1
|
Mukkavilli V, Ramakrishnan G, Gujjula KR, S B, Chamarthy S, Mekala JR. Molecular Understanding and Pharmacological Potency of Plant-Derived Compounds in Colorectal Cancer (CRC): A Critical Analysis and Future Perspectives. Cell Biochem Biophys 2024; 82:1777-1795. [PMID: 38965179 DOI: 10.1007/s12013-024-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Colorectal cancer (CRC) is the main driver of fatality and the 3rd most often determined malignancy. Despite advances in detection and therapy, colorectal cancer (CRC) endures as the largest driver of cancer-related morbidity, and mortality. Modern habits and dietary negligence might be one of the reasons that have enhanced cancer prevalence. Thus, changes in Dietary habits will have a better impact, and help in finding a better cure for CRC. Initially, CRC was explored as a genetic event and currently, the research is focused on the epigenetic modifications of chromatin and microRNA (miRNA) in CRC cells. Natural products such as Curcumin, Resveratrol, Flavonoids, and Ellagitannins are been explored as compounds from the perspective of genetic, epigenetic, and miRNA modifications which will have future therapeutic aspects. Also, the extracts of these key players and their analogs will intervene the signaling pathway activation that involves in cancer propagation, apoptosis, cell cycle arrest, and epigenetic and miRNA modifications. Modulations of these miRNAs, and modification globally might have impact on CRC progression, and cancer tumor cell sensitivity.
Collapse
Affiliation(s)
- Vaagdevi Mukkavilli
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| | - Koteswara Reddy Gujjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Balachandran S
- Dept of Chemical Engineering, Saveetha Engineering College, Saveetha Nagar Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| |
Collapse
|
2
|
Zhai S, Wang R, Wang J, Xu X, Niu L, Guo M, Zhang Y, Shi Y, Tang X. Curcumol: a review of its pharmacology, pharmacokinetics, drug delivery systems, structure-activity relationships, and potential applications. Inflammopharmacology 2024; 32:1659-1704. [PMID: 38520574 DOI: 10.1007/s10787-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.
Collapse
Affiliation(s)
- Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Jingyuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Xiangdong Xu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Le Niu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Min Guo
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yongling Zhang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| |
Collapse
|
3
|
Cui T, Li BY, Liu F, Xiong L. Research Progress on Sesquiterpenoids of Curcumae Rhizoma and Their Pharmacological Effects. Biomolecules 2024; 14:387. [PMID: 38672405 PMCID: PMC11048675 DOI: 10.3390/biom14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.
Collapse
Affiliation(s)
- Ting Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo-Yu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Xu M, Li F, Xu X, Hu N, Miao J, Zhao Y, Ji S, Wang Y, Wang L. Proteomic analysis reveals that cigarette smoke exposure diminishes ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell proliferation-apoptosis balance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115989. [PMID: 38242047 DOI: 10.1016/j.ecoenv.2024.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Exposure to cigarette smoke (CS) adversely affects ovarian health and it is currently unknown how CS exposure causes ovarian injury. This study compared the differences in proteomics between CS exposure and healthy control groups using liquid chromatography-tandem mass spectrometry quantitative proteomics to further understand the molecular mechanism of ovarian cell injury in mice exposed to CS. Furthermore, western blotting and qPCR were carried out to validate the proteomic analysis outcomes. CREB1 was selected from the differentially expressed proteins, and then the down-regulation of CREB1 and phosphorylated CREB1(Ser133) expressions were confirmed in mice ovarian tissue and human ovarian granulosa cells (KGN cells) after CS exposure. In addition, the expressions of apoptosis-related proteins BCL-2 and BCL-XL were downregulated, and BAX expression was up-regulated. Moreover, the results of cellular immunofluorescence, flow cytometry, and transmission electron microscopy (TEM) showed that cigarette smoke extract (CSE) efficiently stimulated the production of reactive oxygen species, apoptosis, G1 phase arrest, mitochondrial membrane potential decreases, and ultrastructural changes in KGN cells. KG-501 (CREB inhibitor) aggravated CSE-induced mitochondrial dysfunction and apoptosis-proliferation imbalance in KGN cells mediated by down-regulated CREB1/BCL-2 axis. In addition, CREB1 over-expression partially restores mitochondrial dysfunction and apoptosis-proliferation imbalance of KGN cells induced by CSE. The results suggested that CSE diminished ovarian reserve in mice by disrupting the CREB1-mediated ovarian granulosa cell (GCs) proliferation-apoptosis balance and provided possible therapeutic targets for the clinical intervention of premature ovarian failure (POI) caused by CS exposure.
Collapse
Affiliation(s)
- Mengting Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Fang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - XiaoYan Xu
- Assisted Reproduction Centre of Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Nengyin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Jianing Miao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Yanhui Zhao
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Sailing Ji
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Lili Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, China; Medical Research Center of Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Research and Application of Animal Model for Environmental and Metabolic Diseases, Liaoning Province, China.
| |
Collapse
|
5
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
do Espírito Santo BC, Oliveira JADS, Ribeiro MADS, Schoffen RP, Polli AD, Polonio JC, da Silva AA, de Abreu Filho BA, Heck MC, Meurer EC, Constantin PP, Pileggi M, Vicentini VEP, Golias HC, Pamphile JA. Antitumor and antibacterial activity of metabolites of endophytic Colletotrichum siamense isolated from coffee (Coffea arabica L. cv IAPAR-59). Braz J Microbiol 2023; 54:2651-2661. [PMID: 37642890 PMCID: PMC10689633 DOI: 10.1007/s42770-023-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.
