1
|
Jamali F, Aldughmi M, Atiani S, Al-Radaideh A, Dahbour S, Alhattab D, Khwaireh H, Arafat S, Jaghbeer JA, Rahmeh R, Abu Moshref K, Bawaneh H, Hassuneh MR, Hourani B, Ababneh O, Alghwiri A, Awidi A. Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Multiple Sclerosis Patients: Phase I/II Dose-Finding Clinical Study. Cell Transplant 2024; 33:9636897241233045. [PMID: 38450623 PMCID: PMC10921855 DOI: 10.1177/09636897241233045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neuro-inflammatory disease resulting in disabilities that negatively impact patients' life quality. While current treatment options do not reverse the course of the disease, treatment using mesenchymal stromal/stem cells (MSC) is promising. There has yet to be a consensus on the type and dose of MSC to be used in MS. This work aims to study the safety and efficacy of two treatment protocols of MSCs derived from the umbilical cord (UC-MSCs) and their secretome. The study included two groups of MS patients; Group A received two intrathecal doses of UC-MSCs, and Group B received a single dose. Both groups received UC-MSCs conditioned media 3 months post-treatment. Adverse events in the form of a clinical checklist and extensive laboratory tests were performed. Whole transcriptome analysis was performed on patients' cells at baseline and post-treatment. Results showed that all patients tolerated the cellular therapy without serious adverse events. The general disability scale improved significantly in both groups at 6 months post-treatment. Examining specific aspects of the disease revealed more parameters that improved in Group A compared to Group B patients, including a significant increase in the (CD3+CD4+) expressing lymphocytes at 12 months post-treatment. In addition, better outcomes were noted regarding lesion load, cortical thickness, manual dexterity, and information processing speed. Both protocols impacted the transcriptome of treated participants with genes, transcription factors, and microRNAs (miRNAs) differentially expressed compared to baseline. Inflammation-related and antigen-presenting (HLA-B) genes were downregulated in both groups. In contrast, TNF-alpha, TAP-1, and miR142 were downregulated only in Group A. The data presented indicate that both protocols are safe. Furthermore, it suggests that administering two doses of stem cells can be more beneficial to MS patients. Larger multisite studies should be initiated to further examine similar or higher doses of MSCs.
Collapse
Affiliation(s)
- Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mayis Aldughmi
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Serin Atiani
- Data Science Department, Princess Sumaya University for Technology, Amman, Jordan
| | - Ali Al-Radaideh
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Jordan University Hospital, The University of Jordan, Amman, Jordan
- Laboratory of Nanomedicine, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Said Dahbour
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Department of Medical Radiography, School of Health Sciences, University of Doha for Science and Technology, Doha, Qatar
| | - Hind Khwaireh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Sally Arafat
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Joud Al Jaghbeer
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Hisham Bawaneh
- Hematology Department, Jordan University Hospital, Amman, Jordan
| | - Mona R. Hassuneh
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biology, Faculty of Sciences, The University of Jordan, Amman, Jordan
| | - Bayan Hourani
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Osameh Ababneh
- Department of Ophthalmology, Jordan University Hospital, School of Medicine, The University of Jordan, Amman, Jordan
| | - Alia Alghwiri
- Department of Physical Therapy, School of Rehabilitation Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Hematology Department, Jordan University Hospital, Amman, Jordan
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Rastkar M, Ghajarzadeh M, Sahraian MA. Adverse side effects of Glatiramer acetate and Interferon beta-1a in patients with multiple sclerosis: A systematic review of case reports. CURRENT JOURNAL OF NEUROLOGY 2023; 22:115-136. [PMID: 38011449 PMCID: PMC10460926 DOI: 10.18502/cjn.v22i2.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/05/2023] [Indexed: 11/29/2023]
Abstract
Background: Glatiramer acetate (GA) and Interferon (IFN) beta-1a are used as first-line disease-modifying treatments for multiple sclerosis (MS). In this systematic review, we summarized case reports and case series of adverse side effects of GA and IFN beta-1a in MS patients. Methods: Without any restrictions, PubMed, Scopus, Web of Sciences, and Embase databases, and gray literature were systemically searched until June 2022. Articles were screened and data were extracted based on a predefined table by two independent reviewers. The risk of bias was assessed using the Joanna Briggs Institute (JBI) tool. Results: We identified 2103 records from the preliminary search. After deduplication and screening, 172 articles were included in the systematic review. In total, 229 individuals (52 men, 173 women, and 4 unknown) were included in the study. The most common adverse events were cutaneous (32.75%), hepatic (13.54%), allergic (8.3%), and neurological (5.68%) side effects. Furthermore, most reported side effects were related to autoimmune diseases or hypersensitivity reactions. Conclusion: GA and IFN beta-1a are associated with several side effects which may be related to the immunomodulatory function of medication or other injection-related reactions.
