1
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
2
|
Elkama A, İlik N, Ak M, Karahalil B. Are changes in olanzapine-induced liver enzyme levels associated with GSTT1, GSTM1, GSTP1, and OGG1 gene polymorphisms? Arh Hig Rada Toksikol 2024; 75:61-67. [PMID: 38548381 PMCID: PMC10978158 DOI: 10.2478/aiht-2024-75-3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Olanzapine treatment sometimes produces transient liver biochemistry abnormalities, and such drug-induced liver injuries are mainly monitored by measuring blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), whereas alpha-glutathione-S-transferase (α-GST) is not routinely measured in clinics, even though it can serve as an earlier and more specific biomarker of liver damage. Susceptibility to drug-induced liver injury can much depend on the gene polymorphisms regulating the activity of DNA detoxification and repair enzymes. The aim of this study was to evaluate which of the three liver enzymes - α-GST, ALT, and AST - is the most sensitive biomarker of olanzapine-induced liver injury and how their blood levels are affected by the GSTT1, GSTM1, GSTP1, and OGG1 gene polymorphisms in 30 olanzapine-treated patients. Contrary to our hypothesis, the increase in serum α-GST levels was not significantly greater than that of the transaminases. ALT turned out to be an earlier biomarker of liver injury than the other two enzymes. No significant association was found between gene polymorphisms and liver enzyme levels, save for GSTP1 Ile/Val + Val/Val and ALT, which points to this genotype as a risk factor for drug-induced liver injury. Future studies might help to identify the underlying mechanisms of transient liver enzyme increase associated with this genotype.
Collapse
Affiliation(s)
- Aylin Elkama
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Nazlıcan İlik
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Mehmet Ak
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Psychiatry, Konya, Turkey
| | - Bensu Karahalil
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- Eastern Mediterranean University Faculty of Pharmacy, Department of Toxicology, Famagusta, North Cyprus
| |
Collapse
|
3
|
Links of platelet glutamate and glutathione metabolism with attenuated positive and negative symptoms in depressed patients at clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2023; 273:157-168. [PMID: 35292857 DOI: 10.1007/s00406-022-01396-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Aim of the study is to reveal clinical and biological correlations in patients with adolescent depression and attenuated psychotic symptoms. Activity of platelet enzymes involved in glutamate-, glutathione- and energy metabolism was evaluated in control group and in the patients, because these systems are suspected as related to pathogenesis of psychosis. Adolescents (78 men, 16-25 years old) hospitalized with the first acute depressive state composed two groups: with prevalence of attenuated psychotic positive or negative symptoms (Gr1 and Gr2, 48 and 30 patients, respectively). Control group comprised 20 mentally healthy men of 19-25 years old. Gr1 differed significantly from Gr2 in scores by the Scale of Prodromal Symptoms (SOPS) for positive symptoms, p < 0.001, for disorganization symptoms, p < 0.003, and for total SOPS score, p < 0.001, before the treatment started. When patients from either Gr1 or Gr2 were compared with the control group, significantly decreased baseline activities of platelet glutamate dehydrogenase (GDH), glutathione reductase (GR) and glutathione S-transferase (GST) were found (p < 0.0001). Different correlations were found between baseline enzymatic activities in Gr1 and Gr2: GDH activity correlated with GR activity in Gr1 (R = 0.37), and with GST activity in Gr2 (R = 0.70). Significant correlations were found only in Gr2 between the delta of scores by SOPS negative symptoms (SOPS-N) under treatment and baseline GDH, GST, and GR activities (R = - 0.36, R = - 0.60, and R = 0.38, respectively). The found correlations of the baseline enzymatic activity levels with the value of the decrease (delta) in SOPS-N scores under the treatment represent interest for the prediction of the pharmacotherapy efficiency.