Collapse
Affiliation(s)
- Bruno César do Espírito Santo
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | - Rodrigo Pawloski Schoffen
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Andressa Domingos Polli
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| | - Angela Aparecida da Silva
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Benício Alves de Abreu Filho
- Center for Health Sciences, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Michele Cristina Heck
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Paola Pereira Constantin
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Marcos Pileggi
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Halison Correia Golias
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
7
|
Bian Y, Yin G, Wang G, Liu T, Liang L, Yang X, Zhang W, Tang D. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells. Cell Biol Toxicol 2023; 39:1957-1978. [PMID: 35083610 DOI: 10.1007/s10565-021-09681-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) has high morbidity and mortality. Epithelial-mesenchymal transition (EMT) is associated with CRC progression and metastasis. Glutaminolysis is essential for malignancy of cancer cells. Here, we examined the effects of curcumol on CRC EMT. We observed that curcumol suppressed invasion and migration in human CRC cells associated with upregulation of epithelial markers E-cadherin and Zonula occludens 1 and downregulation of mesenchymal markers N-cadherin and Vimentin as well as EMT-related transcription factors Snail and Twist. Curcumol increased intracellular levels of glutamine but decreased intracellular levels of glutamate, α-ketoglutarate, ATP, glutathione, and tricarboxylic acid cycle metabolites, suggesting interruption of glutaminolysis. Next, curcumol repressed glutaminase 1 (Gls1) mRNA and protein expression, and overexpression of Gls1 promoted EMT and abolished curcumol effects on CRC cell EMT. Molecular examinations showed that curcumol stimulated protein degradation of hypoxia-inducible factor-1α (HIF-1α) and prevented its nuclear accumulation in CRC cells. HIF-1α agonist deferoxamine (DFO) promoted HIF-1α binding to Gls1 promoter and increased Gls1 expression but abolished curcumol's inhibitory effects on Gls1 expression. DFO also enhanced EMT and invasion and migration in CRC cells and eliminated curcumol effects. Furthermore, mouse CRC models were established with in vivo overexpression of HIF-1α and Gls1. Curcumol effectively inhibited CRC growth, metastasis, and EMT in mice, which was abrogated by overexpression of HIF-1α or Gls1. Altogether, stimulation of HIF-1α degradation was required for curcumol to disrupt EMT and repress invasion and migration in CRC cells through inhibiting Gls1-mediated glutaminolysis. Curcumol could be a promising candidate for intervention of CRC metastasis. • Curcumol inhibits EMT and blocks glutaminolysis in CRC cells. • Inhibition of Gls1 is required for curcumol blockade of glutaminolysis and EMT. • Curcumol induces HIF-1α degradation leading to inhibition of Gls1 and blockade of glutaminolysis and EMT. • Curcumol suppresses CRC growth and metastasis via inhibiting HIF-1α, glutaminolysis and EMT in mice.
Collapse
Affiliation(s)
- Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gang Yin
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gang Wang
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tiantian Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyue Yang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 211166, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Wang F, Sun Z, Zhang Q, Yang H, Yang G, Yang Q, Zhu Y, Wu W, Xu W, Wu X. Curdione induces ferroptosis mediated by m6A methylation via METTL14 and YTHDF2 in colorectal cancer. Chin Med 2023; 18:122. [PMID: 37735401 PMCID: PMC10512537 DOI: 10.1186/s13020-023-00820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Curdione is a sesquiterpene isolated from Curcumae Rhizoma that possesses high biological activity and extensive pharmacological effects. As a traditional Chinese medicine, Curcumae Rhizoma can inhibit the development of many types of cancer, especially colorectal cancer. However, the anti-colorectal mechanism of its monomer curdione remains unclear. METHODS Colorectal cancer (CRC) cells were treated with curdione at doses of 12.5 μM, 25 μM, and 50 μM, and then the cells' activity was measured with methyl thiazolyl tetrazolium (MTT). Nude mice were administered different doses of curdione subcutaneously and oxaliplatin by tail vein injection, and then hematoxylin-eosin (HE) staining was adopted to examine tumor histology. Moreover, flow cytometry was applied to detect reactive oxygen species in cells and tissues. Kits were employed to detect the levels of iron ions, malondialdehyde, lipid hydroperoxide, and glutathione. Polymerase chain reaction (PCR) and Western blotting were adopted to detect ferroptosis and m6A modification-related factors. A methylation spot hybridization assay was performed to measure changes in overall methylation. SLC7A11 and HOXA13 were measured by MeRIP-qPCR. The shRNA-METTL14 plasmid was constructed to verify the inhibitory effect of curdione on CRC. RESULTS A dose-dependent decrease in activity was observed in curdione-treated cells. Curdione increased the accumulation of reactive oxygen species in CRC cells and tumor tissues, greatly enhanced the levels of malondialdehyde, lipid hydroperoxide and Fe2+, and lowered the activity of glutathione. According to the qPCR and Western blot results, curdione promoted the expression of METTL14 and YTHDF2 in CRC cells and tissues, respectively, and decreased the expression of SLC7A11, SLC3A2, HOXA13, and glutathione peroxidase 4. Additionally, in animal experiments, the curdione-treated group showed severe necrosis of tumor cells, as displayed by HE staining. Furthermore, compared with the control group, levels of m6A modifying factors (namely, SLC7A11 and HOXA13) were increased in the tissues after drug intervention. METTL14 knockdown was followed by an increase in CRC cell activity and glutathione levels. However, the levels of reactive oxygen species, malondialdehyde, and iron ions decreased. The expression levels of SLC7A11, SLC3A2, HOXA13, and GPX4 were all increased after METTL14 knockdown. CONCLUSION The results suggest that curdione induces ferroptosis in CRC by virtue of m6A methylation.
