1
|
Liu X, Song X, Zhang Z, Yang S, Li L, Lin C, Chen M, Liu C, Li X, Zhang Y, Hu G. Multifunctional Oxidized Dextran-Metformin as a Tissue-Adhesive Hydrogel to Prevent Postoperative Peritoneal Adhesions in Patients with Metabolic Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303767. [PMID: 37845002 PMCID: PMC10667813 DOI: 10.1002/advs.202303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Patients with metabolic syndrome (MetS) undergoing surgery are at high risk of developing peritoneal adhesions and other severe postoperative complications. However, the single shielding function and absence of physiological activity render conventional methods less useful in preventing adhesions in patients with MetS. To address this challenge, a convenient method is introduced for developing a novel tissue-adhesive hydrogel called oxidized dextran-metformin (ODE-ME) via Schiff base linkages. This injectable ODE-ME hydrogel exhibits excellent tissue-adhesive properties and various physiological functions, particularly enhanced antibacterial effects. Furthermore, in vivo experiments demonstrate that the hydrogel can effectively alleviate hyperglycemia, reduce excessive inflammation, and improve fibrinolytic activity in MetS mice, thereby preventing adhesions and promoting incisional healing. The hydrogel concurrently isolates injured tissues and lowers the blood glucose levels immediately after surgery in mice. Therefore, the ODE-ME hydrogel functions as a multifunctional barrier material and has potential for preventing postoperative peritoneal adhesions in patients with MetS in clinical settings.
Collapse
Affiliation(s)
- Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
2
|
Bergal A, Andac M. Detailed investigation and influence of oxidation degree on synthesis, characterization and antibacterial activity of β- cyclodextrin. Carbohydr Res 2023; 533:108936. [PMID: 37708794 DOI: 10.1016/j.carres.2023.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Oxidation of β-cyclodextrin (β-CD) using varying molar ratios of sodium periodate (NaIO4) was investigated in detail on synthesis, characterization and antibacterial property. Synthesis and characterization results showed that Oxidized β-cyclodextrins (OX-β-CDs) were obtained and aldehyde (CHO) groups were successfully introduced. Our results demonstrated that aldehyde content and yield increased with increasing NaIO4 molar amount. However, the structure of β-CD was degraded as a result of glycosidic ring opening with increasing stoichiometric ratio of NaIO4/β-CD to 5/1 and 7/1. Aldehyde functional groups in OX-β-CDs were characterized by employing FTIR, 1H NMR, XRD, SEM techniques and confirmed by the detection of CHO peak at 1730 cm-1 in the FTIR and detection of the aldehyde H peak between 9 to 10 ppm in the 1H NMR spectrum. In addition, SEM and XRD of OX-β-CDs showed alterations in the morphological and crystal structure (transforming from crystalline to amorphous) of β-CD as a result of increasing oxidation. Especially, antibacterial activity of OX-β-CDs was investigated against both Gram-negative and Gram-positive bacteria by using the minimal inhibitory concentration (MIC) and the Disk diffusion method. The results showed that OX-β-CDs possessed good antibacterial activity, which can destroy the bacterial cell wall, and may be used as an antibacterial agent.
Collapse
Affiliation(s)
- Ayhan Bergal
- Department of Nanoscience and Nanotechnology, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, 55200, Kurupelit, Samsun, Turkey.
| | - Muberra Andac
- Department of Chemistry, Faculty of Science and Literature, Ondokuz Mayıs University, 55200, Kurupelit, Samsun, Turkey.