Collapse
Affiliation(s)
- Mohsen Rastkar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghajarzadeh
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022; 119:2122090119. [PMID: 35217624 PMCID: PMC8892496 DOI: 10.1073/pnas.2122090119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections.
Collapse
|
4
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
5
|
Gu H, Zhang Y, Zeng W, Xia Y. Participation of interferons in psoriatic inflammation. Cytokine Growth Factor Rev 2021; 64:12-20. [PMID: 34953718 DOI: 10.1016/j.cytogfr.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Interferons are multifunctional cytokines not expressed in the skin under normal physiological conditions. However, they are overexpressed in serum and skin lesions of patients with psoriasis and play an important role in the pathogenesis of the disease. Interferons act directly on skin resident cells and recruit and modulate inflammatory cells, thereby exacerbating psoriatic inflammation. They upregulate the expression of relevant cytokines and chemokines, facilitate excessive proliferation of keratinocytes, and enhance the formation of poorly differentiated dermal microvessels. In this review, we summarized the pathogenic effect of interferons on psoriasis and also discussed the therapeutic strategies targeting interferons.
Collapse
Affiliation(s)
- Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Quirant-Sánchez B, Mansilla MJ, Navarro-Barriuso J, Presas-Rodríguez S, Teniente-Serra A, Fondelli F, Ramo-Tello C, Martínez-Cáceres E. Combined Therapy of Vitamin D3-Tolerogenic Dendritic Cells and Interferon-β in a Preclinical Model of Multiple Sclerosis. Biomedicines 2021; 9:biomedicines9121758. [PMID: 34944573 PMCID: PMC8698295 DOI: 10.3390/biomedicines9121758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
Autologous antigen-specific therapies based on tolerogenic dendritic cells (tolDC) offer the possibility to treat autoimmune diseases by restoring homeostasis and targeting specifically autoreactive responses. Here, we explore the hypothesis that systemic inflammation occurring in autoimmune diseases, such as multiple sclerosis (MS), can generate a disease-specific environment able to alter the functionality of tolDC. In this context in fact, a combined therapy of tolDC with an immunomodulatory treatment could potentiate the beneficial effect of this antigen-specific cell therapy. For this purpose, we analyzed the efficacy of a combined therapy based on the use of vitamin D3 (VitD3)-tolDC plus interferon beta (IFN-beta) in MS. VitD3-tolDC were generated from healthy donors and MS patients and co-cultured with allogeneic peripheral blood mononuclear cells, in the presence or absence of IFN-beta. In vitro, VitD3-tolDC treatment reduced the percentage of activated T cells and allogeneic proliferation, whereas VitD3-tolDC+IFN-beta treatment enhanced the suppressive ability of VitD3-tolDC and, additionally, induced a shift towards a Th2 profile. To determine the clinical benefit of the combined therapy, C57BL/6-experimental autoimmune encephalomyelitis (EAE)-induced mice were treated with antigen-specific VitD3-tolDC and/or IFN-beta. Treatment of EAE mice with combined therapy ameliorated the disease course compared to each monotherapy. These results suggest that a combined therapy based on antigen-specific VitD3-tolDC and IFN-beta may represent a promising strategy for MS patients.
Collapse
Affiliation(s)
- Bibiana Quirant-Sánchez
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - María José Mansilla
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Juan Navarro-Barriuso
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain;
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Aina Teniente-Serra
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Federico Fondelli
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain;
- Department of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: or (C.R.-T.); (E.M.-C.); Tel.: +34-93-497-8433 (C.R.-T.); +34-93-497-8666 (E.M.-C.)