Collapse
Affiliation(s)
- Fang Wang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Zheng Sun
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Qunyao Zhang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Hao Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Gang Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Qi Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Yimiao Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Wenya Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, China
| | - Wenwen Xu
- Department of Gynecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Xiaoyu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Yu YH, Zhang HJ, Yang F, Xu L, Liu H. Curcumol, a major terpenoid from Curcumae Rhizoma, attenuates human uterine leiomyoma cell development via the p38MAPK/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116311. [PMID: 36894110 DOI: 10.1016/j.jep.2023.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uterine fibroids (UFs) are the most common benign tumors in women of reproductive age. Curcumae Rhizoma, the main essential oil component of which is curcumol, is widely used for the treatment of phymatosis in China due to its antitumor, anti-inflammatory, antithrombin, anti-tissue fibrosis and anti-oxygen pharmacological activities, but its potential for the treatment of UFs has not been evaluated. AIM OF THE STUDY This study aimed to investigate the effects and mechanisms of curcumol intervention in human uterine leiomyoma cells (UMCs). MATERIALS AND METHODS Putative targets of curcumol intervention in UFs were identified using network pharmacology strategies. Molecular docking was performed to assess the binding affinity of curcumol to core targets. A concentration gradient of curcumol (0, 50, 100, 200, 300, 400 and 500 μM) or RU-486 (mifepristone, 0, 10, 20, 40, 50, and 100 μM) was applied to UMCs, and cell viability was detected by the CCK-8 assay. Cell apoptosis and cell cycle were examined by flow cytometry, and cell migration was assessed by a wound-healing assay. Additionally, the mRNA and protein expression levels of critical pathway components were evaluated by RT‒PCR and western blotting. Finally, the actions of curcumol on different tumor cell lines were summarized. RESULTS Network pharmacology predicted 62 genes with roles in the treatment of UFs with curcumol, and MAPK14 (p38MAPK) displayed a higher interaction degree. GO enrichment and KEGG analyses revealed that the core genes were abundantly enriched in the MAPK signaling pathway. The molecular binding of curcumol to core targets was relatively stable. In UMCs, 200, 300 and 400 μM curcumol treatment for 24 h decreased cell viability compared with that in the control group, and the greatest effect was detected at 48 h and maintained until 72 h. Curcumol arrested cells in the G0/G1 phase and subsequently suppressed mitosis, promoted early apoptosis and reduced the degree of wound healing in a concentration-dependent manner in UMCs. Furthermore, 200 μM curcumol decreased the mRNA and protein expression of p38MAPK, the mRNA expression of NF-κB, and the protein expression of Ki-67 and increased the mRNA and protein expression of Caspase 9. Curcumol (300 and 400 μM) decreased the mRNA and protein expression of p38MAPK, NF-κB, and Ki-67 and increased the protein expression of Caspase 9 in UMCs. Curcumol was demonstrated to treat tumor cell lines, including breast cancer, ovarian cancer, lung cancer, gastric cancer, liver cancer and nasopharyngeal carcinoma, but its effects on benign tumors have not yet been reported. CONCLUSION Curcumol suppresses cell proliferation and cell migration while arresting the cell cycle in the G0/G1 phase and inducing cell apoptosis in UMCs via a mechanism related to p38MAPK/NF-κB pathway regulation. Curcumol may be a potential therapeutic and preventive agent in the treatment of benign tumors such as UFs.
Collapse
Affiliation(s)
- Yong-Hui Yu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Hao-Jun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Fang Yang
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China
| | - Hong Liu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
10
|
Yang Z, Wang S, Hong Y, Gai R, Hong W, Tang B, Lin C, Wang X, Wang Q, Chen C, Wang J, Weng Q. Safety Evaluation of Curcumol by a Repeated Dose 28-Day Oral Exposure Toxicity Study in Rats. TOXICS 2023; 11:114. [PMID: 36850989 PMCID: PMC9965727 DOI: 10.3390/toxics11020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Curcumol, a natural product isolated from the traditional Chinese medicine Rhizoma curcumae, possesses various potential therapeutic values in many diseases. However, evidence of its toxicological profile is currently lacking. In this study, a repeated toxicity study of curcumol was conducted for the first time. SD rats were exposed to doses of 250, 500, 1000 mg/kg in a selected dose formulation for 28 days through oral administration. The potential toxic effects of curcumol on the blood system were observed and further validated in vivo and in vitro. Moreover, other hematology and biochemistry parameters as well as the weight of organs were altered, but no related histopathological signs were observed, indicating these changes were not regarded as toxicologically relevant. Our current findings provide a complete understanding of the safety profile of curcumol, which may contribute to its further study of investigational new drug application.
