1
|
Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, Hu G, Liu Y. Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment. Curr Drug Deliv 2024; 21:431-437. [PMID: 37032506 DOI: 10.2174/1567201820666230407135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ. METHODS To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis. RESULTS The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP. CONCLUSION This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.
Collapse
Affiliation(s)
- Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifeng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gengshan Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
2
|
Kim J, Lee C, Han J, Jeong H, Wang S, Choi YH, Jung Y. Targeted Deletion of Thymosin Beta 4 in Hepatic Stellate Cells Ameliorates Liver Fibrosis in a Transgenic Mouse Model. Cells 2023; 12:1658. [PMID: 37371128 DOI: 10.3390/cells12121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Liver fibrosis is the most common feature of liver disease, and activated hepatic stellate cells (HSCs) are the main contributors to liver fibrosis. Thus, finding key targets that modulate HSC activation is important to prevent liver fibrosis. Previously, we showed that thymosin β4 (Tβ4) influenced HSC activation by interacting with the Hedgehog pathway in vitro. Herein, we generated Tβ4 conditional knockout (Tβ4-flox) mice to investigate in vivo functions of Tβ4 in liver fibrosis. To selectively delete Tβ4 in activated HSCs, double-transgenic (DTG) mice were generated by mating Tβ4-flox mice with α-smooth muscle actin (α-Sma)-Cre-ERT2 mice, and these mice were administered carbon tetrachloride (CCl4) or underwent bile duct ligation to induce liver fibrosis. Tβ4 was selectively suppressed in the activated HSCs of DTG mouse liver, and this reduction attenuated liver injury, including fibrosis, in both fibrotic models by repressing Hedgehog (Hh) signaling. In addition, the re-expression of Tβ4 by an adeno-associated virus reversed the effect of HSC-specific Tβ4 deletion and led to liver fibrosis with Hh activation in CCl4-exposed mice treated with tamoxifen. In conclusion, our results demonstrate that Tβ4 is a crucial regulator of HSC activation, suggesting it as a novel therapeutic target for curing liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Chanbin Lee
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| | - Sihyung Wang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
3
|
Wang X, Zhou Y, Sun Q, Zhang Q, Zhou H, Zhang J, Du Y, Wang Y, Yuan K, Xu L, Zhang M, Yan D, Zeng L, Xu K, Sang W. Thymosin β4 exerts cytoprotective function and attenuates liver injury in murine hepatic sinusoidal obstruction syndrome after hematopoietic stem cell transplantation. Transplant Cell Ther 2023:S2666-6367(23)01292-7. [PMID: 37192732 DOI: 10.1016/j.jtct.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is one of the life-threatening complications that may occur after hematopoietic stem cell transplantation (HSCT). Hepatic sinusoidal endothelial cells (HSECs) injury and liver fibrosis are key mechanisms of HSOS. Thymosin β4 (Tβ4) is an active polypeptide that functions in a variety of pathological and physiological states such as inflammation regulation, anti-apoptosis and anti-fibrosis. In this study, we found that Tβ4 can stimulate HSECs proliferation, migration and tube formation in vitro via activation of pro-survival signaling AKT (protein kinase B). In addition, Tβ4 resisted γ irradiation-induced HSECs growth arrest and apoptosis in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL) and B-cell lymphoma-2 (Bcl-2), which may be associated with activation of AKT. More importantly, Tβ4 significantly inhibited irradiation-induced proinflammatory cytokines in parallel with negative regulation of TLR4/MyD88/NF-κB and MAPK p38. Meanwhile, Tβ4 reduced intracellular reactive oxygen species production and upregulated antioxidants in HSECs. Additionally, Tβ4 inhibited irradiation-induced activation of hepatic stellate cells via downregulation expression of fibrogenic markers α-SMA, PAI-1 and TGF-β. In a murine HSOS model, levels of circulating alanine aminotransferase, aspartate aminotransferase, total bilirubin, and pro-inflammatory cytokines IL-6, IL-1β and TNF-α were significantly reduced after administration of Tβ4 peptide; further, Tβ4 treatment successfully ameliorated HSECs injury, inflammatory damage and fibrosis of murine liver. Taken together, Tβ4 stimulates proliferation and angiogenesis of HSECs, exerts cytoprotective effect and attenuates liver injury in murine HSOS model, which could be a potential strategy to prevent and treat HSOS after HSCT.
