1
|
Ahlawat S, Vasu M, Mir MA, Singh MK, Arora R, Sharma R, Chhabra P, Sharma U. Molecular insights into Pashmina fiber production: comparative skin transcriptomic analysis of Changthangi goats and sheep. Mamm Genome 2024; 35:160-169. [PMID: 38589518 DOI: 10.1007/s00335-024-10040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Ladakh, one of the highest inhabited regions globally, hosts the unique Changthangi goat, renowned for producing Pashmina, the world's most luxurious natural fiber. In comparison, the fiber derived from Changthangi sheep is considered next only to Pashmina. This research endeavors to compare the skin transcriptome profiles of Changthangi goats and Changthangi sheep, aiming to discern the molecular determinants behind the recognition of Changthangi goats as the source of Pashmina. Drawing upon previously conducted studies, a collective of 225 genes correlated with fiber characteristics were extracted from the differentially expressed genes noticed between the two species (p-value of ≤ 0.05 and a log2 fold change of ≥ 1.5). These genes were analyzed using DAVID software to understand their biological functions and to identify enriched KEGG and Reactome pathways. The protein-protein interaction networks were constructed using Cytoscape, cytoHubba, and STRING to focus on key genes and infer their biological significance. Comparative transcriptome analysis revealed significantly higher expression of genes involved in signaling pathways like Wnt, MAPK, PI3K-Akt, Hedgehog, associated with fiber development and quality in Changthangi goats. These pathways play crucial roles in hair follicle (HF) formation, maintenance of epidermal stem cells, and fiber characteristics. Findings also highlight the enrichment of cell adhesion molecules and ECM-receptor interaction, emphasizing their roles in HF structure, growth, and signaling. This investigation offers an in-depth understanding of the molecular intricacies governing Pashmina production in Changthangi goats, providing valuable insights into their unique genetic makeup and underlying mechanisms influencing the exceptional quality of Pashmina fibers.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, SKUAST, Shuhama (Aulestang), Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Chen Z, Zhao F, He Z, Sun H, Xi Q, Yu X, Ding Y, An Z, Wang J, Liu X, Li M, Hao Z, Li S. Expression Localization of the KRT32 Gene and Its Association of Genetic Variation with Wool Traits. Curr Issues Mol Biol 2024; 46:2961-2974. [PMID: 38666915 PMCID: PMC11049001 DOI: 10.3390/cimb46040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in keratin gene expression and spatiotemporal regulation determine the compositional content and cellular localization of wool keratin, thereby affecting wool traits. Therefore, keratin gene family member 32 (KRT32) was selected for a study using RT-qPCR, immunofluorescence, and penta-primer amplification refractory mutation system (PARMS) techniques. The results showed that KRT32 mRNA was highly expressed in the skin and localized to the inner root sheath (IRS), outer root sheath (ORS) and dermal papilla (DP). Sequencing results identified eight SNPs in KRT32, and association analyses revealed that the variations were significantly associated with multiple traits in wool (p < 0.05), including MFD, CF and MFC. The constructed haplotype combination H2H3 has higher CF and smaller MFD than other haplotype combination (p < 0.05). In conclusion, KRT32 can be used as a candidate gene for molecular genetic improvement of wool in Gansu Alpine Fine-wool sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.C.); (F.Z.); (Z.H.); (H.S.); (Q.X.); (X.Y.); (Y.D.); (Z.A.); (J.W.); (X.L.); (M.L.); (Z.H.)