Collapse
|
4
|
Liu H, Xu Y, Peng J. Glutathione S-Transferase M1/ T1 Polymorphisms and Schizophrenia Risk: A New Method for Quality Assessment and a Systematic Review. Neuropsychiatr Dis Treat 2023; 19:97-107. [PMID: 36643584 PMCID: PMC9833125 DOI: 10.2147/ndt.s376942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND GST genes were reported to be involved in susceptibility to mental disorder. The results between deletions of GST genes and schizophrenia were inconclusive and confusing. Therefore, we performed this updated meta-analysis to outline the association using a new method for quality assessment. METHODS Sixteen reported studies were selected, and the overall OR and 95% CI were calculated and analyzed by Review Manager 5.4 and STATE 12. The Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control studies was rewritten to evaluate the quality of published studies, as there was no "Exposure" in these studies and other factors should be suggested to assess the quality. RESULTS There was no significant association between deletions of GST genes and SZ risk (p > 0.05 in Random model). We also failed to find a significant relation between null genotypes and SZ risk in East Asian population. Based on further analysis of PCR methods, GSTM1 null was weakly associated with SZ risk in 8 studies using multiplex PCR (OR = 1.17, 95% CI = 1.00-1.37, p = 0.05), but GSTT1 null was a protective factor for SZ risk (OR = 0.73, 95% CI = 0.56-0.94, p = 0.02). When stratified by rewritten NOS stars and deductions, GSTM1 null was significantly associated with SZ risk in 9 studies with high quality (OR = 1.24, 95% CI = 1.08-1.43, p = 0.002), and in 10 studies with no deductions (OR = 1.20, 95% CI = 1.05-1.38, p = 0.007). CONCLUSION GSTM1 null genotype may be a genetic risk factor for SZ in studies using multiplex PCR and high-quality studies. However, GSTT1 null might be a protective factor. Besides, we provided a new method for quality assessment and it was useful and should be promoted in further analysis.
Collapse
Affiliation(s)
- Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Oxidative Stress and Emergence of Psychosis. Antioxidants (Basel) 2022; 11:antiox11101870. [PMID: 36290593 PMCID: PMC9598314 DOI: 10.3390/antiox11101870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Treatment and prevention strategies for schizophrenia require knowledge about the mechanisms involved in the psychotic transition. Increasing evidence suggests a redox imbalance in schizophrenia patients. This narrative review presents an overview of the scientific literature regarding blood oxidative stress markers’ evolution in the early stages of psychosis and chronic patients. Studies investigating peripheral levels of oxidative stress in schizophrenia patients, first episode of psychosis or UHR individuals were considered. A total of 76 peer-reviewed articles published from 1991 to 2022 on PubMed and EMBASE were included. Schizophrenia patients present with increased levels of oxidative damage to lipids in the blood, and decreased levels of non-enzymatic antioxidants. Genetic studies provide evidence for altered antioxidant functions in patients. Antioxidant blood levels are decreased before psychosis onset and blood levels of oxidative stress correlate with symptoms severity in patients. Finally, adjunct treatment of antipsychotics with the antioxidant N-acetyl cysteine appears to be effective in schizophrenia patients. Further studies are required to assess its efficacy as a prevention strategy. Redox imbalance might contribute to the pathophysiology of emerging psychosis and could serve as a therapeutic target for preventive or adjunctive therapies, as well as biomarkers of disease progression.
Collapse
|
6
|
Bortolli APR, Vieira VK, Treco IC, Pascotto CR, Wendt GW, Lucio LC. GSTT1 and GSTM1 polymorphisms with human papillomavirus infection in women from southern Brazil: a case-control study. Mol Biol Rep 2022; 49:6467-6474. [PMID: 35507115 PMCID: PMC9065665 DOI: 10.1007/s11033-022-07475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Important risk factors for the most common sexually transmitted infection (STI) in the world, human papillomavirus (HPV), include early sexual activity, use of contraceptives, tobacco smoking, and immunological and genetic factors. This study aimed to investigate the relationship between GSTM1 and GSTT1 polymorphisms and HPV infection and associated risk factors in a group of women assisted in the public health system of southwestern Paraná, Brazil. METHODS AND RESULTS A case-control study was designed with 21 women with HPV matched by age in the case group and 84 women without the virus in the control group. Viral detection was conducted via polymerase chain reaction (PCR) and GSTM1 and GSTT1 genotyping by Multiplex PCR. The results showed that the GSTT1 null allele was a protective factor against infection (ORadj 0.219; 95% CI 0.078-0.618; p = 0.004). No relationship was observed for the GSTM1 gene. Smoking was defined as a risk factor (ORadj 3.678; 95% CI 1.111-12.171; p = 0.033), increasing the chances of HPV by up to 3.6 times. CONCLUSION This study showed, for the first time, the relationship between GSTM1 and GSTT1 genetic polymorphisms and HPV. We found that this relationship protected women from southern Brazil from viral infection, but not from susceptibility.