Collapse
Affiliation(s)
- Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Renhua Gai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Tang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunqin Lin
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomeng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojing Wang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Wang S, Lu L, Song T, Xu X, Yu J, Liu T. Optimization of Cordyceps sinensis fermentation Marsdenia tenacissima process and the differences of metabolites before and after fermentation. Heliyon 2022; 8:e12586. [PMID: 36636205 PMCID: PMC9830164 DOI: 10.1016/j.heliyon.2022.e12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we explored the interaction of factors which influenced the Cordyceps sinensis fermentation Marsdenia tenacissima (Roxb.) Wight et Arn, a Dai (a national minority of China) medicine, and the optimal fermentation conditions. The differences of C. sinensis metabolites in normal state (CN) and products of two-way liquid fermentation of C. sinensis and Marsdenia tenacissima (CM) and Marsdenia tenacissima (MT). The interactive effect of factors was analyzed and the best conditions are obtained through the box-behnken design (BBD) in response surface methodology (RSM). All metabolites were determined by ultra high performance liquid chromatography quadrupole time of flight mass spectrometer (UHPLC-Q-TOF-MS), analyzed and identified by metabonomics technology. Results showed that the optimum fermentation conditions were the concentration of raw medicinal materials is 160 g/L, the fermentation time is 6 days, the inoculation volume is 9.5%, the rotating speed is 170 rpm. 197 metabolites were identified in both positive ion and negative ion. 119 metabolites were significantly different between CN and CM. 43 metabolites were significantly different between CM and MT. Differential metabolic pathways were enriched. In conclusion, this paper optimizes the bidirectional fermentation process of M. tenacissima and C. sinensis through response surface methodology, and analyzes the changes of components from the level of metabonomics, so as to provide reference for exploring medicinal fungi fermentation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Xinxin Xu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China,Corresponding author.
| |
Collapse
|
12
|
Wu YZ, Zhang Q, Wei XH, Jiang CX, Li XK, Shang HC, Lin S. Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154418. [PMID: 36099655 DOI: 10.1016/j.phymed.2022.154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prospects for the drug treatment of acute lung injury (ALI) is unpromising. Managing inflammation can prevent ALI from progressing and minimize further deterioration. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM) that has been used against ALI, has shown significant anti-inflammatory effects. However, the mechanisms underlying these effects remain unclear. PURPOSE Elucidate the anti-inflammatory mechanism by which ZTOI acts against ALI in rats using an ingredients-targets-pathways (I-T-P) interaction network. STUDY DESIGN AND METHODS The key ingredients of ZTOI were characterized using UPLC-MS/MS combined with literature mining. The target profiles of each ingredient were established using drug-target databases. The anti-inflammatory activity of ZTOI against lipopolysaccharides (LPS)-induced rat ALI was validated using histopathology and inflammatory factor assessments. The therapeutic targets of ZTOI were screened by integrating transcriptomic results of lung tissues with protein-protein interaction (PPI) expansion. Using KEGG pathway enrichment, an I-T-P network was established to determine the essential interactions among ingredients, targets, and pathways of ZTOI against lung inflammation in ALI. Molecular docking and immunofluorescence staining were utilized to confirm the accuracy of the I-T-P network. RESULTS A total of 11 sesquiterpenes, whose target profiles may characterize the potential function of ZTOI, were identified as key ingredients. In the ALI rat model, ZTOI can alleviate lung inflammation by decreasing the levels of C-reactive protein, interleukin-6, interleukin-1β, and tumor necrosis factor α both in serum and lung tissues. Based on our biological samples, transcriptomics, PPI network expansion, and KEGG pathway enrichment, 11 ingredients, 174 targets, and 8 signaling pathways were linked in the I-T-P networks. From these results, ZTOI could be inferred to exert multiple anti-inflammatory effects against ALI through Toll-like receptor, NF-kappa B, RIG-I-like receptor, TNF, NOD-like receptor, IL-17, MAPK, and the Toll and Imd signaling pathways. In addition, two significantly regulated targets in the transcriptome, Usp18 and Map3k7, could be the essential anti-inflammatory targets of ZTOI. CONCLUSION By integrating network pharmacology with ingredient identification and transcriptomics, we show the multiple anti-inflammatory mechanisms by which ZTOI acts against ALI on an I-T-P level. This work also provides a methodological reference for related research into TCM.
Collapse
Affiliation(s)
- Yu-Zhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Cheng-Xi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Xiao-Kun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
13
|
Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int 2022; 22:280. [PMID: 36076273 PMCID: PMC9461221 DOI: 10.1186/s12935-022-02695-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023] Open
Abstract
Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.
Collapse
Affiliation(s)
- Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naila Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
14
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
15
|
Curcumol Inhibits the Development of Prostate Cancer by miR-125a/STAT3 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9317402. [PMID: 35942374 PMCID: PMC9356804 DOI: 10.1155/2022/9317402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Aim This study aimed to learn the antineoplastic activity of curcumol (Cur) on prostate cancer (PCa) and elucidate its potential molecular mechanism. Methods The proliferation, invasion, and migration of PCa cells (PC3 and 22RV1) were detected by the cell counting kit 8 (CCK8), transwell, and wound healing assay, respectively. The expression of genes and proteins was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB), respectively. The protein expression in tissues and cells was tested through immunohistochemistry (IHC) and immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the level of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). The interaction between microRNA125a (miR-125a) and the signal transducer and activator of transcription 3 (STAT3) was confirmed via dual-luciferase reporter assay. Results Cur effectively restrained the proliferation, invasion, and migration of PC3 and 22RV1 cells. After Cur intervention, miR-125a, miR-375, miR-149, miR-183, and miR-106b were all upregulated in PC3 cells, among which miR-125a was the most significantly upregulated. Dual-luciferase reporter assay combined with qRT-PCR and WB experiments confirmed that miR-125a targeted STAT3. Both in vitro and in vivo, Cur enhanced miR-125a expression and suppressed the activation of the STAT3 pathway in PCa. Also, Cur effectively inhibited the growth of PCa. Conclusion Cur inhibited the development of PCa by miR-125a/STAT3 axis. This may provide a potential agent for treating PCa.