| |
Collapse
|
3
|
Vasu M, Ahlawat S, Chhabra P, Sharma U, Arora R, Sharma R, Mir MA, Singh MK. Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: A comparative skin transcriptome analysis. Gene 2024; 891:147826. [PMID: 37748630 DOI: 10.1016/j.gene.2023.147826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Changthangi sheep, which inhabit the high-altitude regions of Ladakh, are known for their fine fiber production and are characterized by grey skin and either black or white coats. In contrast, Muzzafarnagri sheep from the plains of Uttar Pradesh produce coarse wool and have white skin and coats. We conducted comparative global gene expression profiling on four biological replicates of skin from each breed. Notably, our analysis identified 149 up-regulated genes and 2,139 down-regulated genes in Changthangi sheep compared to Muzzafarnagri sheep, with a p-adjusted value (padj) of ≤0.05 and a Log2 fold change of ≥1.5. Gene Ontology analysis of the up-regulated genes revealed an enrichment of terms related to melanin biosynthesis and developmental pigmentation. Additionally, enriched KEGG pathways included tyrosine metabolism and metabolic pathways. Among the melanogenesis-related genes that exhibited higher expression in Changthangi sheep were TYR, TYRP1, DCT, SLC45A2, PMEL, MLANA, and OCA2. These findings confirm melanin's role in both the animals' black coat color and UV protection at high-altitude. Furthermore, we observed more pronounced expression of genes related to fiber quality, namely KRTAP6, KRTAP7, KRTAP13, and KRTAP2, in the fine wool-producing sheep from Ladakh. The results of the RNA sequencing were validated using real-time PCR on 10 genes governing fiber quality and coat color, with ACTB and PPIB serving as reference genes. In conclusion, our comparative skin transcriptome analysis of Changthangi and Muzzafarnagri sheep sheds light on the genetic differences associated with distinct phenotypic traits and environmental adaptability, offering valuable insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India; ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, Shuhama (Aulestang), SKUAST-Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| |
Collapse
|
4
|
Sun H, Meng K, Wang Y, Wang Y, Yuan X, Li X. LncRNAs regulate the cyclic growth and development of hair follicles in Dorper sheep. Front Vet Sci 2023; 10:1186294. [PMID: 37583467 PMCID: PMC10423938 DOI: 10.3389/fvets.2023.1186294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Hair follicles in Dorper sheep are characterized by seasonal cyclic growth and development, consequently resulting in hair shedding during spring. The cyclic growth and development of hair follicles are regulated by several influencing factors such as photoperiods, hormones, age of the animal, genes, long non-coding RNAs (lncRNAs), and signaling pathways. Methods In the present study, skin samples of five shedding sheep (S), used as experimental animals, and three non-shedding sheep (N), used as controls, were collected at three time points (September 27, 2019; January 3, 2020; and March 17, 2020) for RNA sequencing (RNA-seq) technology. Nine different groups (S1-vs-S2, S1-vs-S3, S2-vs-S3, N1- vs-N2, N1-vs-N3, N2-vs-N3, S1-vs-N1, S2-vs-N2, and S3-vs-N3) were compared using FDR < 0.05 and log 21 FC >as thresholds to assess the differences in the expression of lncRNAs. Results and discussion In total, 395 differentially expressed (DE) lncRNAs were screened. Cluster heatmap analysis identified two types of expression patterns, namely, high expression during the anagen phase (A pattern) and high expression during the telogen phase (T pattern). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the target genes were largely enriched in the Estrogen signaling pathway, PI3K-Akt signaling pathway, Fc gamma R-mediated phagocytosis, and cell adhesion molecules (CAMs), which are associated with hair follicle cyclic growth and development-related pathways. In addition, 17 pairs of lncRNAs-target genes related to hair follicle cyclic growth and development were screened, and a regulatory network was constructed. Altogether, candidate lncRNAs and their regulated target genes were screened that contributed to sheep hair follicle cyclic growth and development. We believe these findings will provide useful insights into the underlying regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Ghildiyal K, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Lei C, Bhushan B, Dutt T. Selection signatures for fiber production in commercial species: A review. Anim Genet 2023; 54:3-23. [PMID: 36352515 DOI: 10.1111/age.13272] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Natural fibers derived from diverse animal species have gained increased attention in recent years due to their favorable environmental effects, long-term sustainability benefits, and remarkable physical and mechanical properties that make them valuable raw materials used for textile and non-textile production. Domestication and selective breeding for the economically significant fiber traits play an imperative role in shaping the genomes and, thus, positively impact the overall productivity of the various fiber-producing species. These selection pressures leave unique footprints on the genome due to alteration in the allelic frequencies at specific loci, characterizing selective sweeps. Recent advances in genomics have enabled the discovery of selection signatures across the genome using a variety of methods. The increased demand for 'green products' manufactured from natural fibers necessitates a detailed investigation of the genomes of the various fiber-producing plant and animal species to identify the candidate genes associated with important fiber attributes such as fiber diameter/fineness, color, length, and strength, among others. The objective of this review is to present a comprehensive overview of the concept of selection signature and selective sweeps, discuss the main methods used for its detection, and address the selection signature studies conducted so far in the diverse fiber-producing animal species.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