Collapse
Affiliation(s)
- Ana Paula Reolon Bortolli
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Valquíria Kulig Vieira
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Indianara Carlotto Treco
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Claudicéia Risso Pascotto
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Guilherme Welter Wendt
- Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Léia Carolina Lucio
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Department of Health Sciences, Universidade Estadual do Oeste do Paraná, PR-182 Km 02, Bairro Água Branca, Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
7
|
Karahalil B, Elkama A, Ak M, Nemutlu E. Metabolomics mapping changed after olanzapine therapy in drug-naive schizophrenia patients—the significant impact of gene polymorphisms. Toxicol Res (Camb) 2022; 11:547-556. [DOI: 10.1093/toxres/tfac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Oxidative stress may contribute to the development of schizophrenia and antipsychotics used in schizophrenia treatment may also cause oxidative stress. Gene polymorphisms on antioxidant and repair enzymes are responsible for individual variations and may change the efficacy of olanzapine treatment among schizophrenia patients. In our study, we assessed oxidative stress-related metabolite changes due to genetic polymorphisms on first diagnosed-schizophrenia patients treated with olanzapine. Blood samples (n = 30 patients) were taken before treatment (T1), after 10 ± 1 days (T2), and after 3 ± 1 months (T3). T1 served as control for T2 and T3, since it is advantageous to perform on same patient to evaluate the impact of olanzapine only. GSTs (GSTM1, GSTT1, and GSTP1) and OGG1 gene polymorphisms were analyzed by polymerase chain reaction. Changes in metabolites were detected with metabolomics profiling by gas chromatography–mass spectrometry according to each genotype before and after treatment. Multivariate analysis showed that metabolomics profiles differed after olanzapine treatment regardless gene polymorphisms. Tryptophan could be a biomarker in response to olanzapine treatment since its levels were increased after treatment. GSTM1 gene polymorphism caused significant changes in some metabolites after treatment. Urea, palmitic acid, and caprylic acid levels increased and alanine levels decreased in patients with GSTM1 null genotypes after olanzapine. In future, targeted metabolomics with these prominent metabolites and assessing gene expressions of GSTs will be beneficial to understand the mechanism of action.
Collapse
Affiliation(s)
- Bensu Karahalil
- Department of Toxicology , Faculty of Pharmacy, Gazi University, Ankara 06330 , Turkey
| | - Aylin Elkama
- Department of Toxicology , Faculty of Pharmacy, Gazi University, Ankara 06330 , Turkey
| | - Mehmet Ak
- Department of Psychiatry , Meram Faculty of Medicine, Necmettin Erbakan University, Konya 42080 , Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry , Faculty of Pharmacy, Hacettepe University, Ankara 06230 , Turkey
| |
Collapse
|
8
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
9
|
Jeon P, Limongi R, Ford SD, Branco C, Mackinley M, Gupta M, Powe L, Théberge J, Palaniyappan L. Glutathione as a Molecular Marker of Functional Impairment in Patients with At-Risk Mental State: 7-Tesla 1H-MRS Study. Brain Sci 2021; 11:941. [PMID: 34356175 PMCID: PMC8307096 DOI: 10.3390/brainsci11070941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
A substantial number of individuals with clinical high-risk (CHR) mental state do not transition to psychosis. However, regardless of future diagnostic trajectories, many of these individuals develop poor social and occupational functional outcomes. The levels of glutathione, a crucial cortical antioxidant, may track variations in functional outcomes in early psychosis and prodromal states. Thirteen clinical high-risk and 30 healthy control volunteers were recruited for a 7-Tesla magnetic resonance spectroscopy scan with a voxel positioned within the dorsal anterior cingulate cortex (ACC). Clinical assessment scores were collected to determine if any association was observable with glutathione levels. The Bayesian Spearman's test revealed a positive association between the Social and Occupational Functioning Assessment Scale (SOFAS) and the glutathione concentration in the clinical high-risk group but not in the healthy control group. After accounting for variations in the SOFAS scores, the CHR group had higher GSH levels than the healthy subjects. This study is the first to use 7-Tesla magnetic resonance spectroscopy to test whether ACC glutathione levels relate to social and occupational functioning in a clinically high-risk group and offers preliminary support for glutathione levels as a clinically actionable marker of prognosis in emerging adults presenting with risk features for various severe mental illnesses.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
| | - Sabrina D. Ford
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Cassandra Branco
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Michael Mackinley
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Maya Gupta
- Department of Psychology, Western University, London, ON N6A 3K7, Canada;
| | - Laura Powe
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
- St. Joseph’s Health Care, Diagnostic Imaging, London, ON N6A 4V2, Canada
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada; (P.J.); (J.T.)
- Lawson Health Research Institute, Imaging Division, London, ON N6A 4V2, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (R.L.); (S.D.F.); (M.M.)