Collapse
Affiliation(s)
- Xiangmin Wang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Yi Zhou
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Qian Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Qing Zhang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Hongyuan Zhou
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Jiaoli Zhang
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuwei Du
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Yuhan Wang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Ke Yuan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Linyan Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Meng Zhang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Lingyu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| | - Kailin Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| | - Wei Sang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| |
Collapse
|
4
|
Choi J, Cho Y, Choi H, Lee S, Han H, Lee J, Kwon J. Thymosin Beta 4 Inhibits LPS and ATP-Induced Hepatic Stellate Cells via the Regulation of Multiple Signaling Pathways. Int J Mol Sci 2023; 24:ijms24043439. [PMID: 36834849 PMCID: PMC9959661 DOI: 10.3390/ijms24043439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Risk signals are characteristic of many common inflammatory diseases and can function to activate nucleotide-binding oligomerization (NLR) family pyrin domain-containing 3 (NLRP3), the innate immune signal receptor in cytoplasm. The NLRP3 inflammasome plays an important role in the development of liver fibrosis. Activated NLRP3 nucleates the assembly of inflammasomes, leading to the secretion of interleukin (IL)-1β and IL-18, the activation of caspase-1, and the initiation of the inflammatory process. Therefore, it is essential to inhibit the activation of the NLRP3 inflammasome, which plays a vital role in the immune response and in initiating inflammation. RAW 264.7 and LX-2 cells were primed with lipopolysaccharide (LPS) for 4 h and subsequently stimulated for 30 min with 5 mM of adenosine 5'-triphosphate (ATP) to activate the NLRP3 inflammasome. Thymosin beta 4 (Tβ4) was supplemented to RAW264.7 and LX-2 cells 30 min before ATP was added. As a result, we investigated the effects of Tβ4 on the NLRP3 inflammasome. Tβ4 prevented LPS-induced NLRP3 priming by inhibiting NF-kB and JNK/p38 MAPK expression and the LPS and ATP-induced production of reactive oxygen species. Moreover, Tβ4 induced autophagy by controlling autophagy markers (LC3A/B and p62) through the inhibition of the PI3K/AKT/mTOR pathway. LPS combined with ATP significantly increased thee protein expression of inflammatory mediators and NLRP3 inflammasome markers. These events were remarkably suppressed by Tβ4. In conclusion, Tβ4 attenuated NLRP3 inflammasomes by inhibiting NLRP3 inflammasome-related proteins (NLRP3, ASC, IL-1β, and caspase-1). Our results indicate that Tβ4 attenuated the NLRP3 inflammasome through multiple signaling pathway regulations in macrophage and hepatic stellate cells. Therefore, based on the above findings, it is hypothesized that Tβ4 could be a potential inflammatory therapeutic agent targeting the NLRP3 inflammasome in hepatic fibrosis regulation.
Collapse
|
5
|
Kleinman HK, Kulik V, Goldstein AL. Thymosin β4 and the anti-fibrotic switch. Int Immunopharmacol 2023; 115:109628. [PMID: 36580759 DOI: 10.1016/j.intimp.2022.109628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Wound healing involves a rapid response to the injury by circulating cells, followed by inflammation with an influx of inflammatory cells that release various factors. Soon after, cellular proliferation begins to replace the damaged cells and extracellular matrix, and then tissue remodeling restores normal tissue function. Various factors can lead to pathological wound healing when excessive and irreversible connective tissue/extracellular matrix deposition occurs, resulting in fibrosis. The process is initiated when immune cells, such as macrophages, release soluble factors that stimulate fibroblasts. TGFβ is the most well-characterized macrophage derived pro-fibrotic mediator. Other soluble mediators of fibrosis include connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and interleukin 10 (IL-10). Thymosin β4 (Tβ4) has shown therapeutic benefit in preventing fibrosis/scarring in various animal models of fibrosis/scarring. The mechanism of action of Tβ4 appears related, in part, to a reduction in the inflammatory response, including a reduction in macrophage infiltration, decreased levels of TGFβ and IL-10, and reduced CTGF activation, resulting in both prevention of fibroblast conversion to myofibroblasts and production of normally aligned collagen fibers. The amino N-terminal end of Tβ4, SDKP (serine-aspartate-lysine-proline), appears to contain the majority of anti-fibrotic activity and has shown excellent efficacy in many animal models of fibrosis, including liver, lung, heart, and kidney fibrosis. Ac-SDKP not only prevents fibrosis but can reverse fibrosis. Unanswered questions and future directions will be presented with regard to therapeutic uses alone and in combination with already approved drugs for fibrosis.