6
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
7
|
Li YC, He DQ, Ma YH, Ma Q, Ding W, Chen YH, Zhang M, Luo F, Chen LY, Wang JK, Jiang L, Li YK, Tao JZ. Skin transcriptome analysis identifies the key genes underlying fur development in Chinese Tan sheep in the birth and Er-mao periods. Gene 2022; 820:146257. [PMID: 35143949 DOI: 10.1016/j.gene.2022.146257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Hair follicle development in Tan sheep differs significantly between the birth and Er-mao periods, but the underlying molecular mechanism is still unclear. We profiled the skin transcriptomes of Tan sheep in the birth and Er-mao periods via RNA-seq technology. The Tan sheep examined consisted of three sheep in the birth period and three sheep in the Er-mao period. A total of 364 differentially expressed genes (DEGs) in the skin of Tan sheep between the birth period and the Er-mao period were identified, among which 168 were upregulated and 196 were downregulated. Interestingly, the FOS proto-oncogene (FOS) (fold change = 22.67, P value = 2.15*10^-44) was the most significantly differentially expressed gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the FOS gene was significantly enriched in the signaling pathway related to hair follicle development. Immunohistochemical analysis showed that the FOS gene was expressed in the skin of Chinese Tan sheep at the birth and Er-mao periods, with significantly higher expression in the Er-mao period. Our findings suggest that the FOS gene promotes hair follicle development in Tan sheep.
Collapse
Affiliation(s)
- Ya Chao Li
- Agricultural College, Ning Xia University, Yin Chuan 750021, China; The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Dong Qian He
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Yue Hui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qin Ma
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China
| | - Wei Ding
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China
| | - Yong Hong Chen
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Meng Zhang
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Fang Luo
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Li Yao Chen
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Jun Kui Wang
- Agricultural College, Ning Xia University, Yin Chuan 750021, China
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Ying Kang Li
- Animal Science Institute of Ning Xia Agricultural and Forestry Academy, Yin Chuan 750002, China.
| | - Jin Zhong Tao
- Agricultural College, Ning Xia University, Yin Chuan 750021, China.
| |
Collapse
|
8
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes (Basel) 2022; 13:genes13020342. [PMID: 35205386 PMCID: PMC8872417 DOI: 10.3390/genes13020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Hair follicle development is closely associated with wool curvature. Current studies reveal the crucial role of microRNAs (miRNAs) in hair follicle growth and development. However, few studies are known regarding their role in wool curvature. To reveal the potential roles of miRNAs in Hu sheep lambskin with different patterns, a total of 37 differentially expressed (DE) miRNAs were identified in hair follicles between small waves (SM) and straight wool (ST) groups using RNA-seq. Through functional enrichment and miRNA-mRNA co-expression analysis, some key miRNAs (oar-miR-143, oar-miR-200b, oar-miR-10a, oar-miR-181a, oar-miR-10b, oar-miR-125b, etc.) and miRNA-mRNA pairs (miR-125b target CD34, miR-181a target FGF12, LMO3, miR-200b target ZNF536, etc.) were identified. Though direct or indirect ways affecting hair follicle development, these miRNAs and mRNAs may have possible effects on wool curvature, and this study thus provides valuable insight on potential pattern formation.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
- Correspondence: ; Tel.: +86-139-5275-0912
| |
Collapse
|
9
|
Zhang Y, Zhang D, Xu Y, Qin Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Selection of Cashmere Fineness Functional Genes by Translatomics. Front Genet 2022; 12:775499. [PMID: 35096002 PMCID: PMC8790676 DOI: 10.3389/fgene.2021.775499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dongyun Zhang
- International Business School and International Economics and Trade, Shenyang Normal University, Shenyang, China
| | - Yanan Xu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingang Sun
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science andVeterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, Li X, Esmailizadeh A, Rezaei V, Kantanen J, Ammosov I, Nosrati M, Periasamy K, Coltman DW, Lenstra JA, Nielsen R, Li MH. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol 2021; 4:1307. [PMID: 34795381 PMCID: PMC8602413 DOI: 10.1038/s42003-021-02817-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