- Department of Psychiatry, Western University, London, ON N6A 3K7, Canada; (C.B.); (L.P.)
| |
Collapse
|
10
|
Ansari-Lari M, Zendehboodi Z, Masoudian M, Mohammadi F. Additive effect of glutathione S-transferase T1 active genotype and infection with Toxoplasma gondii for increasing the risk of schizophrenia. Nord J Psychiatry 2021; 75:275-280. [PMID: 33191823 DOI: 10.1080/08039488.2020.1843711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To determine if Toxoplasma gondii (T. gondii) infection may play a role in the development of schizophrenia in genetically susceptible persons with regard to genes encoding glutathione S-transferase T1 (GSTT1) and M1 (GSTM1). METHODS A total of 78 cases with psychiatric diagnosis of schizophrenia were compared with 91 healthy controls. For detection of IgG antibodies, enzyme-linked immunosorbent assay was used. Genotyping of GSTM1 and GSTT1 was performed by multiplex PCR. Chi-square and logistic regression were used for statistical analyses. RESULTS A higher frequency of the GSTT1 active gene in schizophrenic patients was observed. When risk categories based on the combination of T. gondii status and GSTs polymorphisms were compared, risk of schizophrenia increased in T. gondii positive/GSTT1 absent subjects (OR = 4.75, p = 0.05) compared with T. gondii negative/GSTT1 absent group. When T. gondii positive subjects had the GSTT1 active genotype, the risk increased linearly (OR = 10.20, p < 0.001). Odds ratio in T. gondii positive groups were almost the same in combination with the GSTM1 active genotype (OR = 4.45, p = 0.003) or null genotype (OR = 4.37, p = 0.006). CONCLUSIONS Our results showed an additive effect for T. gondii and GSTT1 active genotype as risk factors for schizophrenia in Iranian population. This is a small pilot study and replicating the study with larger groups of patients in multinational investigation to clarify these findings is recommended.
Collapse
Affiliation(s)
- Maryam Ansari-Lari
- Department of Food Hygiene and Public Heath, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Zendehboodi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Malihe Masoudian
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fahimeh Mohammadi
- Graduated from the School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Zhang X, Yang J, Liu X, Zhao G, Li X, Xun G. Glutathione S-transferase gene polymorphisms (GSTT1 and GSTM1) and risk of schizophrenia: A case-control study in Chinese Han population. Medicine (Baltimore) 2020; 99:e21918. [PMID: 32899025 PMCID: PMC7478483 DOI: 10.1097/md.0000000000021918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Schizophrenia (SCZ) is a chronic disability disorder related to oxidative stress. Glutathione S-transferase (GST) is a group enzyme that protects cells and tissues from oxidative stress damage. Among GSTs, GSTT1 and GSTM1 have well defined genetic polymorphisms. The purpose of our research was to explore the correlation between GSTT1 and GSTM1 polymorphism and SCZ risk in Chinese Han population.A total of 650 subjects (386 SCZ patients and 264 healthy individuals) were included in this case-control designed study. The GSTT1 and GSTM1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). We explored the relationship between these 2 polymorphisms and the risk of SCZ.We found that the GSTT1 null genotype had a protective effect on the development of SCZ [odds ratio (OR) = 0.601, 95% confidence interval (95% CI) = 0.412-0.986, P = .031]. We also found that the combination of null genotypes of the GSTT1 and GSTM1 genes was made at a lower risk of SCZ (OR = 0.452, 95% CI = 0.238-0.845, P = .028). However, we found no correction between Positive and Negative Syndrome Scale score (PANSS) and GSTM1, GSST1 genotypes in SCZ patients.Our finding revealed that GSTT1 null polymorphisms may be related to the reduced risk of SCZ in Chinese Han population, and this risk was further reduced with the combination of GSTT1 null polymorphisms and GSTM1 null polymorphisms.
Collapse
Affiliation(s)
- Xin Zhang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Jinmei Yang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xia Liu
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Gaofeng Zhao
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xue Li
- Jining Medical University, Jining, Shandong Province, China
| | - Guanglei Xun
- Shandong Mental Health Center, Jinan, Shandong Province, China
| |
Collapse
|
12
|
Yan C, Duan L, Fu C, Tian C, Zhang B, Shao X, Zhu G. Association Between Glutathione S-Transferase (GST) Polymorphisms and Schizophrenia in a Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:479-487. [PMID: 32110022 PMCID: PMC7038391 DOI: 10.2147/ndt.s235043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glutathione S-transferase (GST) is an important antioxidant enzyme in the body. The weakening of the antioxidant system causes damage to the cells and tissues that make up the organism, adversely affects the function of the nervous system, and ultimately leads to schizophrenia (SCZ). Previous studies have yielded inconsistent results across different ethnic populations. PURPOSE This case-control study was carried out to investigate whether genetic polymorphisms in GST could be associated with SCZ in the Chinese Han population. PATIENTS AND METHODS A total of 794 participants, including 379 SCZ patients (case group) and 415 healthy individuals (control group), were genotyped by polymerase chain reaction-restriction fragment length for polymorphisms in GST genes. RESULTS The study found that the frequency of the GSTM1 null genotype was higher in case group than control group (p=0.003). The frequency of the GSTM1 and GSTT1 double null genotype was also higher in case group than control group (p=0.008). CONCLUSION We conclude that the GSTM1 null genotype and the GSTM1 and GSTT1 double null genotype may be related to the onset of SCZ in Chinese Han population.