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, 08916 Badalona, Spain; (B.Q.-S.); (M.J.M.); (J.N.-B.); (A.T.-S.); (F.F.)
- Department of Cellular Biology, Physiology and Immunology, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: or (C.R.-T.); (E.M.-C.); Tel.: +34-93-497-8433 (C.R.-T.); +34-93-497-8666 (E.M.-C.)
| |
Collapse
|
7
|
Pavelek Z, Sobíšek L, Šarláková J, Potužník P, Peterka M, Štětkárová I, Štourač P, Mareš J, Hradílek P, Ampapa R, Grünermelová M, Vachová M, Recmanová E, Angelucci F, Halúsková S, Vališ M. Comparison of Therapies in MS Patients After the First Demyelinating Event in Real Clinical Practice in the Czech Republic: Data From the National Registry ReMuS. Front Neurol 2021; 11:593527. [PMID: 33510704 PMCID: PMC7835499 DOI: 10.3389/fneur.2020.593527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system. Well-established drugs used for MS patients after the first demyelinating event in the Czech Republic include glatiramer acetate (GA), interferon beta-1a (IFNβ-1a), IFN beta-1b (IFNβ-1b), peginterferon beta-1a (peg-IFNβ-1a), and teriflunomide. Objective: The objective of this observational study was to compare the effectiveness of the abovementioned drugs in patients with MS who initiated their therapy after the first demyelinating event. Patients were followed for up to 2 years in real clinical practice in the Czech Republic. Methods: A total of 1,654 MS patients treated after the first demyelinating event and followed up for 2 years were enrolled. Evaluation parameters (endpoints) included the annualized relapse rate (ARR), time to next relapse, change in the Expanded Disability Status Scale (EDSS) score, and time of confirmed disease progression (CDP). When patients ended the therapy before the observational period, the reason for ending the therapy among different treatments was compared. Results: No significant difference was found among the groups of patients treated with IFNβ-1a/1b, GA, or teriflunomide for the following parameters: time to the first relapse, change in the EDSS score, and the proportion of patients with CDP. Compared to IFNβ-1a (44 mcg), a significant increase in the percentage of relapse-free patients was found for GA, but this treatment effect was not confirmed by the validation analysis. Compared to the other drugs, there was a significant difference in the reasons for terminating GA therapy. Conclusion: Small differences were found among GA, IFNβ and teriflunomide therapies, with no significant impact on the final outcome after 2 years. Therefore, in clinical practice, we recommend choosing the drug based on individual potential risk from long-term therapy and on patient preferences and clinical characteristics.
Collapse
Affiliation(s)
- Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Lukáš Sobíšek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Jana Šarláková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Pavel Potužník
- Department of Neurology, Faculty of Medicine and University Hospital Plzen, Charles University in Prague, Plzeň, Czechia
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine and University Hospital Plzen, Charles University in Prague, Plzeň, Czechia
| | - Ivana Štětkárová
- Third Faculty of Medicine, Charles University and Hospital Kralovské Vinohrady, Charles University in Prague, Prague, Czechia
| | - Pavel Štourač
- Department of Neurology, University Hospital and Masaryk University, Brno, Czechia
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine, Palacky University and University Hospital Olomouc, Olomouc, Czechia
| | - Pavel Hradílek
- Clinic of Neurology, University Hospital Ostrava, Ostrava, Czechia
| | - Radek Ampapa
- Department of Neurology, Hospital of Jihlava, Jihlava, Czechia
| | | | - Marta Vachová
- Department of Neurology, KZ a.s., Hospital Teplice, Teplice, Czechia
| | - Eva Recmanová
- Department of Neurology, Tomas Bata Regional Hospital, Zlín, Czechia
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia.,Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Simona Halúsková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| |
Collapse
|
8
|