The domestication and subsequent development of sheep are crucial events in the history of human civilization and the agricultural revolution. However, the impact of interspecific introgression on the genomic regions under domestication and subsequent selection remains unclear. Here, we analyze the whole genomes of domestic sheep and their wild relative species. We found introgression from wild sheep such as the snow sheep and its American relatives (bighorn and thinhorn sheep) into urial, Asiatic and European mouflons. We observed independent events of adaptive introgression from wild sheep into the Asiatic and European mouflons, as well as shared introgressed regions from both snow sheep and argali into Asiatic mouflon before or during the domestication process. We revealed European mouflons might arise through hybridization events between a now extinct sheep in Europe and feral domesticated sheep around 6000-5000 years BP. We also unveiled later introgressions from wild sheep to their sympatric domestic sheep after domestication. Several of the introgression events contain loci with candidate domestication genes (e.g., PAPPA2, NR6A1, SH3GL3, RFX3 and CAMK4), associated with morphological, immune, reproduction or production traits (wool/meat/milk). We also detected introgression events that introduced genes related to nervous response (NEURL1), neurogenesis (PRUNE2), hearing ability (USH2A), and placental viability (PAG11 and PAG3) into domestic sheep and their ancestral wild species from other wild species.
Collapse
Affiliation(s)
- Ze-Hui Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China ,grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Xi Xu
- grid.22935.3f0000 0004 0530 8290College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xing-Long Xie
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Dong-Feng Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Diana Aguilar-Gómez
- grid.47840.3f0000 0001 2181 7878Center for Computational Biology, University of California at Berkeley, Berkeley, CA 94720 USA
| | | | - Xin Li
- grid.9227.e0000000119573309CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ali Esmailizadeh
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahideh Rezaei
- grid.412503.10000 0000 9826 9569Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Juha Kantanen
- grid.22642.300000 0004 4668 6757Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Innokentyi Ammosov
- grid.495192.2Laboratory of Reindeer Husbandry and Traditional Industries, Yakut Scientific Research Institute of Agriculture, The Sakha Republic (Yakutia), Yakutsk, Russia
| | - Maryam Nosrati
- grid.412462.70000 0000 8810 3346Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Kathiravan Periasamy
- grid.420221.70000 0004 0403 8399Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - David W. Coltman
- grid.17089.37Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9 Canada
| | - Johannes A. Lenstra
- grid.5477.10000000120346234Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, 94720, USA. .,Department of Statistics, UC Berkeley, Berkeley, CA, 94707, USA. .,Globe Institute, University of Copenhagen, 1350, København K, Denmark.
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
12
|
Wang J, Qu J, Li Y, Feng Y, Ma J, Zhang L, Chu C, Hu H, Wang Y, Ji D. miR-149-5p Regulates Goat Hair Follicle Stem Cell Proliferation and Apoptosis by Targeting the CMTM3/AR Axis During Superior-Quality Brush Hair Formation. Front Genet 2020; 11:529757. [PMID: 33262781 PMCID: PMC7686784 DOI: 10.3389/fgene.2020.529757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The Yangtze River Delta white goat is a unique goat species that can produce superior quality brush hair. CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), which influences the transcriptional activity of androgen receptor (AR), was identified as a candidate gene related to superior-quality brush hair formation. CMTM3 is generally expressed at low levels, but miR-149-5p is highly expressed in the skin tissues of these goats. The mechanism by which CMTM3 regulates the proliferation and apoptosis of goat hair follicle stem cells has not been elucidated. Here, RT-qPCR, western blotting, 5-ethynyl-2′-deoxyuridine (EdU), cell cycle, apoptosis, and dual-luciferase assays were used to investigate the role and regulatory mechanism of CMTM3 and miR-149-5p. Functional studies showed that CMTM3 overexpression inhibited proliferation and induced apoptosis in cultured hair follicle stem cells, whereas silencing CMTM3 markedly facilitated cell proliferation and deterred apoptosis in cultured hair follicle stem cells. Then, using bioinformatic predictions and the aforementioned assays, including dual-luciferase assays, RT-qPCR, and western blotting, we confirmed that miR-149-5p targets CMTM3 and preliminarily investigated the interaction between CMTM3 and AR in goat hair follicle stem cells. Furthermore, miR-149-5p overexpression significantly accelerated the proliferation and attenuated the apoptosis of hair follicle stem cells. Conversely, miR-149-5p inhibition suppressed the proliferation and induced the apoptosis of hair follicle stem cells. These results reveal a miR-149-5p-related regulatory framework for the miR-149-5p/CMTM3/AR axis during superior quality brush hair formation, in which CMTM3 plays a negative role.