| |
Collapse
|
3
|
Zhang D, Mei L, Hao Y, Yi B, Hu J, Wang D, Zhao Y, Wang Z, Huang H, Xu Y, Deng X, Li C, Li X, Zhou Q, Lu Y. A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management. Biomater Res 2023; 27:56. [PMID: 37269017 DOI: 10.1186/s40824-023-00392-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clinical tissue adhesives remain some critical drawbacks for managing emergency injuries, such as inadequate adhesive strength and insufficient anti-infection ability. Herein, a novel, self-healing, and antibacterial carboxymethyl chitosan/polyaldehyde dextran (CMCS/PD) hydrogel is designed as the first-aid tissue adhesive for effective trauma emergency management. METHODS We examined the gel-forming time, porosity, self-healing, antibacterial properties, cytotoxicity, adhesive strength, and hemocompatibility. Liver hemorrhage, tail severance, and skin wound infection models of rats are constructed in vivo, respectively. RESULTS Results demonstrate that the CMCS/PD hydrogel has the rapid gel-forming (~ 5 s), good self-healing, and effective antibacterial abilities, and could adhere to tissue firmly (adhesive strength of ~ 10 kPa and burst pressure of 327.5 mmHg) with excellent hemocompatibility and cytocompatibility. This suggests the great prospect of CMCS/PD hydrogel in acting as a first-aid tissue adhesive for trauma emergency management. The CMCS/PD hydrogel is observed to not only achieve rapid hemostasis for curing liver hemorrhage and tail severance in comparison to commercial hemostatic gel (Surgiflo ®) but also exhibit superior anti-infection for treating acute skin trauma compared with clinical disinfectant gel (Prontosan ®). CONCLUSIONS Overall, the CMCS/PD hydrogel offers a promising candidate for first-aid tissue adhesives to manage the trauma emergency. Because of the rapid gel-forming time, it could also be applied as a liquid first-aid bandage for mini-invasive surgical treatment.
Collapse
Affiliation(s)
- Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yuanping Hao
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266003, China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jilin Hu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Danyang Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yaodong Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Zhe Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Hailin Huang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Yongzhi Xu
- Department of Stomatology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266003, China
| | - Xuyang Deng
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Cong Li
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Xuewei Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Yun Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
4
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
5
|
Machado A, Pereira I, Silva V, Pires I, Prada J, Poeta P, Costa L, Pereira JE, Gama M. Injectable hydrogel as a carrier of vancomycin and a cathelicidin-derived peptide for osteomyelitis treatment. J Biomed Mater Res A 2022; 110:1786-1800. [PMID: 36082973 DOI: 10.1002/jbm.a.37432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 08/26/2023]
Abstract
A local drug delivery system that attempts to find a suitable balance between antimicrobial and regenerative actions was developed for osteomyelitis treatment (OM). This system combines the angiogenic and immunomodulatory peptide LLKKK18 (LL18) and vancomycin hydrochloride (VH), loaded into an injectable oxidized dextrin (ODEX)-based hydrogel (HG). In vitro cytotoxicity was analyzed in MC3T3-E1 pre-osteoblasts and erythrocytes. The kinetics of LL18 release was studied. Antimicrobial activity was assessed in vitro against a clinical Methicillin-Resistant Staphylococcus aureus (MRSA) strain. A rat model of acute OM was developed by direct inoculation into a tibia defect, concomitantly with the implantation of the drug-loaded HG. The local bioburden was quantified and damage in surrounding tissues was examined histologically. In vitro, ODEX-based HG displayed a safe hemolytic profile. Half of LL18 (53%) is released during the swelling phase at physiological pH, then being gradually released until complete HG degradation. LL18-loaded HG at 300 μM was the most effective peptide formulation in decreasing in vivo infection among concentrations ranging from 86 to 429 μM. The histopathological scores observed in vivo varied with the LL18 concentration in a dose-dependent manner. VH at 28 mM completely eradicated bacteria, although with substantial tissue injury. We have found that sub-millimolar doses of VH combined with LL18 at 300 μM may suffice to eradicate the infection, with reduced tissue damage. We propose an easy-to-handle, shape-fitting HG formulation with the potential to treat MRSA-infected bone with low VH doses associated with LL18.