Collapse
Affiliation(s)
- Hynda K Kleinman
- NIDCR, NIH, Bethesda, The George Washington University, Washington, DC, United States.
| | - Veronika Kulik
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, United States
| | - Allan L Goldstein
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Plasma Proteomic Analysis Identified Proteins Associated with Faulty Neutrophils Functionality in Decompensated Cirrhosis Patients with Sepsis. Cells 2022; 11:cells11111745. [PMID: 35681439 PMCID: PMC9179303 DOI: 10.3390/cells11111745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Decompensated cirrhosis (DC) is susceptible to infections and sepsis. Neutrophils and monocytes provide the first line of defense to encounter infection. We aimed to evaluate proteins related to neutrophils functionality in sepsis. 70 (DC), 40 with sepsis, 30 without (w/o) sepsis and 15 healthy controls (HC) plasma was analyzed for proteomic analysis, cytokine bead array, endotoxin, cell free DNA and whole blood cells were analyzed for nCD64-mHLADR index, neutrophils-monocytes, functionality and QRT-PCR. nCD64-mHLADR index was significantly increased (p < 0.0001) with decreased HLA-DR expression on total monocytes in sepsis (p = 0.045). Phagocytic activity of both neutrophils and monocytes were significantly decreased in sepsis (p = 0.002 and p = 0.0003). Sepsis plasma stimulated healthy neutrophils, showed significant increase in NETs (neutrophil extracellular traps) and cell free DNA (p = 0.049 and p = 0.04) compared to w/o sepsis and HC. Proteomic analysis revealed upregulated- DNAJC13, TMSB4X, GPI, GSTP1, PNP, ANPEP, COTL1, GCA, APOA1 and PGAM1 while downregulated- AHSG, DEFA1,SERPINA3, MPO, MMRN1and PROS1 proteins (FC > 1.5; p < 0.05) associated to neutrophil activation and autophagy in sepsis. Proteins such as DNAJC13, GPI, GSTP1, PNP, ANPEP, COTL1, PGAM1, PROS1, MPO, SERPINA3 and MMRN1 showed positive correlation with neutrophils activity and number, oxidative burst activity and clinical parameters such as MELD, MELD Na and Bilirubin. Proteomic analysis revealed that faulty functionality of neutrophils may be due to the autophagy proteins i.e., DNAJC13, AHSG, TMSB4X, PROS1 and SERPINA3, which can be used as therapeutic targets in decompensated cirrhosis patients with sepsis.
Collapse
|
7
|
Datta A, Deng S, Gopal V, Yap KCH, Halim CE, Lye ML, Ong MS, Tan TZ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel) 2021; 13:1882. [PMID: 33919917 PMCID: PMC8070945 DOI: 10.3390/cancers13081882] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Kenneth Chun-Hong Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mun Leng Lye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
8
|
Thymosin β4-Enhancing Therapeutic Efficacy of Human Adipose-Derived Stem Cells in Mouse Ischemic Hindlimb Model. Int J Mol Sci 2020; 21:ijms21062166. [PMID: 32245208 PMCID: PMC7139370 DOI: 10.3390/ijms21062166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
Thymosin β4 (Tβ4) is a G-actin sequestering protein that contributes to diverse cellular activities, such as migration and angiogenesis. In this study, the beneficial effects of combined cell therapy with Tβ4 and human adipose-derived stem cells (hASCs) in a mouse ischemic hindlimb model were investigated. We observed that exogenous treatment with Tβ4 enhanced endogenous TMSB4X mRNA expression and promoted morphological changes (increased cell length) in hASCs. Interestingly, Tβ4 induced the active state of hASCs by up-regulating intracellular signaling pathways including the PI3K/AKT/mTOR and MAPK/ERK pathways. Treatment with Tβ4 significantly increased cell migration and sprouting from microbeads. Moreover, additional treatment with Tβ4 promoted the endothelial differentiation potential of hASCs by up-regulating various angiogenic genes. To evaluate the in vivo effects of the Tβ4-hASCs combination on vessel recruitment, dorsal window chambers were transplanted, and the co-treated mice were found to have a significantly increased number of microvessel branches. Transplantation of hASCs in combination with Tβ4 was found to improve blood flow and attenuate limb or foot loss post-ischemia compared to transplantation with hASCs alone. Taken together, the therapeutic application of hASCs combined with Tβ4 could be effective in enhancing endothelial differentiation and vascularization for treating hindlimb ischemia.