Collapse
Affiliation(s)
- Ci Yan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Bihui Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Department of Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
13
|
Das TK, Javadzadeh A, Dey A, Sabesan P, Théberge J, Radua J, Palaniyappan L. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:94-102. [PMID: 30125624 DOI: 10.1016/j.pnpbp.2018.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glutathione [GSH] is a major intracellular antioxidant that disposes peroxides and protects neurons and glial cells from oxidative stress. In both schizophrenia and bipolar disorder, atypical levels of GSH have been demonstrated, particularly in the anterior cingulate cortex (ACC), though no consistent results have emerged due to limitations in sample size. Our objective was to evaluate if GSH levels in the ACC are abnormal in these 2 disorder, when compared to healthy controls. METHODS We reviewed all 1H-MRS studies reporting GSH values for patients satisfying DSM or ICD based criteria for (1) the psychotic disorders - schizophrenia or schizoaffective disorder or (2) bipolar disorder in comparison to a healthy controls (HC) group in the Anterior Cingulate Cortex (ACC) published until June 2018. A random-effects model was used to calculate the pooled effect size. A meta-regression analysis of moderator variables was also undertaken. RESULTS The literature search identified 18 studies with a total sample size of 581 controls, 578 patients with schizophrenia or bipolar disorder. There is a small but significant reduction in ACC GSH in patients with schizophrenia compared to HC (N = 13; RFX SMD =0.26; 95% CI [0.07 to 0.44]; p = 0.008; heterogeneity p = 0.11). There is a significant increase in the ACC GSH concentration in bipolar disorder compared to HC (N = 6; RFX SMD = -0.28, 95% CI [-0.09 to -0.47]; p = 0.003; heterogeneity p = 0.95). CONCLUSIONS We report a small, but significant reduction in GSH concentration in the ACC in schizophrenia, and a similar sized increase in bipolar disorder. A notable limitation is the lack of sufficient data to examine the moderating effect of the symptom profile. Schizophrenia and bipolar disorder have notably different patterns of redox abnormalities in the ACC. Reduced ACC GSH may confer a schizophrenia-like clinical phenotype, while an excess favouring a bipolar disorder-like profile.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada
| | - Alborz Javadzadeh
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Avyarthana Dey
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada
| | | | - Jean Théberge
- Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Department of Diagnostic Imaging, St. Joseph's Health Care London, ON, Canada
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Spain; Institute of Psychiatry, King's College London, De Crespigny Park, London,UK; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
14
|
Kano SI, Choi EY, Dohi E, Agarwal S, Chang DJ, Wilson AM, Lo BD, Rose IVL, Gonzalez S, Imai T, Sawa A. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci Signal 2019; 12:12/569/eaar2124. [PMID: 30783009 DOI: 10.1126/scisignal.aar2124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocytes and microglia play critical roles in brain inflammation. Here, we report that glutathione S-transferases (GSTs), particularly GSTM1, promote proinflammatory signaling in astrocytes and contribute to astrocyte-mediated microglia activation during brain inflammation. In vivo, astrocyte-specific knockdown of GSTM1 in the prefrontal cortex attenuated microglia activation in brain inflammation induced by systemic injection of lipopolysaccharides (LPS). Knocking down GSTM1 in astrocytes also attenuated LPS-induced production of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by microglia when the two cell types were cocultured. In astrocytes, GSTM1 was required for the activation of nuclear factor κB (NF-κB) and the production of proinflammatory mediators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif chemokine ligand 2 (CCL2), both of which enhance microglia activation. Our study suggests that GSTs play a proinflammatory role in priming astrocytes and enhancing microglia activation in a microglia-astrocyte positive feedback loop during brain inflammation.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Eric Y Choi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Swati Agarwal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel J Chang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley M Wilson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian D Lo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Indigo V L Rose
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Santiago Gonzalez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takashi Imai
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8510, Japan
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