Collapse
Affiliation(s)
- Alexandra Machado
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| | - Isabel Pereira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| | - Vanessa Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University NOVA of Lisbon, Caparica, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Patrícia Poeta
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University NOVA of Lisbon, Caparica, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Luís Costa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - José Eduardo Pereira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Centre of Animal and Veterinary Science (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Miguel Gama
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS, Associate Laboratory, Braga Guimarães, Portugal
| |
Collapse
|
6
|
Mansour H, El-Sigeny S, Shoman S, Abu-Serie MM, Tamer TM. Preparation, Characterization, and Bio Evaluation of Fatty N- Hexadecanyl Chitosan Derivatives for Biomedical Applications. Polymers (Basel) 2022; 14:polym14194011. [PMID: 36235961 PMCID: PMC9573078 DOI: 10.3390/polym14194011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to improve the antibacterial activities of chitosan via N-alkyl substitution using 1-bromohexadecane. Mono and di substitution (Mono-NHD-Ch and Di-NHD-Ch) were prepared and characterized using FT-IR, HNMR, TGA, DSC, and SEM. Elemental analysis shows an increase in the C/N ratio from 5.45 for chitosan to 8.63 for Mono-NHD-Ch and 10.46 for Di-NHD-Ch. The antibacterial properties were evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus. In the examined microorganisms, the antibacterial properties of the novel alkyl derivatives increased substantially higher than chitosan. The minimum inhibitory concentration (MIC) of Mono-NHD-Ch and Di-NHD-Ch was perceived at 50 μg/mL against tested microorganisms, except for B. cereus. The MTT test was used to determine the cytotoxicity of the produced materials, which proved their safety to fibroblast cells. The findings suggest that the new N-Alkyl chitosan derivatives might be used as antibacterial alternatives to pure chitosan in wound infection treatments.
Collapse
Affiliation(s)
- Hanaa Mansour
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samia El-Sigeny
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sarah Shoman
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7(965)0227468
| |
Collapse
|
7
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Fujita M, Policastro GM, Burdick A, Lam HT, Ungerleider JL, Braden RL, Huang D, Osborn KG, Omens JH, Madani MM, Christman KL. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun 2021; 12:3764. [PMID: 34145265 PMCID: PMC8213776 DOI: 10.1038/s41467-021-24104-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/02/2021] [Indexed: 11/12/2022] Open
Abstract
Post-surgical cardiac adhesions represent a significant problem during routine cardiothoracic procedures. This fibrous tissue can impair heart function and inhibit surgical access in reoperation procedures. Here, we propose a hydrogel barrier composed of oxime crosslinked poly(ethylene glycol) (PEG) with the inclusion of a catechol (Cat) group to improve retention on the heart for pericardial adhesion prevention. This three component system is comprised of aldehyde (Ald), aminooxy (AO), and Cat functionalized PEG mixed to form the final gel (Ald-AO-Cat). Ald-AO-Cat has favorable mechanical properties, degradation kinetics, and minimal swelling, as well as superior tissue retention compared to an initial Ald-AO gel formulation. We show that the material is cytocompatible, resists cell adhesion, and led to a reduction in the severity of adhesions in an in vivo rat model. We further show feasibility in a pilot porcine study. The Ald-AO-Cat hydrogel barrier may therefore serve as a promising solution for preventing post-surgical cardiac adhesions.
Collapse
Affiliation(s)
- Masaki Fujita
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gina M Policastro
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Austin Burdick
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Hillary T Lam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jessica L Ungerleider
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Diane Huang
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Kent G Osborn
- Division of Comparative Pathology and Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Michael M Madani
- Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
9
|
Stapleton LM, Lucian HJ, Grosskopf AK, Smith AAA, Totherow KP, Woo YJ, Appel EA. Dynamic Hydrogels for Prevention of Post‐Operative Peritoneal Adhesions. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | - Anton A. A. Smith
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | | | - Y. Joseph Woo
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
- ChEM‐H Institute Stanford University Stanford CA 94305 USA
- Department of Pediatrics (Endocrinology) Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
10
|
Chen F, Huang G, Huang H. Preparation and application of dextran and its derivatives as carriers. Int J Biol Macromol 2019; 145:827-834. [PMID: 31756474 DOI: 10.1016/j.ijbiomac.2019.11.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
As a natural and renewable biological macromolecule, dextran not only has excellent biodegradability, but also has good biocompatibility. Dextran and its derivatives are functional polymers for the construction of targeted drug delivery systems. Herein, the application of dextran as prodrug and nanoparticle/nanogel/microsphere/micelle carrier for targeting drug delivery system was summarized. It is clarified that dextran is an important biomaterial with application value.