Collapse
|
9
|
Chen C, Li X, Wang L. Thymosinβ4 alleviates cholestatic liver fibrosis in mice through downregulating PDGF/PDGFR and TGFβ/Smad pathways. Dig Liver Dis 2020; 52:324-330. [PMID: 31542221 DOI: 10.1016/j.dld.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is an important health problem without adequate and effective therapeutics. In this study, effects of thymosinβ4 (Tβ4) on hepatic fibrogenesis and the underlying molecular mechanisms were explored in bile duct ligation (BDL)-induced mice cholestatic liver fibrosis model. Results showed exogenous Tβ4 significantly reduced the mortality and liver/body weight ratio in BDL mice. Histological examinations and biochemical analyses demonstrated that BDL induced evident portal fibrosis and a significant increase in hepatic collagen contents. However, these changes were significantly attenuated by exogenous Tβ4. Quantitative real-time PCR assays showed that Tβ4 suppressed BDL-induced increases in many fibrotic genes expression including α-smooth muscle actin (α-SMA), collagen I, III and fibronectin, TGFβ1, TGFβR II, Smad2, Smad3, and PDGFRβ. Results from immunohistochemistry and Western blots also showed that Tβ4 reduced TGFβ1 and PDGFRβ protein levels in the liver tissues of BDL mice. In vitro studies using LX-2 cells demonstrated that Tβ4 could decrease PDGFRβ and TGFβR II levels in hepatic stellate cells. Taken together, findings in our present studies suggested that exogenous Tβ4 alleviated BDL-induced cholestatic liver fibrosis through downregulating PDGF/PDGFR and TGFβ/Smad pathways.
Collapse
Affiliation(s)
- Cai Chen
- Teaching and Research Centre, Faculty of Medicine, Xinyang Vocational and Technical College, Xinyang, China
| | - Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019; 8:cells8101259. [PMID: 31619023 PMCID: PMC6835656 DOI: 10.3390/cells8101259] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) caused by fat accumulation in the liver is globally the most common cause of chronic liver disease. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD. The most potent driver for NASH is hepatocyte death induced by lipotoxicity, which triggers inflammation and fibrosis, leading to cirrhosis and/or liver cancer. Despite the significant burden of NAFLD, there is no therapy for NAFLD/NASH. Accumulating evidence indicates gender-related NAFLD progression. A higher incidence of NAFLD is found in men and postmenopausal women than premenopausal women, and the experimental results, showing protective actions of estradiol in liver diseases, suggest that estrogen, as the main female hormone, is associated with the progression of NAFLD/NASH. However, the mechanism explaining the functions of estrogen in NAFLD remains unclear because of the lack of reliable animal models for NASH, the imbalance between the sexes in animal experiments, and subsequent insufficient results. Herein, we reviewed the pathogenesis of NAFLD/NASH focused on gender and proposed a feasible association of estradiol with NAFLD/NASH based on the findings reported thus far. This review would help to expand our knowledge of the gender differences in NAFLD and for developing gender-based treatment strategies for NAFLD/NASH.
Collapse
|
11
|
Feng XW, Huo LJ, Yang MC, Wang JX, Shi XZ. Thymosins participate in antibacterial immunity of kuruma shrimp, Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:244-251. [PMID: 30292805 DOI: 10.1016/j.fsi.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Thymosins β are actin-binding proteins that play a variety of different functions in inflammatory responses, wound healing, cell migration, angiogenesis, and stem cell recruitment and differentiation. In crayfish, thymosins participate in antiviral immunology. However, the roles of thymosin during bacterial infection in shrimp remain unclear. In the present study, four thymosins were identified from kuruma shrimp, Marsupenaeus japonicus, and named as Mjthymosin2, Mjthymosin3, Mjthymosin4, and Mjthymosin5 according the number of their thymosin beta actin-binding motifs. Mjthymosin3 was selected for further study because its expression level was the highest in hemocytes. Expression analysis showed that Mjthymosin3 was upregulated in hemocytes after challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant Mjthymosin3 protein could inhibit the growth of certain bacteria in an in vitro antibacterial test. Mjthymosins could facilitate external bacterial clearance in shrimp, and were beneficial to shrimp survival post V. anguillarum or S. aureus infection. The results suggested that Mjthymosins played important roles in the antibacterial immune response of kuruma shrimp.