Neelakantan S, Oemar B, Johnson K, Rath N, Salganik M, Berman G, Pelletier K, Cox L, Page K, Messing D, Tarabar S. Safety, Tolerability, and Pharmacokinetics of PF-06823859, an Anti-Interferon β Monoclonal Antibody: A Randomized, Phase I, Single- and Multiple-Ascending-Dose Study. Clin Pharmacol Drug Dev 2020; 10:307-316. [PMID: 33352008 DOI: 10.1002/cpdd.887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022]
Abstract
This double-blind, randomized, placebo-controlled, dose-ascending, first-in-human study (NCT02766621) assessed the safety, tolerability, and pharmacokinetics (PK) of PF-06823859, an anti-interferon β monoclonal antibody. Healthy subjects were randomized to single ascending doses (SADs) of intravenous PF-06823859 30, 100, 300, 900, or 2000 mg or placebo; to multiple ascending doses (MADs) of subcutaneous PF-06823859 100 or 300 mg or placebo (once every 2 weeks for a total of 3 doses); or to MAD of intravenous PF-06823859 600 mg or placebo (once every 3 weeks or once every 4 weeks for a total of 2 doses). The incidence, severity, and causal relationship of adverse events (AEs) were assessed, along with immunogenicity and PK. In total, 62 subjects were randomized to treatment (SAD, n = 35; MAD, n = 27). There were 76 treatment-emergent all-causality AEs in the SAD (PF-06823859: n = 25; placebo: n = 4) and MAD (PF-06823859: n = 40; placebo: n = 7) cohorts. In the SAD cohorts, all treatment-emergent all-causality AEs were mild in severity; 4 AEs of moderate severity were identified in the MAD cohorts. No dose-limiting AEs, serious AEs, treatment-related discontinuations, dose reductions, or deaths occurred. PF-06823859 exposure increased dose-proportionally, with half-life values ranging between 23 and 35 days. The estimated subcutaneous bioavailability was 43% to 44%. Immunogenicity incidence rates were low (antidrug antibodies, 12.5%; neutralizing antibodies, 2.1%). No immunogenically related clinical responses of concern were observed. In conclusion, PF-06823859 demonstrated an acceptable safety, tolerability, and PK profile that supports clinical development for treating disorders associated with increased interferon β levels, such as dermatomyositis or systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Barry Oemar
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Kristen Johnson
- Center for Therapeutic Innovation, Pfizer Inc, New York, New York, USA
| | | | - Mikhail Salganik
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | | | - Lori Cox
- Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Karen Page
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Dean Messing
- Worldwide Research and Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Sanela Tarabar
- Pfizer Clinical Research Unit, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Soleimani B, Murray K, Hunt D. Established and Emerging Immunological Complications of Biological Therapeutics in Multiple Sclerosis. Drug Saf 2020; 42:941-956. [PMID: 30830572 DOI: 10.1007/s40264-019-00799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biologic immunotherapies have transformed the treatment landscape of multiple sclerosis. Such therapies include recombinant proteins (interferon beta), as well as monoclonal antibodies (natalizumab, alemtuzumab, daclizumab, rituximab and ocrelizumab). Monoclonal antibodies show particular efficacy in the treatment of the inflammatory phase of multiple sclerosis. However, the immunological perturbations caused by biologic therapies are associated with significant immunological adverse reactions. These include development of neutralising immunogenicity, secondary immunodeficiency and secondary autoimmunity. These complications can affect the balance of risks and benefits of biologic agents, and 2018 saw the withdrawal from the market of daclizumab, an anti-CD25 monoclonal antibody, due to concerns about the development of severe, unpredictable autoimmunity. Here we review established and emerging risks associated with multiple sclerosis biologic agents, with an emphasis on their immunological adverse effects. We also discuss the specific challenges that multiple sclerosis biologics pose to drug safety systems, and the potential for improvements in safety frameworks.