Collapse
|
16
|
Meng XW, Wei YY, Nong BL, Zhao HJ, Zhang XX. Design, synthesis, and anticancer activity evaluation of curcumol derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:556-568. [PMID: 34236240 DOI: 10.1080/10286020.2021.1947255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A new series of C-14 curcumol derivatives as potent anticancer agents were designed and synthesized by click reaction, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. All the synthesized compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620 and HCT116. Most of them exhibited higher inhibitory activity than curcumol. Especially, compound 3j shows good inhibitory activity against SW620 with IC50 value of 8.10 ± 0.13 μM. The structure-activity relationships (SARs) of these derivatives were discussed. In addition, flow cytometry revealed that compound 3j induced SW620 cells apoptosis by facilitating apoptosis-related proteins expressions. Our findings suggested that fluorine functional group on phenyl ring tended to increase the anticancer activity.
Collapse
Affiliation(s)
- Xiang-Wei Meng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying-Ying Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin-Lu Nong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing-Xian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
17
|
Engineering a curcumol-loaded porphyrinic metal-organic framework for enhanced cancer photodynamic therapy. Colloids Surf B Biointerfaces 2022; 214:112456. [PMID: 35290822 DOI: 10.1016/j.colsurfb.2022.112456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT), a non-invasive and safe treatment, is a clinical promising alternative strategy for certain cancers. Although PDT can trigger tumor specific immunity, the immunosuppressive tumor microenvironment severely limits the efficacy of photodynamic immunotherapy. Curcumol (CUR), extracted from essential oils of traditional Chinese medicine, has potential immune activation effect for cancer immunotherapy. Considering the fat solubility and volatility hinder the in vivo application of essential oils, a metal-organic framework system (Named as CuTPyP/F68) composed of porphyrin and Cu2+ was constructed for delivering CUR (Named as CUR@CuTPyP/F68). The in vitro assays proved that CUR@CuTPyP/F68 could directly kill tumor cells by the released CUR and singlet oxygen (1O2) generated under laser irradiation (marked as '+'). Moreover, CUR@CuTPyP/F68 had superior tumor targeting and retention capabilities, which effectively inhibited tumor growth in vivo with only a single dose. Finally, the mechanism of CUR-mediated enhanced PDT had been firstly proposed: (1) CUR@CuTPyP/F68(+)-treated group exhibited more CD4+ and CD8+ T cells infiltration in tumor tissue; (2) CUR@CuTPyP/F68(+)-treated group exhibited high level of IFN-γ, IL-12 and TNF-α in blood. Overall, we believe the PDT-immunotherapy strategy has great potential for the treatment of breast cancer, and this work will provide a reference for the clinical application of essential oils in cancer immunotherapy.
Collapse
|
18
|
Sun S, Li Z, Huan S, Kai J, Xia S, Su Y, Ji S, Chen A, Wang S, Xu X, Shao J, Zhang F, Zhang B, Zhang Z, Zheng S. Modification of lysine deacetylation regulates curcumol-induced necroptosis through autophagy in hepatic stellate cells. Phytother Res 2022; 36:2660-2676. [PMID: 35545249 DOI: 10.1002/ptr.7483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
The excessive deposition of extracellular matrix (ECM) is the main characteristic of liver fibrosis, and hepatic stellate cells (HSCs) are the main source of ECM. The removal of activated HSCs has a reversal effect on liver fibrosis. Western blot and MTT analysis indicated that curcumol could relieve hepatic fibrosis by promoting HSCs receptor-interacting protein kinase 1/3 (RIP1/RIP3)-dependent necroptosis. Importantly, autophagy flow was monitored by constructing the mRFP-GFP-LC3 plasmid, and it was found that curcumol cleared activated HSCs in a necroptosis manner that was dependent on autophagy. Our study suggested that the activation of necrosome formed by RIP1 and RIP3 depended on Atg5, and that autophagosomes were also necessary for curcumol-induced necroptosis. Furthermore, microscale thermophoresis and co-immunoprecipitation assay results proved that curcumol could target Sirt1 to regulate autophagy by reducing the acetylation level of Atg5. The HSCs-specific silencing of Sirt1 exacerbated CCl4 -induced liver fibrosis in mice. The deacetylation of Atg5 not only accelerated the accumulation of autophagosomes but also enhanced the interaction between Atg5 and RIP1/RIP3 to induce necroptosis. Overall, our study indicated that curcumol could activate Sirt1 to promote Atg5 deacetylation and enhanced its protein-protein interaction function, thereby inducing autophagy and promoting the necroptosis of HSCs to reduce liver fibrosis.
Collapse
Affiliation(s)
- Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Huan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Kai
- Department of Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufan Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, Missouri, USA
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Biyun Zhang
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Hu Y, Xu R, Ma J, Yan Z, Ma J. Curcumol enhances cisplatin sensitivity of gastric cancer: involvement of microRNA-7 and the nuclear factor-kappa B/snail family transcriptional repressor 1 axis. Bioengineered 2022; 13:11668-11683. [PMID: 35510522 PMCID: PMC9275945 DOI: 10.1080/21655979.2022.2070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cisplatin is a primary chemotherapeutic drug for gastric cancer (GC) patients, but the drug resistance remains the leading cause of treatment failure and high mortality. Curcumol is a bioactive sesquiterpenoid that has reportedly been linked to cisplatin sensitivity in GC. This study focuses on the exact functions of curcumol in the cisplatin sensitivity of GC cells and the molecules of action. The curcumol treatment reduced the viability and migration and enhanced cisplatin sensitivity of GC cells in a dose-dependent manner. Microarray analysis suggested that microRNA-7 (miR-7) was the most upregulated miRNA in GC cells after curcumol treatment. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the curcumol-affected genes, including the target genes of miR-7, were enriched in the nuclear factor-kappa B (NF-κB) pathway, whose activity was suppressed after curcumol treatment. miR-7 was found to target and suppress RELA proto-oncogene (RELA, also known as p65), a NF-κB subunit. Downregulation of miR-7 blocked the sensitizing effects of curcumol on cells to cisplatin and led to increased expression of NF-κB p65 and snail family transcriptional repressor 1 (SNAIL). Further downregulation of RELA enhanced, whereas upregulation of SNAIL suppressed the sensitivity again. In summary, this study suggests that curcumol sensitizes GC cells to cisplatin via miR-7 and the suppression of the NF-κB/SNAIL axis. The findings may offer new thoughts that curcumol in combination with cisplatin might be a useful strategy for GC management.