Collapse
Affiliation(s)
- Xiao-Wu Feng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Li-Jie Huo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
12
|
El-Zayat SR, Sibaii H, Mahfouz NN, Sallam SF, Fahmy RF, Abd El-Shaheed A. Effect of vitamin A deficiency on thymosin-β4 and CD4 concentrations. J Genet Eng Biotechnol 2018; 16:57-61. [PMID: 30647705 PMCID: PMC6296595 DOI: 10.1016/j.jgeb.2017.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022]
Abstract
Vitamins are evaluated for their role in immunity. Recently, vitamin A received a particular attention as a critical micronutrient for regulating immune system. Therefore, the present study aimed to search for new about vitamin A. Forty-eight Egyptian adults aged from 18 to 42 years old from both sexes were subjected to clinical examination and nutrition questionnaire and were screened for vitamin A by using ELISA method. Forty subjects were selected and subdivided into two groups. Group 1 with vitamin A at level >200 µg/dl consists of 10 healthy subjects. Group 2 with vitamin A deficiency at level <50 µg/dl consists of 30 subjects. Tβ4 and CD4 levels were also determined by a commercial ELISA kit. Results showed a significant decrease in serum levels of Tβ4 and CD4 in group 2 than group 1 at P < .003 and P < .019 respectively. Both of Tβ4 and CD4 had positive correlation with vitamin A level at P < .000 and P < .003 respectively as well as with each other at p < .000. We concluded that vitamin A deficiency may be influence the levels of Tβ4 and CD4.
Collapse
Affiliation(s)
- Salwa Refat El-Zayat
- Medical Physiology Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki POB:12311, Cairo, Egypt
| | - Hiba Sibaii
- Medical Physiology Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki POB:12311, Cairo, Egypt
| | - Nermine N. Mahfouz
- Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo, Egypt
| | - Sara F. Sallam
- Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo, Egypt
| | - Reham F. Fahmy
- Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo, Egypt
| | - Azza Abd El-Shaheed
- Child Health Department, National Research Centre, Medical Division, 33 El-Bohouth Street, Dokki, POB:12311, Cairo, Egypt
| |
Collapse
|
13
|
Inhibition of acetaminophen-induced hepatotoxicity in mice by exogenous thymosinβ4 treatment. Int Immunopharmacol 2018; 61:20-28. [PMID: 29793165 DOI: 10.1016/j.intimp.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/12/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To study the effects of exogenous thymosinβ4 (Tβ4) treatment in acetaminophen (APAP)-induced hepatotoxicity. METHODS Liver injury was induced in mice by a single intraperitoneal injection of APAP (500 mg/kg). Exogenous Tβ4 was intraperitoneally administrated at 0 h, 2 h and 4 h after APAP injection. Chloroquine (CQ) (60 mg/kg) was intraperitoneally injected 2 h before APAP administration to inhibit autophagy. Six hours after APAP injection liver injury was evaluated by histological examinations, biochemical measurements and enzyme linked immunosorbent assay (ELISAs). Western blots were performed to detect proteins expression. RESULTS Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly increased 6 h after APAP administration, but were significantly reduced by co-administration of Tβ4. Histological examinations demonstrated that Tβ4 reduced necrosis and inflammation induced by APAP. Immunofluorescence showed that Tβ4 suppressed APAP-induced translocation of high mobility group box-1 protein (HMGB1) from the nucleus to cytosol and intercellular space. Hepatic glutathione (GSH) depletion, malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) activities induced by APAP were all attenuated by Tβ4. APAP-induced increases in hepatic nuclear factor-κB (NF-κB) p65 protein expression and inflammatory cytokines production including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were reduced by Tβ4 treatment. Increased LC3 and p62 proteins in the liver tissues of APAP-treated mice were decreased by Tβ4 treatment, which indicated the enhancement of autophagy flux by Tβ4. Furthermore, inhibiting autophagy by CQ abrogated the protective effects of Tβ4 against APAP hepatotoxicity. CONCLUSION Exogenous Tβ4 treatment exerts protective effects against APAP-induced hepatotoxicity in mice. The underneath molecular mechanisms may involve autophagy enhancement and inhibition of oxidative stress by Tβ4.