Collapse
Affiliation(s)
| | - Katy Murray
- Anne Rowling Clinic, University of Edinburgh, Edinburgh, UK
| | - David Hunt
- Anne Rowling Clinic, University of Edinburgh, Edinburgh, UK. .,MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Be aware that the benefits of biological drugs in multiple sclerosis may be offset by their capacity to cause immunological complications. DRUGS & THERAPY PERSPECTIVES 2020. [DOI: 10.1007/s40267-019-00693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kolb-Mäurer A, Sunderkötter C, Kukowski B, Meuth SG. An update on Peginterferon beta-1a Management in Multiple Sclerosis: results from an interdisciplinary Board of German and Austrian Neurologists and dermatologists. BMC Neurol 2019; 19:130. [PMID: 31202258 PMCID: PMC6570848 DOI: 10.1186/s12883-019-1354-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Interferon (IFN) beta drugs have been approved for the treatment of relapsing forms of multiple sclerosis (RMS) for more than 20 years and are considered to offer a favourable benefit-risk profile. In July 2014, subcutaneous (SC) peginterferon beta-1a 125 μg dosed every 2 weeks, a pegylated form of interferon beta-1a, was approved by the EMA for the treatment of adult patients with RRMS and in August 2014 by the FDA for RMS. Peginterferon beta-1a shows a prolonged half-life and increased systemic drug exposure resulting in a reduced dosing frequency compared to other available interferon-based products in MS. In the Phase 3 ADVANCE trial peginterferon beta-1a demonstrated significant positive effects on clinical and MRI outcome measures versus placebo after one year. Furthermore, in the ATTAIN extension study, sustained efficacy with long-term treatment for nearly 6 years was shown. MAIN TEXT In July 2016, an interdisciplinary panel of German and Austrian experts convened to discuss the management of side effects associated with peginterferon beta-1a and other interferon beta-based treatments in MS in daily practice. The panel was composed of experts from university hospitals and private clinics comprised of neurologists, dermatologists, and an MS nurse. In this paper we report recommendations regarding best practices for adverse event management, focussing on peginterferon beta-1a. Injection site reactions (ISRs) and influenza-like illness are the most common adverse effects of interferon beta therapies and can present a burden for MS patients leading to non-adherence and discontinuation of therapy. Peginterferon beta-1a shows improved pharmacological properties. In clinical trials, the adverse event (AE) profile of peginterferon beta-1a was similar to other interferon beta formulations. The most common AEs were mild to moderate ISRs, influenza-like illness, pyrexia, and headache. Current information on the underlying cause of skin reactions associated with SC interferon treatment, and the management strategies for these AEs are limited. In pivotal trials, ISRs were mainly characterized and classified by neurologists, while dermatologists were only rarely consulted. CONCLUSIONS This report addresses expert recommendations on the management of most relevant adverse effects related to peginterferon beta-1a and other interferon betas, based on literature and interdisciplinary experience.
Collapse
Affiliation(s)
- Annette Kolb-Mäurer
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Cord Sunderkötter
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Ernst-Grube-Str. 40, 06120 Halle (Saale) und Abteilung für translationale Dermatoinfektiologie, Röntgenstraße 21, 48149 Muenster, Germany
| | - Borries Kukowski
- Nervenärztliche Gemeinschaftspraxis, Groner-Tor-Straße 3, 37073 Göttingen, Germany
| | - Sven G. Meuth
- Klinik für Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| |
Collapse
|
12
|
Wanve M, Kaur H, Sarmah D, Saraf J, Pravalika K, Vats K, Kalia K, Borah A, Yavagal DR, Dave KR, Bhattacharya P. Therapeutic spectrum of interferon-β in ischemic stroke. J Neurosci Res 2018; 97:116-127. [PMID: 30320448 PMCID: PMC7167007 DOI: 10.1002/jnr.24333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is devastating and a major cause of morbidity and mortality worldwide. To date, only clot retrieval devices and/or intravenous tissue plasminogen activators (tPA) have been approved by the US-FDA for the treatment of acute ischemic stroke. Therefore, there is an urgent need to develop an effective treatment for stroke that can have limited shortcomings and broad spectrum of applications. Interferon-beta (IFN-β), an endogenous cytokine and a key anti-inflammatory agent, contributes toward obviating deleterious stroke outcomes. Therefore, exploring the role of IFN-β may be a promising alternative approach for stroke intervention in the future. In the present review, we have discussed about IFN-β along with its different mechanistic roles in ischemic stroke. Furthermore, therapeutic approaches targeting the inflammatory cascade with IFN-β therapy that may be helpful in improving stroke outcome are also discussed.