de Araújo Filho GM, Martins DP, Lopes AM, de Jesus Brait B, Furlan AER, Oliveira CIF, Marques LHN, Souza DRS, de Almeida EA. Oxidative stress in patients with refractory temporal lobe epilepsy and mesial temporal sclerosis: Possible association with major depressive disorder? Epilepsy Behav 2018; 80:191-196. [PMID: 29414551 DOI: 10.1016/j.yebeh.2017.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective was to evaluate the genetic and biochemical profiles associated with oxidative stress (OS) in patients with temporal lobe epilepsy with mesial temporal sclerosis (TLE-MTS) and a healthy control group, and also to verify the possible existence of association between OS markers and psychiatric disorders (PD) in group with TLE-MTS. METHODS Forty-six patients with refractory TLE-MTS and 112 healthy controls were included. Psychiatric evaluation occurred through Diagnostical and Statistical Manual of Mental Disorders (DSM-5) criteria. A peripheral blood sample was collected for analysis of glutathione S-transferase (GST) T1/M1 polymorphisms and serum levels of malondialdehyde (MDA) and antioxidant capacity equivalent to the trolox (TEAC), serum markers of OS. Student's t-test, Fisher's exact test, Chi-square test, and Analysis of Variance (ANOVA) were used, with a significance level of P<0.05. RESULTS The PD were observed in 27 patients of the group with TLE-MTS (58.6%); major depressive disorder (MDD) was the most frequent. Serum levels of MDA (P<0.0001) and TEAC (P<0.0001) were higher in group with TLE-MTS. When patients with MDD were compared with patients without PD, significant differences were observed between MDA (P=0.002) and TEAC (P=0.003) serum levels. Patients with TLE-MTS and MDD presented higher levels when compared with patients with TLE-MTS without PD and with another PD except MDD. CONCLUSIONS The present study observed significantly higher serum levels of MDA and of TEAC in patients with refractory TLE-MTS in comparison with the control group. The MDD was observed as an important issue associated with higher OS levels in refractory TLE-MTS. Further studies are needed to investigate the association of OS, TLE-MTS, and PD.
Collapse
Affiliation(s)
- Gerardo Maria de Araújo Filho
- Department of Psychiatry and Medical Psychology, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil.
| | - Denise Poltronieri Martins
- Department of Biochemistry and Molecular Biology-NPBIM, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Angélica Marta Lopes
- Department of Biochemistry and Molecular Biology-NPBIM, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Beatriz de Jesus Brait
- Department of Biochemistry and Molecular Biology-NPBIM, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Ana Eliza Romano Furlan
- Department of Psychiatry and Medical Psychology, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Camila Ive Ferreira Oliveira
- Department of Biochemistry and Molecular Biology-NPBIM, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Lucia Helena Neves Marques
- Department of Neurological Sciences, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Dorotéia Rossi Silva Souza
- Department of Biochemistry and Molecular Biology-NPBIM, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Department of Chemistry and Environmental Sciences - IBILCE, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| |
Collapse
|
16
|
Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol 2017; 38:511-528. [PMID: 28936894 DOI: 10.1080/07388551.2017.1375890] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Fotini Pouliou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Nikolaos E Labrou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
17
|
Pinheiro DS, Santos RDS, de Brito RB, Cruz AHDS, Ghedini PC, Reis AAS. GSTM1/GSTT1 double-null genotype increases risk of treatment-resistant schizophrenia: A genetic association study in Brazilian patients. PLoS One 2017; 12:e0183812. [PMID: 28837637 PMCID: PMC5570380 DOI: 10.1371/journal.pone.0183812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The role of oxidative stress in schizophrenia has been demonstrated, particularly in subjects with treatment-resistant schizophrenia (TRS). In such patients, the decreased levels of antioxidants in conjunction with the increased generation of reactive oxygen species in the brain exposes the neurons to a higher risk of damage. METHODS AND FINDINGS We evaluated the association of deletion polymorphisms of two genes of the antioxidant Glutathione S-Transferase family, GSTT1 and GSTM1, with susceptibility to TRS. A total of 54 TRS patients (mean age 38.7 years) and 78 healthy control subjects (mean age 39.0 years) were enrolled in this study. The subjects were matched by sex, age, and smoking and alcohol consumption habits. In the case group, the frequencies of GSTT1-null and GSTM1-null genotypes were 24.1 and 51.9%, respectively, whereas for the control group, the frequencies were 12.8 and 46.2%, respectively. Analysis performed with respect to the risk of developing TRS associated with the GSTT1 and GSTM1 deletion polymorphisms, resulted in odds ratio (OR) values of 2.1 and 1.2, respectively. However, the association was not found to be significant (p = 0.1229 and p = 0.5916, respectively). The analysis performed with respect to the combined genotypes of GSTT1 and GSTM1 revealed that the double-null genotype confers a 4.6-fold increased risk of developing TRS (p = 0.0412). CONCLUSION The results of the present study indicate that a combination of GST deficiencies may play a role in enhanced susceptibility to TRS, and the present genotype of one of these genes may buffer the deficiency caused by the lack (null genotype) of the other. The results suggest that combined deletion polymorphisms of GSTT1 and GSTM1 can have implications in the prediction of the clinical course of the disease.