Collapse
|
14
|
Tsiomita S, Georgopoulou U, Doumba PP, Koskinas J, Adamidis K, Papaloukas C, Thyphronitis G. Evaluation of alternative serum biomarkers to monitor the progression of chronic HBV and HCV infection. INFECTION GENETICS AND EVOLUTION 2017; 58:17-22. [PMID: 29221787 DOI: 10.1016/j.meegid.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are among the most serious health conditions affecting about 600 million people worldwide leading to a number of severe liver diseases. Due to the lack of warning signs or mild symptoms during the early stage of the infection, a molecular signature associated with disease progression would be useful. Based on our recent paper where candidate biomarkers were determined through topological and modularity analysis of protein interaction networks (PINs), this study was focused on the evaluation of MIF, TNFRSF1A, FAS and TMSB4X as diagnostic biomarkers in chronic HBV and HCV infections. The aim was to establish a molecular profile, by combining those markers, that would discriminate the different stages during the progression of chronic hepatitis. One hundred and fifteen patients infected with HBV or HCV categorized into three groups: non-cirrhotic, cirrhotic and with HCC, and 20 healthy subjects were enrolled in this study. Serum levels of the aforementioned factors were measured by ELISA. TNFRSF1A serum levels appeared statistically significantly increased in all patient groups compared to control group with a p-value of <0.05. Furthermore, the combination of TNFRSF1A and TMSB4X serum levels successfully classified 63, 47% of patients indicating an association with HBV and HCV infections. Thus, variations of serum levels of TNFRSF1A and TMSB4X could be associated with the different stages of the disease and may be utilized for further research. On the other hand, we found no contribution of MIF and FAS serum levels for successful classification of patients.
Collapse
Affiliation(s)
- S Tsiomita
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - U Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece.
| | - P P Doumba
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - J Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration Hospital, Athens, Greece
| | - K Adamidis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - C Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - G Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
15
|
Jiang Y, Han T, Zhang ZG, Li M, Qi FX, Zhang Y, Ji YL. Potential role of thymosin beta 4 in the treatment of nonalcoholic fatty liver disease. Chronic Dis Transl Med 2017; 3:165-168. [PMID: 29063072 PMCID: PMC5643779 DOI: 10.1016/j.cdtm.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
As a result of increased prevalence of obesity worldwide, non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of chronic liver disease. Although most NAFLD cases remain benign, some progress to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. Therefore, treatment should be considered for NAFLD patients who are likely to progress to nonalcoholic steatohepatitis (NASH) or fibrosis. Thymosin beta 4 (Tβ4), a G-actin sequestering peptide, regulates actin polymerization in mammalian cells. In addition, studies have reported anti-inflammatory, insulin-sensitizing, and anti-fibrotic effects of Tβ4. However, no research has been done to investigate the effects of Tβ4 on NAFLD. Based on the findings above mentioned, we hypothesize that Tβ4 may represent an effective treatment for NAFLD.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.,Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Zhi-Guang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Feng-Xiang Qi
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying-Lan Ji
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
16
|
Chernukha IM, Fedulova LV, Vasilevskaya ER, Kotenkova EA. Comparative study of biocorrective protein-peptide agent to improve quality and safety of livestock products. POTRAVINARSTVO 2017. [DOI: 10.5219/590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Water with modified isotopic composition (D/H = 40 ppm) as a solubilizing agent for biologically active substances extraction from immune organs Sus Scrofa increases protein yield in thymus to 20%, in spleen up to 38%, mesenteric lymph nodes up to 35% in comparison with distilled water (D/H = 150 ppm). It was found a significant amount of neurotransmitter amino acids, such as aspartic and glutamic acids, glycine (thymus - 10.5; 13.7; 7.6%; spleen - 12.2; 10.7; 7.8% lymph nodes - 11.0; 13.3; 11.1%, respectively) having the immunological and adaptogenic activity, in extracts of Sus scrofa immunocompetent organs (thymus, spleen, mesenteric lymph nodes). Application of water with modified isotopic composition as solubilizing agent (D / H = 40 ppm) for extraction of immunocompetent organs' biologically active compounds led to increased amino acid content, including hydrophilic amino acids, in thymus extracts - up to 22%, in spleen extracts - up to 15% , in lymph nodes exctracts - up to 8%, in comparison to distilled water (D / H = 150 ppm). Peptide profile analysis revealed positive effect of water (D/H = 40 ppm) on a quality protein content extracts in molecular weight range from 10 to 20 kDa and from 30 to 45 kDa and peptide composition (2 kDa), at the same time quantitative content of compounds adaptogenic and immunocorrective action increased. Reducing of deuterium content in the solubilizing agent enhances quantitative amino acid content, i.e. extraction in an aqueous- salt solution based on deuterium depleted water of animal tissues with a high content of amino acids with hydrophilic radicals proceeded more completely.