Collapse
Affiliation(s)
- Madhuri Wanve
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Harpreet Kaur
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Deepaneeta Sarmah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Jackson Saraf
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Kanta Pravalika
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Kanchan Vats
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Kiran Kalia
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and BioinformaticsAssam UniversitySilcharIndia
| | - Dileep R. Yavagal
- Department of Neurology and NeurosurgeryUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Kunjan R. Dave
- Department of Neurology and NeurosurgeryUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Pallab Bhattacharya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)GandhinagarIndia
| |
Collapse
|
13
|
Strzadala L, Fiedorowicz A, Wysokinska E, Ziolo E, Grudzień M, Jelen M, Pluta K, Morak-Mlodawska B, Zimecki M, Kalas W. An Anti-Inflammatory Azaphenothiazine Inhibits Interferon β Expression and CXCL10 Production in KERTr Cells. Molecules 2018; 23:molecules23102443. [PMID: 30250011 PMCID: PMC6222831 DOI: 10.3390/molecules23102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023] Open
Abstract
An azaphenothiazine derivative, 6-chloroethylureidoethyldiquino[3,2-b;2′,3′-e][1,4]thiazine (DQT), has recently been shown to exhibit immunosuppressive activities in mouse models. It also inhibited the expression of CXCL10 at the protein level, at non-toxic concentrations, in the culture of KERTr cells treated with double-stranded RNA, poly(I:C). In this report, we demonstrated that DQT inhibits the transcription of the CXCL10 gene. Although CXCL10 is an IFNγ-inducible protein, we found that the CXCL10 protein was induced without the detectable release of IFNγ or IκB degradation. Hence, we concluded that IFNγ or NFκB was not involved in the regulation of the CXCL10 gene in KERTr cells transfected with poly(I:C), nor in the inhibitory activity of DQT. On the other hand, we found that IFNβ was induced under the same conditions and that its expression was inhibited by DQT. Kinetic analysis showed that an increase in IFNβ concentrations occurred 4–8 h after poly(I:C) treatment, while the concentration of CXCL10 was undetectable at that time and started to increase later, when IFNβ reached high levels. Therefore, DQT may be regarded as a new promising inhibitor of IFNβ expression and IFNβ-dependent downstream genes and proteins, e.g., CXCL10 chemokine, which is implicated in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Leon Strzadala
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Anna Fiedorowicz
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Edyta Wysokinska
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Ewa Ziolo
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Małgorzata Grudzień
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Malgorzata Jelen
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Beata Morak-Mlodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michal Zimecki
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| | - Wojciech Kalas
- Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
14
|
Lulli D, Carbone ML, Pastore S. Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget 2018; 7:47777-47793. [PMID: 27322144 PMCID: PMC5216978 DOI: 10.18632/oncotarget.10013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is centrally involved in the regulation of key processes of the epithelia, including cell proliferation, survival, differentiation, and also tumorigenesis. Humanized antibodies and small-molecule inhibitors targeting EGFR were developed to disrupt these functions in cancer cells and are currently used in the treatment of diverse metastatic epithelial cancers. By contrast, these drugs possess significant skin-specific toxic effects, comprising the establishment of a persistent inflammatory milieu. So far, the molecular mechanisms underlying these epiphenomena have been investigated rather poorly. Here we showed that keratinocytes respond to anti-EGFR drugs with the development of a type I interferon molecular signature. Upregulation of the transcription factor IRF1 is early implicated in the enhanced expression of interferon-kappa, leading to persistent activation of STAT1 and further amplification of downstream interferon-induced genes, including anti-viral effectors and chemokines. When anti-EGFR drugs are associated to TNF-α, whose expression is enhanced by the drugs themselves, all these molecular events undergo a dramatic enhancement by synergy mechanisms. Finally, high levels of interferon-kappa can be observed in epidermal keratinocytes and also in leukocytes infiltrating the upper dermis of cetuximab-driven skin lesions. Our data suggest that dysregulated activation of type I interferon innate immunity is implicated in the molecular processes triggered by anti-EGFR drugs and leading to persistent skin inflammation.