Collapse
Affiliation(s)
- Ying Hu
- Department of Oncology, Nanjing Jiangning TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Ruitong Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| | - Jinxia Ma
- Department of Spleen and Stomach, Nanjing Jiangning TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Zhanpeng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Jun Ma
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, P.R. China
| |
Collapse
|
20
|
Nong BL, Meng XW, Wei YY, Zhao HJ, Zhang XX. Design, synthesis, and biological evaluation of C-8 modified curcumol derivatives against colorectal cancer cell lines. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 25:1-14. [PMID: 35499464 DOI: 10.1080/10286020.2022.2067533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
A series of structurally modified curcumol derivatives at C-8 position were designed and synthesized, whose structures were confirmed by 1H NMR,13C NMR, and HRMS analysis. The tested compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620, HCT116, and CaCo2. Many of the tested candidates exhibited higher inhibition efficiency than curcumol. Among them, compound 3 l shows the best inhibitory effect on the viability of SW620 with IC50 value of 19.90 ± 0.64 µM. The structure-activity relationships of these derivatives were discussed, which showed that the introduction of amino or aryl groups tended to increase the anti-cancer activity. In addition, compound 3 l may inhibit cancer cell proliferation through triggering cell apoptosis.
Collapse
Affiliation(s)
- Bin-Lu Nong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang-Wei Meng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying-Ying Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xing-Xian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
21
|
Doan CC, Le TL, Ho NQC, La THL, Nguyen VC, Le VD, Nguyen TPT, Hoang NS. Bioactive chemical constituents, in vitro anti-proliferative activity and in vivo toxicity of the extract of Curcuma singularis Gagnep rhizomes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114803. [PMID: 34748866 DOI: 10.1016/j.jep.2021.114803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma singularis Gagnep is a Vietnamese medicinal plant which has been commonly used as a medicinal remedy in traditional and folk medicines for improving health as well as for treating some diseases, like rheumatoid arthritis, kidney failure. However, pharmacological effects, including anti-cancer activity and the safety of this plant has not been fully investigated. AIM OF THE STUDY This study aimed to investigate the in vitro anti-growth activity of an extract derived from Curcuma singularis rhizome extract (CSE) against cell lines as well as determine its phytochemical composition. The other goal of our study was to assess the safety of CSE in rats. MATERIALS AND METHODS The main constituents in the extract were identified and quantitatively analyzed. The in vitro cytotoxicity of CSE was evaluated in several cancer and normal cell lines. The apoptotic activity of CSE and the expression of the apoptosis-related genes were investigated in AGS cells to clarify the underlying molecular mechanisms. The in vivo toxicity of CSE was assessed via acute and subacute oral studies on Sprague-Dawley rats, respectively according to the guidelines 425 and 407 of the Organization for Economic Cooperation and Development (OECD). The drug-related toxicity signs, mortality, body and organ weights were recoreded during the experimental period. In addition, the selected hematological and biochemical parameters, and histological alterations were determined at the end of the subacute toxicity test. RESULTS Germacrone, ar-turmerone, and curcumol were three sesquiterpene components found in the extract. CSE showed cytotoxic effects in different cancer cells, but had minimal effects on normal cells. Apoptosis in AGS cells was caused by CSE in a concentration-dependent pattern through increase of Bax/Bcl-2 ratio, and release of cytochrome c, which leads to activation of caspase-3/-7, caspase-9, as well as cleavage of PARP. In the acute toxicity test, no signs of toxicity and no mortality were recorded in rats at both doses of 1000 and 5000 mg/kg. In the subacute toxicity study, CSE showed no drug-related adverse effects on water and food consumption, body and organ weights. CSE at a dose of 1000 mg/kg slightly increased WBC and platelet values in female rats, while it increased WBC values in male rats in all tested doses. The decrease of total cholesterol and triglyceride levels were found in female rats treated CSE at doses of 250 or 500 mg/kg. In addition, the increase of serum ALT and AST levels in rats treated at the dose of 1000 mg/kg were noted. No significant changes in histopathological structures of kidneys, spleen, heart and lungs, except liver tissue with minor modifications was found. CONCLUSIONS Our findings indicated that CSE exhibited in vitro anti-proliferative effects on AGS cells by mainly activating the caspase-dependent mitochondrial apoptotic pathway. CSE also showed in vivo toxicity signals at the dose of 1000 mg/kg with proven minor hepatic injuries, which should be avoided the high dose for prolonged use. Curcuma singularis rhizomes may be used as a chemotherapeutic agent for the treatment of gastric cancer with in vitro anti-cancer investigation and in vivo biological safety evaluation.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam.
| | - Thi Hong Lan La
- Faculty of Pharmacy, Lac Hong University, Bien Hoa City, Viet Nam.
| | | | - Van Dong Le
- Department of Immunology, Vietnam Military Medical University, Ha Noi City, Viet Nam.