Collapse
|
17
|
Toby TK, Abecassis M, Kim K, Thomas PM, Fellers RT, LeDuc RD, Kelleher NL, Demetris J, Levitsky J. Proteoforms in Peripheral Blood Mononuclear Cells as Novel Rejection Biomarkers in Liver Transplant Recipients. Am J Transplant 2017; 17:2458-2467. [PMID: 28510335 PMCID: PMC5612406 DOI: 10.1111/ajt.14359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 01/25/2023]
Abstract
Biomarker profiles of acute rejection in liver transplant recipients could enhance the diagnosis and management of recipients. Our aim was to identify diagnostic proteoform signatures of acute rejection in circulating immune cells, using an emergent "top-down" proteomics methodology. We prepared differentially processed and cryopreserved cell lysates from 26 nonviral liver transplant recipients by molecular weight-based fractionation and analyzed them by mass spectrometry of whole proteins in three steps: (i) Nanocapillary liquid chromatography coupled with high-resolution tandem mass spectrometry; (ii) database searching to identify and characterize intact proteoforms; (iii) data processing through a hierarchical linear model matching the study design to quantify proteoform fold changes in patients with rejection versus normal liver function versus acute dysfunction without rejection. Differentially expressed proteoforms were seen in patients with rejection versus normal and nonspecific controls, most evidently in the cell preparations stored in traditional serum-rich media. Mapping analysis of these proteins back to genes through gene ontology and pathway analysis tools revealed multiple signaling pathways, including inflammation mediated by cytokines and chemokines. Larger studies are needed to validate these novel rejection signatures and test their predictive value for use in clinical management.
Collapse
Affiliation(s)
- T. K. Toby
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL
| | - M. Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - K. Kim
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL
| | - P. M. Thomas
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL,National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - R. T. Fellers
- National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - R. D. LeDuc
- National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - N. L. Kelleher
- Department of Molecular Biosciences and Chemistry, Northwestern University, Chicago, IL,National Resource for Translational & Developmental Proteomics, Northwestern University, Chicago, IL
| | - J. Demetris
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - J. Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL,Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, IL,Corresponding author: Josh Levitsky,
| |
Collapse
|
18
|
Li X, Wang L, Chen C. Effects of exogenous thymosin β4 on carbon tetrachloride-induced liver injury and fibrosis. Sci Rep 2017; 7:5872. [PMID: 28724974 PMCID: PMC5517632 DOI: 10.1038/s41598-017-06318-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the effects of exogenous thymosin β4 (TB4) on carbon tetrachloride (CCl4)-induced acute liver injury and fibrosis in rodent animals. Results showed that both in mice and rats CCl4 rendered significant increases in serum alanine aminotransferase and aspartate aminotransferase, hepatic malondialdehyde formation, decreases in antioxidants including superoxide dismutase and glutathione, and up-regulated expressions of transforming growth factor-β1, α-smooth muscle actin, tumor necrosis factor-α and interleukin-1β in the liver tissues. Hydroxyproline contents in the rat livers were increased by CCl4. Histopathological examinations indicated that CCl4 induced extensive necrosis in mice livers and pseudo-lobule formations, collagen deposition in rats livers. However, all these changes in mice and rats were significantly attenuated by exogenous TB4 treatment. Furthermore, up-regulations of nuclear factor-κB p65 protein expression by CCl4 treatment in mice and rats livers were also remarkably reduced by exogenous TB4 administration. Taken together, findings in this study suggested that exogenous TB4 might prevent CCl4-induced acute liver injury and subsequent fibrosis through alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cai Chen