Collapse
Affiliation(s)
- Fang Chen
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| |
Collapse
|
11
|
Stapleton LM, Steele AN, Wang H, Lopez Hernandez H, Yu AC, Paulsen MJ, Smith AAA, Roth GA, Thakore AD, Lucian HJ, Totherow KP, Baker SW, Tada Y, Farry JM, Eskandari A, Hironaka CE, Jaatinen KJ, Williams KM, Bergamasco H, Marschel C, Chadwick B, Grady F, Ma M, Appel EA, Woo YJ. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 2019; 3:611-620. [DOI: 10.1038/s41551-019-0442-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/08/2019] [Indexed: 01/24/2023]
|
12
|
Zheng C, Liu C, Chen H, Wang N, Liu X, Sun G, Qiao W. Effective wound dressing based on Poly (vinyl alcohol)/Dextran-aldehyde composite hydrogel. Int J Biol Macromol 2019; 132:1098-1105. [DOI: 10.1016/j.ijbiomac.2019.04.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
|
13
|
Pereira I, Fraga S, Silva S, Teixeira JP, Gama M. In vitro genotoxicity assessment of an oxidized dextrin-based hydrogel for biomedical applications. J Appl Toxicol 2018; 39:639-649. [PMID: 30485472 DOI: 10.1002/jat.3754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 01/13/2023]
Abstract
Hydrogels are three-dimensional, crosslinked networks of hydrophilic polymers swollen with a large amount of water or biological fluids, without dissolving. Dextrin, a low-molecular-weight carbohydrate composed by glucose residues, has been used to develop an injectable hydrogel for biomedical applications. Dextrin was first oxidized to introduce aldehyde groups, which then reticulate with adipic acid dihydrazide, forming the dextrin-based hydrogel (HG). The HG and its components were tested for cyto- and genotoxicity according to the International Standard ISO 10993-3 on the biological evaluation of medical devices. To assess genotoxicity, a battery of in vitro genotoxicity tests employing both eukaryotic and prokaryotic models was performed: comet assay, cytokinesis-block micronucleus assay and Ames test. Our data revealed that the HG (IC50 = 2.8 mg/mL) and oxidized dextrin by itself (IC50 = 1.2 mg/mL) caused a concentration-dependent decrease in cellular viability of human lymphoblastoid TK6 cells after 24 hours of exposure to the test agents. However, these concentrations are unlikely to be reached in vivo. In addition, no significant increase in the DNA and chromosomal damage of TK6 cells exposed to non-cytotoxic concentrations of the HG and its isolated components was detected. Furthermore, neither the HG nor its metabolites exerted a mutagenic effect in different of Salmonella typhimurium strains and in an Escherichia coli mix. Our data demonstrated the genocompatibility of the HG (up to 3.5 mg/mL) for biomedical applications. To our best acknowledge, this is the first report with a detailed genotoxicity assessment of an aldehyde-modified polysaccharide/adipic acid dihydrazide hydrogel.
Collapse
Affiliation(s)
- Isabel Pereira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - Susana Silva
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal.,EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600, Porto, Portugal
| | - Miguel Gama
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
14
|
Glass S, Trinklein B, Abel B, Schulze A. TiO 2 as Photosensitizer and Photoinitiator for Synthesis of Photoactive TiO 2-PEGDA Hydrogel Without Organic Photoinitiator. Front Chem 2018; 6:340. [PMID: 30131954 PMCID: PMC6090817 DOI: 10.3389/fchem.2018.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
The replacement of potentially toxic photoinitiators is of increasing interest regarding the synthesis of biomaterials by photopolymerization. Therefore, we present a new method for the preparation of UV polymerized hydrogels with TiO2 as a photoinitiator. Titania is known to be an excellent photoactive compound which is non-toxic, inert, and cheap. The so-formed hydrogels possess excellent mechanical properties, a high swelling ratio, and high thermal stability. Furthermore, no TiO2 is released from the hydrogels. Thus, the material is highly suitable for medical applications. Additionally, the present TiO2 in the hydrogels remains photoactive as demonstrated by degradation of methylene blue. This enables the application of TiO2-hydrogels in photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| |
Collapse
|
15
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
16
|
Oliver S, Yee E, Kavallaris M, Vittorio O, Boyer C. Water Soluble Antioxidant Dextran–Quercetin Conjugate with Potential Anticancer Properties. Macromol Biosci 2018; 18:e1700239. [DOI: 10.1002/mabi.201700239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
| | - Eugene Yee
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Maria Kavallaris
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Orazio Vittorio
- Children's Cancer Institute Lowy Cancer Research Centre University of New South Wales Sydney 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australian Centre for NanoMedicine (ACN) University of New South Wales Sydney 2052 Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
- Centre for Advanced Macromolecular Design (CAMD) School of Chemical Engineering University of New South Wales Sydney 2052 Australia
| |
Collapse
|
17
|
Pelras T, Glass S, Scherzer T, Elsner C, Schulze A, Abel B. Transparent Low Molecular Weight Poly(Ethylene Glycol) Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs. Polymers (Basel) 2017; 9:E639. [PMID: 30965940 PMCID: PMC6418822 DOI: 10.3390/polym9120639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022] Open
Abstract
Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol)-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A) photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics) were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400⁻800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs).