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| |
Collapse
|
22
|
TIAN Y, PANG X, WANG F. Isolation of curcumol from zedoary turmeric oil and its inhibitory effect on growth of human hepatocellular carcinoma xenografts in nude mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuan TIAN
- Tianjin Medical University, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China
| | - Xin PANG
- Tianjin Medical University, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China
| | - Fengmei WANG
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, China; Artificial Cell Engineering Technology Research Center, China; Tianjin Institute of Hepatobiliary Disease, China; The Third Central Hospital of Tianjin, China
| |
Collapse
|
23
|
Wang J, Liu G, Li X, Huangfu M, Liu Y, Li X, Yu D, Zhou L, Chen X. Curcumol simultaneously induces both apoptosis and autophagy in human nasopharyngeal carcinoma cells. Phytother Res 2021; 35:7004-7017. [PMID: 34750896 DOI: 10.1002/ptr.7321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Autophagy is usually considered as a protective mechanism against cell death, and in the meantime, leads to cell injury even apoptosis. Apoptosis and autophagy are very closely connected and may cooperate, coexist, or antagonize each other on progressive occurrence of cell death triggered by natural compounds. Therefore, the interplay between the two modes of death is essential for the overall fate of cancer cells. Our previous study revealed that curcumol induced apoptosis in nasopharyngeal carcinoma (NPC) cells. Recently, curcumol was found to induce autophagy in cancer cells. However, whether curcumol can induce NPC cells autophagy and the effects of autophagy on apoptosis remain elusive. In this study, we found that curcumol induced autophagy through AMPK/mTOR pathway in CNE-2 cells. Moreover, inhibiting autophagy by autophagy inhibitor 3-methyladenine (3-MA) or apoptosis inhibitor z-VAD-fmk significantly increased proliferation while attenuated apoptosis and autophagy compared with the curcumol 212 μM group. In contrast, combining curcumol with autophagy agonist rapamycin and apoptosis inducer MG132 synergized the apoptotic and autophagic effect of curcumol. Taken together, our study demonstrates that curcumol promotes autophagy in NPC via AMPK/mTOR pathway, induces autophagy enhances the activity of curcumol in NPC cells; the combination of autophagy inducer and curcumol can be a new therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, China.,Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Mengjie Huangfu
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Xumei Li
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Dan Yu
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
24
|
Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging (Albany NY) 2021; 13:24101-24116. [PMID: 34739394 PMCID: PMC8610140 DOI: 10.18632/aging.203662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022]
Abstract
Currently, conventional treatment is not sufficient to improve the survival of glioma patients. Hence, adopting novel personalized treatment programs is imperative. Curcumol, a Chinese herbal medicine extract from the roots of Rhizoma Curcumae, has attracted significant interest due to its beneficial pharmacological activities. The current study revealed that curcumol inhibited the proliferation, metastasis, self-renewal ability, and TMZ resistance in glioma cells in vitro and in vivo. Next, the potential molecular mechanisms of curcumol in inhibiting glioma were investigated. We found that the long non-coding RNA (lncRNA) FOXD2-As1 might contribute to the effects of curcumol on glioma cells. Enforced expression of FOXD2-As1 attenuated the curcumol-induced reduction in glioma cell proliferation, metastasis, self-renewal ability, and TMZ resistance. Moreover, the forced expression of FOXD2-As1 reversed the inhibitory effect of curcumol on the binding ability of EZH2 and H3K27me3 modification in the promoter regions of anti-oncogenes. Our results showed for the first time that curcumol is effective in inhibiting malignant biological behaviors and TMZ-resistance of glioma cells by suppressing FOXD2-As1-mediated EZH2 activation. Our study offers the possibility of exploiting curcumol as a promising therapeutic agent for glioma treatment and may provide an option for the clinical application of this natural herbal medicine.
Collapse
|
25
|
Wang C, Guo J, Wu Z. Combinative treatment of Curdione and docetaxel triggers reactive oxygen species (ROS)-mediated intrinsic apoptosis of triple-negative breast cancer cells. Bioengineered 2021; 12:10037-10048. [PMID: 34666596 PMCID: PMC8810116 DOI: 10.1080/21655979.2021.1994737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Traditional Chinese medicine Curcuma zedoary has been used for treating various diseases and cancers. However, the therapeutic effect of Curdione, one of its major components in triple negative breast cancer (TNBC) is still obscure. This study is aimed to explore whether combination of Curdione and docetaxel (DTX) could strengthen the DTX-induced pro-apoptotic effects in TNBC cells and identify its involved signaling pathways. In this study, combination of Curdione and DTX intensified the inhibited MDA-MB-468 cell proliferation and increased cell apoptosis caused by DTX treatment alone. Moreover, the combinative treatment of Curdione and DTX synergistically potentiated DTX-induced cell apoptosis by triggering reactive oxygen species (ROS) generation. Co-treatment with NAC (ROS inhibitor) could mostly block the effects induced by combination of Curdione and DTX. SB203580 (p38 inhibitor) or SC-79 (Akt activator) could partly reverse the effects induced by co-treatment, indicating that mitogen-actived protein kinases (MAPKs) and the phosphatidylinositol 3-kinases (PI3K) /Akt signaling pathway were involved in the co-treatment induced ROS-mediated cell apoptosis. To sum up, combination of Curdione and DTX enhanced the chemotherapeutic efficacy on MDA-MB-468 cells by triggering ROS-mediated cell apoptosis via MAPKs and PI3K/Akt signaling pathways. Curdione combined with DTX might have potentials application as the therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Changcheng Wang