Collapse
Affiliation(s)
- Denise S. Pinheiro
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Rodrigo da S. Santos
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
- Department of Nature Sciences (LEdoC), Special Academic Unit of Human Sciences, Federal University of Goiás (UFG), Goiás, GO, Brazil
| | - Rodrigo B. de Brito
- Brain Institute, Bueno Medical Center, Goiânia, GO, Brazil
- Department of Pharmacology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Aline Helena da S. Cruz
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Paulo C. Ghedini
- Department of Pharmacology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Angela A. S. Reis
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB II), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| |
Collapse
|
18
|
Ciccacci C, Latini A, Politi C, Mancinelli S, Marazzi MC, Novelli G, Palombi L, Borgiani P. Impact of glutathione transferases genes polymorphisms in nevirapine adverse reactions: a possible role for GSTM1 in SJS/TEN susceptibility. Eur J Clin Pharmacol 2017; 73:1253-1259. [PMID: 28689274 DOI: 10.1007/s00228-017-2295-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Nevirapine (NVP) is used in developing countries as first-line treatment of HIV infection. Unfortunately, its use is associated with common serious adverse drug reactions, such as liver toxicity and the most severe and rare Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). GSTT1 and GSTM1 genes code for enzymes involved in the metabolism of a wide range of drugs. We hypothesized that this gene variability could be implicated in NVP adverse reactions. METHODS We analyzed the GSTM1 and GSTT1 null genotypes by multiplex PCR in a population of 181 patients from Mozambique, treated with NVP. A case/control association study was performed. We also counted the number of risk alleles in SJS/TEN patients and in controls, including the GSTM1 null genotype and four previously identified risk alleles in CYP2B6, HCP5, and TRAF3IP2 genes. RESULTS Among patients, 27 had developed SJS/TEN and 76 had developed hepatotoxicity during the treatment. The GSTM1 null genotype was more frequent in the cases with SJS/TEN than in the controls (OR = 2.94, P = 0.027). This association is also observed when other risk factors are taken into account, by a multivariate analysis (P = 0.024 and OR = 3.58). The risk allele counting analysis revealed a significantly higher risk for SJS/TEN in patients carrying three or four risk alleles. Moreover, all subjects with five or six risk alleles developed SJS/TEN, while subjects without any risk alleles were present only in the control group. CONCLUSIONS We observed an association between GSTM1 and SJS/TEN susceptibility. Moreover, GSTM1 contributes to the definition of a genetic risk profile for SJS/TEN susceptibility.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Sandro Mancinelli
- Department of Biomedicine and Prevention, Epidemiology Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria C Marazzi
- Department of Human Sciences, LUMSA University, 00193, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, Epidemiology Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
19
|
Vorojeikina D, Broberg K, Love TM, Davidson PW, van Wijngaarden E, Rand MD. Editor's Highlight: Glutathione S-Transferase Activity Moderates Methylmercury Toxicity During Development in Drosophila. Toxicol Sci 2017; 157:211-221. [PMID: 28184905 PMCID: PMC5837650 DOI: 10.1093/toxsci/kfx033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glutathione (GSH) pathways play a central role in methylmercury (MeHg) metabolism and elimination, largely due to formation of a more readily transported MeHg-GSH conjugate. Glutathione S-transferases (GSTs) have therefore been proposed to facilitate MeHg elimination by catalyzing MeHg-GSH conjugation. A role for human GSTP1 in MeHg disposition is suggested by the association of two common polymorphisms in the coding region (Ile105Val and Ala114Val) with Hg levels in either blood or hair. In this study, we investigated a functional role for GSTs in modulating MeHg toxicity during development. Using the Drosophila model to execute targeted manipulations of both endogenous GSTs and introduced human GSTP1 variants we correlate gene and protein expression levels with GST activity and also with MeHg body burden and developmental outcomes. RNAi knockdown of endogenous GSTD1, GSTE1, or GSTS1, individually, increased susceptibility to MeHg during pupal development resulting in a reduced rate of adult eclosion. Exogenous expression of human GSTP1 in developing flies resulted in increased MeHg tolerance relative to control flies as seen with elevated eclosion rates when reared on MeHg containing food. Furthermore, the GSTP1105 and GSTP1114 variants showed a reduced enzyme activity relative to wild-type GSTP1 (GSTP1wt). Finally, we observed a trend whereby Hg body burden was inversely related to the levels of GST activity. However, in some instances GSTP1 expression resulted in increased eclosion rates without reducing Hg body burden suggesting that GSTs interact with MeHg via both toxicokinetic and toxicodynamic mechanisms. These findings indicate that GSTs moderate MeHg toxicity during development in our experimental model.