Collapse
Affiliation(s)
- Théophile Pelras
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
- Key Center for Polymers and Colloids, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Sarah Glass
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
| | - Tom Scherzer
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
| | - Christian Elsner
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
| | - Agnes Schulze
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
| | - Bernd Abel
- Leibniz-Institute of Surface Modification, Permoserstraβe 15, 04318 Leipzig, Germany.
| |
Collapse
|
18
|
Yang Y, Liu X, Li Y, Wang Y, Bao C, Chen Y, Lin Q, Zhu L. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater 2017; 62:199-209. [PMID: 28867650 DOI: 10.1016/j.actbio.2017.08.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE In this study, a tissue adhesive photo-crosslinking hydrogel (CNG) was developed based on photo-induced imine crosslinking reaction (PIC) for postoperative anti-adhesion. CNG hydrogel showed the features of easy and convenient operation, fast and controllable gelation, suitable gel strength, good biocompatibility, and most importantly strong tissue adhesiveness. Therefore, it shows very high performance to prevent postoperative tissue adhesion. Overall, our study provides a more suitable hydrogel barrier material that can overcome the shortcomings of current barriers for clinical postoperative anti-adhesion.
Collapse
Affiliation(s)
- Yunlong Yang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China; Institute of Microsurgery on Extremities, Institute of Orthopaedic Surgery, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai 200233, China
| | - Xiaolin Liu
- Institute of Microsurgery on Extremities, Institute of Orthopaedic Surgery, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai 200233, China
| | - Yan Li
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Institute of Orthopaedic Surgery, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai 200233, China.
| | - Chunyan Bao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China
| | - Yunfeng Chen
- Institute of Microsurgery on Extremities, Institute of Orthopaedic Surgery, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People' Hospital, 600# Yishan Road, Shanghai 200233, China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China.
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, 130# Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Alibolandi M, Mohammadi M, Taghdisi SM, Abnous K, Ramezani M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int J Pharm 2017; 532:466-477. [DOI: 10.1016/j.ijpharm.2017.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
20
|
Wu W, Cheng R, das Neves J, Tang J, Xiao J, Ni Q, Liu X, Pan G, Li D, Cui W, Sarmento B. Advances in biomaterials for preventing tissue adhesion. J Control Release 2017; 261:318-336. [DOI: 10.1016/j.jconrel.2017.06.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
21
|
|
22
|
Oliver S, Thomas DS, Kavallaris M, Vittorio O, Boyer C. Efficient functionalisation of dextran-aldehyde with catechin: potential applications in the treatment of cancer. Polym Chem 2016. [DOI: 10.1039/c6py00228e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dextran aldehyde was functionalised with up to 38 wt% catechin and the resulting conjugate demonstrated cytotoxic efficacy against neuroblastoma cells.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| | - Donald S. Thomas
- Nuclear Magnetic Resonance Facility
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Maria Kavallaris
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Orazio Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia 2052
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia 2052
| |
Collapse
|