Collapse
Affiliation(s)
- Daniela Lulli
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| | - Maria Luigia Carbone
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| | - Saveria Pastore
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione Luigi M. Monti, Rome, Italy
| |
Collapse
|
15
|
Lulli D, Carbone ML, Pastore S. The MEK Inhibitors Trametinib and Cobimetinib Induce a Type I Interferon Response in Human Keratinocytes. Int J Mol Sci 2017; 18:ijms18102227. [PMID: 29064427 PMCID: PMC5666906 DOI: 10.3390/ijms18102227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase kinases (MEK) 1 and 2 have crucial roles in tumorigenesis, cell proliferation, and protection from apoptosis, and their inhibition is therefore an attractive therapeutic strategy in cancer. Orally available and highly selective MEK inhibitors have been developed and assessed in numerous clinical trials, either alone or in combination with cytotoxic chemotherapy and/or other targeted agents. Of note, a complex picture of class-specific adverse effects associates with these drugs, frequently including inflammatory skin rash. Here, we investigated the response of normal human keratinocytes to the MEK inhibitors trametinib and cobimetinib, alone and in combination with the v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors dabrafenib and vemurafenib, in terms of signal transduction and de novo gene expression. MEK inhibitors triggered enhanced expression of interferon regulatory factor 1 (IRF1) and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and up-regulated the keratinocyte-specific type I interferon κ (IFN-κ), the anti-viral effectors interferon-induced tetratricopeptide repeats (IFIT) 1 and 2, and the pro-inflammatory chemokine (C-C motif) ligand 2 (CCL2) and the C-X-C motif chemokine 10 (CXCL10), both at the mRNA and protein level. Impairment of IRF1 expression, or abrogation of STAT1 phosphorylation due to IFN-κ gene silencing, suppressed anti-viral and pro-inflammatory gene expression. These data suggest that, similar to what we observed for epidermal growth factor receptor (EGFR) blockade, MEK inhibition activates a type I interferon response, which is now recognized as an effective anti-cancer response, in human epidermal keratinocytes.
Collapse
Affiliation(s)
- Daniela Lulli
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy.
| | - Maria Luigia Carbone
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy.
| | - Saveria Pastore
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167 Rome, Italy.
| |
Collapse
|
16
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Gui J, Gober M, Yang X, Katlinski KV, Marshall CM, Sharma M, Werth VP, Baker DP, Rui H, Seykora JT, Fuchs SY. Therapeutic Elimination of the Type 1 Interferon Receptor for Treating Psoriatic Skin Inflammation. J Invest Dermatol 2016; 136:1990-2002. [PMID: 27369778 PMCID: PMC5035634 DOI: 10.1016/j.jid.2016.06.608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022]
Abstract
Phototherapy with UV light is a standard treatment for psoriasis, yet the mechanisms underlying the therapeutic effects are not well understood. Studies in human and mouse keratinocytes and in the skin tissues from human patients and mice showed that UV treatment triggers ubiquitination and downregulation of the type I IFN receptor chain IFNAR1, leading to suppression of IFN signaling and an ensuing decrease in the expression of inflammatory cytokines and chemokines. The severity of imiquimod-induced psoriasiform inflammation was greatly exacerbated in skin of mice deficient in IFNAR1 ubiquitination (Ifnar1(SA)). Furthermore, these mice did not benefit from UV phototherapy. Pharmacologic induction of IFNAR1 ubiquitination and degradation by an antiprotozoal agent halofuginone also relieved psoriasiform inflammation in wild-type but not in Ifnar1(SA) mice. These data identify downregulation of IFNAR1 by UV as a major mechanism of the UV therapeutic effects against the psoriatic inflammation and provide a proof of principle for future development of agents capable of inducing IFNAR1 ubiquitination and downregulation for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jun Gui
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Gober
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaoping Yang
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kanstantsin V Katlinski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christine M Marshall
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
Hafeez F, Miteva M. SnapshotDx Quiz: October 2016. J Invest Dermatol 2016; 136:e105. [PMID: 30477727 DOI: 10.1016/j.jid.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Farhaan Hafeez
- Department of Dermatology and Cutaneous Surgery, University of Miami L. Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Department of Dermatology and Cutaneous Surgery, University of Miami L. Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|