Collapse
Affiliation(s)
| | - Karin Broberg
- The Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Tanzy M. Love
- Department of Pediatrics
- Department of Biostatistics and Computational Biology
| | | | - Edwin van Wijngaarden
- Department of Environmental Medicine
- Department of Pediatrics
- Department of Public Health SciencesDepartment of Dentistry, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | |
Collapse
|
20
|
Chbili C, Elouaer A, Fathallah N, Nouira M, Jrad BBH, Gaha L, Saguem S. Effects of glutathione S-transferase M1 andT1 deletions on bipolar disorder risk among a Tunisian population. Gene 2017; 607:31-35. [DOI: 10.1016/j.gene.2016.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/14/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023]
|
21
|
Matic M, Dragicevic B, Pekmezovic T, Suvakov S, Savic-Radojevic A, Pljesa-Ercegovac M, Dragicevic D, Smiljic J, Simic T. Common Polymorphisms in GSTA1, GSTM1 and GSTT1 Are Associated with Susceptibility to Urinary Bladder Cancer in Individuals from Balkan Endemic Nephropathy Areas of Serbia. TOHOKU J EXP MED 2017; 240:25-30. [PMID: 27568660 DOI: 10.1620/tjem.240.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Balkan endemic nephropathy (BEN) is a chronic familial form of interstitial nephritis that might eventually lead to end stage renal disease. This nephropathy affects individuals living along of the Danube River and its tributaries in Serbia, Bosnia, Croatia, Bulgaria and Romania. The increased incidence of urinary tract tumors in the BEN areas is well described, but its specific genetic predisposition is still unclear. Certain nephrocarcinogenic compounds, including those associated with BEN, are metabolized by glutathione S-transferase (GST) superfamily of phase II detoxication enzymes. Importantly, the GST-mediated detoxification may result in formation of more toxic compounds. We examined the association of common GST polymorphisms and bladder cancer (BC) risk in individuals from BEN areas in Serbia. A hospital-based case-control study included 201 BC cases (67 from BEN region) and 122 controls. Each polymorphism was identified by a PCR-based method. Individuals from BEN region with low-expression GSTA1 genotype (AB+BB) exhibited a 2.6-fold higher BC risk compared to those with GSTA1 (AA) genotype who were from non-BEN region (OR = 2.60, p = 0.015). In contrast, carriers of GSTM1-active genotype from BEN region had a 2.9-fold increased BC risk compared to those with GSTM1-active genotype from non-BEN region (OR = 2.90, p = 0.010). Likewise, carriers with GSTT1-active genotype from BEN region exhibited 2.1-fold higher BC risk compared to those from non-BEN region with GSTT1-active genotype (OR = 2.10, p = 0.027). Thus, common polymorphisms in GSTA1, GSTM1 and GSTT1 are associated with susceptibility to BC in individuals from BEN areas of Serbia.
Collapse
|
22
|
Saify K, Khalighinasab MR, Saadat M. No association between GSTM1 and GSTT1 genetic polymorphisms and susceptibility to opium sap dependence. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2016; 5:59-64. [PMID: 27844021 PMCID: PMC5019334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutathione S-transferases (GSTs; EC: 2.5.1.18) are a ubiquitous family of eukaryotic and prokaryotic phase II metabolic isozymes. Genes encoding GSTM1 (OMIM: 138350), and GSTT1 (OMIM: 600436) are members of class mu and theta, respectively. The most common polymorphism in the GSTM1 is a deletion of the whole GSTM1 gene with a lack of enzyme activity. A homozygous deletion in the GSTT1 has also been reported (null genotypes of GSTT1). The aim of the present study was to investigate the association between GSTM1 and GSTT1 polymorphisms and risk of dependency to opium sap. The present study was performed in Shiraz (southern Iran). In total, 71 males dependent to opium sap and 590 healthy males (as a control group) were included in this study. The genotypes of GSTM1 and GSTT1 polymorphisms were determined by PCR. Our data indicate that neither GSTM1 (OR=0.78, 95% CI: 0.47-1.27, P=0.325) nor GSTT1 (OR=1.25, 95% CI: 0.70-2.21, P=0.442) null genotypes significantly associated with the risk of opium sap dependence. There is no additive effect of the null genotypes of GSTT1 and GSTM1 in relation to the risk of dependency to opium sap. The present study indicated that the null genotypes of GSTT1 and GSTM1 are not risk factor for opium sap dependence.
Collapse
Affiliation(s)
| | | | - Mostafa Saadat
- Address for correspondence: Department of Biology, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran ,Tel: +98-71-36137432, Fax: +98-71-32280916, E. mail: ,
| |
Collapse
|