxHY hydrogenase). This strain when grown in the presence of a suitable quantities of nickel and iron used here exhibits a strong (25-fold) increase in hydrogenase activity, as compared to the WT strain growing in the standard medium. Hence, this strain can be very useful for future analyses of the cyanobacterial [NiFe] hydrogenase to determine its structure and, in turn, improve its tolerance to oxygen with the future goal of increasing hydrogen production. We also report the counterintuitive notion that lowering the activity of the Synechocystis urease can increase the photoproduction of biomass from urea-polluted waters, without decreasing hydrogenase activity. Such cyanobacterial factories with high hydrogenase activity and a healthy growth on urea constitute an important step towards the future development of an economical industrial processes coupling H2 production from solar energy and CO2, with wastewater treatment (urea depollution).
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Marcia Ortega-Ramos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Thichakorn Jittawuttipoka
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Hervé Bottin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
30
|
Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. J Bacteriol 2018; 200:JB.00757-17. [PMID: 29483165 DOI: 10.1128/jb.00757-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Collapse
|
31
|
Esmieu C, Raleiras P, Berggren G. From protein engineering to artificial enzymes - biological and biomimetic approaches towards sustainable hydrogen production. SUSTAINABLE ENERGY & FUELS 2018; 2:724-750. [PMID: 31497651 PMCID: PMC6695573 DOI: 10.1039/c7se00582b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen gas is used extensively in industry today and is often put forward as a suitable energy carrier due its high energy density. Currently, the main source of molecular hydrogen is fossil fuels via steam reforming. Consequently, novel production methods are required to improve the sustainability of hydrogen gas for industrial processes, as well as paving the way for its implementation as a future solar fuel. Nature has already developed an elaborate hydrogen economy, where the production and consumption of hydrogen gas is catalysed by hydrogenase enzymes. In this review we summarize efforts on engineering and optimizing these enzymes for biological hydrogen gas production, with an emphasis on their inorganic cofactors. Moreover, we will describe how our understanding of these enzymes has been applied for the preparation of bio-inspired/-mimetic systems for efficient and sustainable hydrogen production.
Collapse
Affiliation(s)
- C Esmieu
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - P Raleiras
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| | - G Berggren
- Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , SE-75120 Uppsala , Sweden .
| |
Collapse
|
32
|
Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:155-169. [DOI: 10.1007/978-981-13-0854-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C. Microalgal hydrogen production - A review. BIORESOURCE TECHNOLOGY 2017; 243:1194-1206. [PMID: 28774676 DOI: 10.1016/j.biortech.2017.07.085] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H2 from photoautotrophic cells. Moreover, biological H2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand
| | - Rajesh P Rastogi
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh Road, New Delhi 110 003, India.
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Datta Madamwar
- Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Vadtal Road, Satellite Campus, Bakrol, Anand, Gujarat 388 315, India
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing, C-127 2nd Floor Phase 8 Industrial Area, SAS Nagar, Mohali 160 071, Punjab, India
| | - Christian Larroche
- Labex IMobS3 and Institut Pascal, 4 Avenue Blaise Pascal, TSA 60026/CS 60026, 63178 Aubière Cedex, France
| |
Collapse
|
34
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Osanai T, Park YI, Nakamura Y. Editorial: Biotechnology of Microalgae, Based on Molecular Biology and Biochemistry of Eukaryotic Algae and Cyanobacteria. Front Microbiol 2017; 8:118. [PMID: 28203229 PMCID: PMC5285351 DOI: 10.3389/fmicb.2017.00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University Daejeon, South Korea
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica Taipei, Taiwan
| |
Collapse
|
36
|
Puggioni V, Tempel S, Latifi A. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey. Front Genet 2016; 7:223. [PMID: 28083017 PMCID: PMC5186783 DOI: 10.3389/fgene.2016.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial Molecular hydrogen (H2) cycling plays an important role in several ecological niches. Hydrogenases (H2ases), enzymes involved in H2 metabolism, are of great interest for investigating microbial communities, and producing BioH2. To obtain an overall picture of the genetic ability of Cyanobacteria to produce H2ases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes. The concomitant presence of the H2ase and genes involved in the maturation process, and that of well-conserved catalytic sites in the enzymes were the three minimal criteria used to classify a strain as being able to produce a functional H2ase. The [NiFe] H2ases were found to be the only enzymes present in this phylum. Fifty-five strains were found to be potentially able produce the bidirectional Hox enzyme and 33 to produce the uptake (Hup) enzyme. H2 metabolism in Cyanobacteria has a broad ecological distribution, since only the genomes of strains collected from the open ocean do not possess hox genes. In addition, the presence of H2ase was found to increase in the late branching clades of the phylogenetic tree of the species. Surprisingly, five cyanobacterial genomes were found to possess homologs of oxygen tolerant H2ases belonging to groups 1, 3b, and 3d. Overall, these data show that H2ases are widely distributed, and are therefore probably of great functional importance in Cyanobacteria. The present finding that homologs to oxygen-tolerant H2ases are present in this phylum opens new perspectives for applying the process of photosynthesis in the field of H2 production.
Collapse
Affiliation(s)
- Vincenzo Puggioni
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Sébastien Tempel
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Amel Latifi
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| |
Collapse
|
37
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Kim EJ, Wu CH, Adams MWW, Zhang YHP. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways. Chemistry 2016; 22:16047-16051. [PMID: 27605312 DOI: 10.1002/chem.201604197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/08/2022]
Abstract
Hydrogen production by water splitting energized by biomass sugars is one of the most promising technologies for distributed green H2 production. Direct H2 generation from NADPH, catalysed by an NADPH-dependent, soluble [NiFe]-hydrogenase (SH1) is thermodynamically unfavourable, resulting in slow volumetric productivity. We designed the biomimetic electron transport chain from NADPH to H2 by the introduction of an oxygen-insensitive electron mediator benzyl viologen (BV) and an enzyme (NADPH rubredoxin oxidoreductase, NROR), catalysing electron transport between NADPH and BV. The H2 generation rates using this biomimetic chain increased by approximately five-fold compared to those catalysed only by SH1. The peak volumetric H2 productivity via the in vitro enzymatic pathway comprised of hyperthermophilic glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase, NROR, and SH1 was 310 mmol H2 /L h-1 , the highest rate yet reported. The concept of biomimetic electron transport chains could be applied to both in vitro and in vivo H2 production biosystems and artificial photosynthesis.
Collapse
Affiliation(s)
- Eui-Jin Kim
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.
| |
Collapse
|
39
|
Iijima H, Shirai T, Okamoto M, Pinto F, Tamagnini P, Hasunuma T, Kondo A, Hirai MY, Osanai T. Metabolomics-based analysis revealing the alteration of primary carbon metabolism by the genetic manipulation of a hydrogenase HoxH in Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Nyberg M, Heidorn T, Lindblad P. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J Biotechnol 2015; 215:35-43. [DOI: 10.1016/j.jbiotec.2015.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|