Collapse
Affiliation(s)
- Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Laboratory of Animal Genetics and Molecular Breeding of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yunkui Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinliang Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Changjiang Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huiru Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dejun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Megdiche S, Mastrangelo S, Ben Hamouda M, Lenstra JA, Ciani E. A Combined Multi-Cohort Approach Reveals Novel and Known Genome-Wide Selection Signatures for Wool Traits in Merino and Merino-Derived Sheep Breeds. Front Genet 2019; 10:1025. [PMID: 31708969 PMCID: PMC6824410 DOI: 10.3389/fgene.2019.01025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Merino sheep represents a valuable genetic resource worldwide. In this study, we investigated selection signatures in Merino (and Merino-derived) sheep breeds using genome-wide SNP data and two different approaches: a classical FST-outlier method and an approach based on the analysis of local ancestry in admixed populations. In order to capture the most reliable signals, we adopted a combined, multi-cohort approach. In particular, scenarios involving four Merino breeds (Spanish Merino, Australian Merino, Chinese Merino, and Sopravissana) were tested via the local ancestry approach, while nine pair-wise breed comparisons contrasting the above breeds, as well as the Gentile di Puglia breed, with non-Merino breeds from the same geographic area were tested via the FST-outlier method. Signals observed using both methods were compared with genome-wide patterns of distribution of runs of homozygosity (ROH) islands. Novel and known selection signatures were detected. The most reliable signals were observed on OAR 3 (MSRB3 and LEMD3), OAR10 (FRY and RXFP2), OAR 13 (RALY), OAR17 (FAM101A), and OAR18 (NFKBIA, SEC23A, and PAX9). All the above overlapped with known QTLs for wool traits, and evidences from the literature of their involvement in skin/hair/wool biology, as well as gene network analysis, further corroborated these results. The signal on OAR10 also contains well known evidence for association with horn morphology and polledness. More elusive biological evidences of association with the Merino phenotype were observed for a number of other genes, notably LOC101120019 and TMEM132B (OAR17), LOC105609948 (OAR3), LOC101110773 (OAR10), and EIF2S2 (OAR17). Taken together, the above results further contribute to decipher the genetic basis underlying the Merino phenotype.
Collapse
Affiliation(s)
- Sami Megdiche
- Départment des Ressources Animales, Agroalimentaire et Développement Rural, Institut Supérieur Agronomique de Chott-Mariem, Université de Sousse, Sousse, Tunisia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari “Aldo Moro,”Bari, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | | | | | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari “Aldo Moro,”Bari, Italy
| |
Collapse
|
15
|
Zheng Y, Wang Z, Zhu Y, Wang W, Bai M, Jiao Q, Wang Y, Zhao S, Yin X, Guo D, Bai W. LncRNA-000133 from secondary hair follicle of Cashmere goat: identification, regulatory network and its effects on inductive property of dermal papilla cells. Anim Biotechnol 2019; 31:122-134. [PMID: 30632899 DOI: 10.1080/10495398.2018.1553788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), a class of non-protein conding RNAs > 200 nt in length, were thought to play critical roles in regulating the expression of protein-coding genes. Here, we identified and characterized a novel lncRNA-000133 from the secondary hair follicle (SHF) of cashmere goat with its ceRNA network analysis, as well as, its potential effects on inductive property of dermal papilla cells were evaluated through overexpression analysis. Expression analysis indicated that lncRNA-000133 had a significantly higher expression at anagen than that at telogen in SHF of Cashmere goat, suggesting that lncRNA-000133 might be involved in the reconstruction of SHF with the formation and growth of cashmere fiber. Taken together with methylation analysis, we showed that 5' regulatory region methylation of the lncRNA-000133 gene might be involved in its expression suppression in SHF of Cashmere goat. The ceRNA regulatory network showed that a rich and complex regulatory relationship between lncRNA-000133 and related miRNAs with their target genes. The overexpression of lncRNA-000133 led to a significant increasing in the relative expression of ET-1, SCF, ALP and LEF1 in dermal papilla cells suggesting that lncRNA-000133 appears to contribute the inductive property of dermal papilla cells.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yubo Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Wei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Man Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Qian Jiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Sujun Zhao