- Teaching and Research Centre, Faculty of Medicine, Xinyang Vocational and Technical College, Xinyang, China
| |
Collapse
|
19
|
Abstract
The molecular mechanisms of thymosin beta-4 (TB4) involved in regulating hepatic stellate cell (HSC) functions remain unclear. Therefore, we hypothesize that TB4 influences HSC activation through hedgehog (Hh) pathway. HSC functions declined in a TB4 siRNA-treated LX-2. TB4 suppression down-regulated both integrin linked kinase (ILK), an activator of smoothened, and phosphorylated glycogen synthase kinase 3 beta (pGSK-3B), an inactive form of GSK-3B degrading glioblastoma 2 (GLI2), followed by the decreased expression of both smoothened and GLI2. A TB4 CRISPR also blocked the activation of primary HSCs, with decreased expression of smoothened, GLI2 and ILK compared with cells transfected with nontargeting control CRISPR. Double immunostaining and an immunoprecipitation assay revealed that TB4 interacted with either smoothened at the cytoplasm or GLI2 at the nucleus in LX-2. Smoothened suppression in primary HSCs using a Hh antagonist or adenovirus transduction decreased TB4 expression with the reduced activation of HSCs. Tb4-overexpressing transgenic mice treated with CCl4 were susceptible to the development hepatic fibrosis with higher levels of ILK, pGSK3b, and Hh activity, as compared with wild-type mice. These findings demonstrate that TB4 regulates HSC activation by influencing the activity of Smoothened and GLI2, suggesting TB4 as a novel therapeutic target in liver disease.
Collapse
|
20
|
Liang J, Cai W, Han T, Jing L, Ma Z, Gao Y. The expression of thymosin β4 in chronic hepatitis B combined nonalcoholic fatty liver disease. Medicine (Baltimore) 2016; 95:e5763. [PMID: 28033294 PMCID: PMC5207590 DOI: 10.1097/md.0000000000005763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to detect the expression level of thymosin β4 (Tβ4) in serum and tissues of patients with chronic hepatitis B (CHB) combined nonalcoholic fatty liver disease (NAFLD). The effects of Tβ4 in hepatic steatosis, chronic inflammation, and fibrosis development in CHB combined NAFLD patients were also discussed. The study included 46 patients in the case group with CHB and NAFLD and 42 patients in the control group with CHB. ELISA was applied to detect serum Tβ4 and TNF-α level. Furthermore, the correlation analysis of Tβ4 levels with biochemical index, pathological index, and TNF-α level was performed. The Tβ4 immunohistochemical levels of different inflammation fibrosis levels were compared, and the correlation analysis with TNF expression was performed. The Tβ4 levels in patients with CHB combined NAFLD showed no statistical difference when compared to the control group. In patients with CHB combined NAFLD group, the Tβ4 level had no correlation with ALT, AST, TG, FGP, hepatitis B virus (HBV)-DNA levels, and fat grading, but had negative correlation with inflammation score and fibrosis score (P <0.01). The immunohistochemical results of hepatic tissues showed that the expression intensity of severe inflammation fibrosis group had statistical significance compared with that of slight group, and the Tβ4 expression both in serum and in liver tissue negatively correlated with TNF-α expression. Tβ4 could be involved in the regulation of chronic inflammation and fibrosis and plays a defense role in the disease progression of CHB combined NAFLD patients.
Collapse
Affiliation(s)
- Jing Liang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital
- Tianjin Key Laboratory of Artificial Cell
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Wenjuan Cai
- Department of Pathology, Tianjin First Central Hospital
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital
| | - Li Jing
- Molecular Biology Laboratory, Tianjin Third Central Hospital
| | - Zhe Ma
- Department of Pathology, Tianjin Third Central Hospital
| | - Yingtang Gao
- Molecular Biology Laboratory, Tianjin Third Central Hospital
| |
Collapse
|