- Sichuan Animal Science Academy, Chengdu, P. R. China
| | - Xianbo Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, P. R. China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
16
|
Ji D, Yang B, Li Y, Cai M, Zhang W, Cheng G, Guo H. Transcriptomic inspection revealed a possible pathway regulating the formation of the high-quality brush hair in Chinese Haimen goat ( Capra hircus). ROYAL SOCIETY OPEN SCIENCE 2018; 5:170907. [PMID: 29410805 PMCID: PMC5792882 DOI: 10.1098/rsos.170907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 05/29/2023]
Abstract
The high-quality brush hair, or Type III brush hair, is coarse hair but with a tip and little medulla, which uniquely grows in the cervical carina of Chinese Haimen goat (Capra hircus). To unveil the mechanism of the formation of Type III brush hair in Haimen goats, transcriptomic RNAseq technology was used for screening of differentially expressed genes (DEGs) in the skin samples of the Type III and the non-Type III hair goats, and these DEGs were analysed by KEGG pathway analysis. The results showed that a total of 295 DEGs were obtained, mainly from three main functional types: cellular component, molecular function and biological process. These DEGs were mainly enriched in three KEGG pathways, such as protein processing in endoplasmic reticulum, MAPK, and complement and coagulation cascades. These DEGs gave hints to a possible mechanism, under which heat stress possibly initiated the formation. The study provided some useful biological information, which could give a new view about the roles of certain factors in hair growth and give hints on the mechanism of the formation of the Type III brush hair in Chinese Haimen goat.
Collapse
Affiliation(s)
| | | | - Yongjun Li
- College of Animal Science and Technology, Key Laboratory for Animal Genetics and Breeding of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression. PLoS One 2016; 11:e0153936. [PMID: 27100288 PMCID: PMC4839604 DOI: 10.1371/journal.pone.0153936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
The keratin-associated proteins (KAPs) are the structural proteins of hair fibers and are thought to play an important role in determining the physical properties of hair fibers. These proteins are activated in a striking sequential and spatial pattern in the keratinocytes of hair fibers. Thus, it is important to elucidate the mechanism that underlies the specific transcriptional activity of these genes. In this study, sheep KRTAP 3–3 and KRTAP11-1 genes were found to be highly expressed in wool follicles in a tissue-specific manner. Subsequently, the promoter regions of the two genes that contained the 5′ flanking/5′ untranslated regions and the coding regions were cloned. Using an in vivo transgenic approach, we found that the promoter regions from the two genes exhibited transcriptional activity in hair fibers. A much stronger and more uniformly expressed green fluorescent signal was observed in the KRTAP11-1-ZsGreen1 transgenic mice. In situ hybridization revealed the symmetrical expression of sheep KRTAP11-1 in the entire wool cortex. Consistently, immunohistochemical analysis demonstrated that the pattern of ZsGreen1 expression in the hair cortex of transgenic mice matches that of the endogenous KRTAP11-1 gene, indicating that the cloned promoter region contains elements that are sufficient to govern the wool cortex-specific transcription of KRTAP11-1. Furthermore, regulatory regions in the 5′ upstream sequence of the sheep KRTAP11-1 gene that may regulate the observed hair keratinocyte specificity were identified using in vivo reporter assays.
Collapse
|
18
|
Moioli B, Steri R, Napolitano F, Catillo G. A genome wide scan highlights differences in the genetic architecture of fat and protein contents in dairy sheep. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|