- Division of General Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Guo
- Division of General Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeng'An Wu
- Division of General Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Gao J, Hou D, Hu P, Mao G. Curcumol increases the sensitivity of colon cancer to 5-FU by regulating Wnt/β-catenin signaling. Transl Cancer Res 2021; 10:2437-2450. [PMID: 35116559 PMCID: PMC8798486 DOI: 10.21037/tcr-21-689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Background 5-fluorouracil (5-FU) resistance is the leading cause of treatment failure in colon cancer. Combination therapy is an effective strategy to inhibit cancer cells and prevent drug resistance. Therefore, we studied the antitumor effect of curcumol alone or combined with 5-FU on human colon cancer drug-resistant cells. Methods The 5-FU resistant HCT116 cell line (HCT116/5-FU) was established by repeated exposure to gradually increasing concentrations of 5-FU; Cell viability was measured by cell counting kit-8 (CCK-8); apoptosis rate of HCT116 cells was detected using Annexin V-fluorescein isothiocyanate (FITC) assay kit; cell proliferation and invasion were detected using colony formation assays, wound healing assay and transwell invasion assays; activity of transplanted tumor in vivo in specific pathogen free (SPF) BALB/c nude mice (6 weeks old, male) was monitored by bioluminescence imaging, immunohistochemistry and western blot analysis. Results Our study showed the potent antitumor effect of curcumol by induction of apoptosis, inhibition of proliferation, invasion, migration, and improvement of the therapeutic efficacy of 5-FU toward human colon cancer HCT116 cells. From our results, curcumol could chemosensitize 5-FU-resistant HCT116 cells. The combination of curcumol and 5-FU exerted a synergistic inhibitory effect on the induction of apoptosis. Also, this combination inhibited the proliferation, invasion, and migration of both chemo-resistant and sensitive cells. Curcumol treatment decreased multidrug resistance-associated protein 2 (MRP-2), P-glycoprotein (P-gp), survivin, and β-catenin expression, which correlated with multidrug resistance (MDR) and the target genes of Wnt/β-catenin. It significantly increased the p-β-catenin level and Bad/Bcl-2 ratio in HCT116/5-FU cells compared with 5-FU treatment. In vivo, curcumol significantly inhibited the growth of transplanted tumors and the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF) in colon cancer cells. Conclusions Curcumol as a potential chemotherapeutic agent combined with 5-FU can overcome colon cancer resistance.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Daorong Hou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Guoxin Mao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
27
|
Liang MK, Liang XQ, Zhong J, Wei YT, Lian ZP, Huang ZK, Liang J. Integrative analysis of epigenomics, transcriptomics, and proteomics to identify key targets and pathways of Weining granule for gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113787. [PMID: 33422657 DOI: 10.1016/j.jep.2021.113787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weining granule (WNG) is a "Qi-Enriching and Kidney-Tonifying, Spleen-Reinforcing and Stasis-Removing" formula for gastric cancer (GC). Past research we noted WNG inhibited cell growth and raised apoptosis in GC. However, the underlying mechanism of WNG for GC have yet to be systematically clarified. AIM OF THE STUDY We sought to characterize the molecular landscape of GC cells in vitro after WNG treated, to identify the molecular targets and pathways that were associated with WNG for inducing the apoptosis of GC cells, and further to clarify underlying molecular mechanism of WNG for GC. MATERIALS AND METHODS We performed the techniques of RNA sequencing, tandem mass tags (TMT) based quantitative proteomics, and reduced representation bisulfite sequencing (RRBS) in WNG-treated/or untreated SGC-7901 GC cells to gain a comprehensive molecular portrait of WNG treatment. Then we integrated methylomics, transcriptomics, and proteomics data to carry out the bioinformatics analysis, and constructed the protein-protein interaction (PPI) network to identify molecular targets, and to discover the underlying signaling pathways associated with WNG for GC by network analysis. Besides, we verified the candidate target genes by Kaplan-Meier plotter database. RESULTS We identified 1249 significant differentially expressed genes (DEGs) from RNA expression datasets, 191 significant differentially abunabundant proteins (DAPs) from proteomics datasets, and 8293 significant differentially methylated regions (DMRs) from DNA methylation datasets. GO and KEGG analysis showed DEGs, DAPs, and DMRs enriched in the cancer-related biological processes of calcium signaling pathway, pathways in cancer, metabolic pathways, MAPK signaling pathway, PI3K-Akt signaling pathway, and transcriptional misregulation in cancer. We integrated three profile datasets and performed network analysis to distinguish the hub genes, and finally the genes of SOD2, HMOX1, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, POLR2F, and HSPA9 were identified. The Kaplan-Meier plotter confirmed that SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were significantly correlated with OS in GC patients (P < 0.01), while HMOX1 and POLR2F expression were not significantly relevant to survival of GC patients (P > 0.01). CONCLUSIONS SOD2, MMP1, SRXN1, NOTCH1, MAPK14, TXNIP, VEGFA, and HSPA9 were the predictive pharmaceutical targets of WNG for GC. The anticancer function of WNG was significantly associated with the pathways of focal adhesion pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and Wnt signaling pathway.
Collapse
Affiliation(s)
- Ming-Kun Liang
- Integrative Medicine Institute, Hunan University of Chinese Medicine, Changsha, 410208, China; Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 541100, China
| | - Xing-Qiu Liang
- Medical College, Guangxi University, Nanning, 530004, China; Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 541100, China
| | - Jing Zhong
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yu-Ting Wei
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zu-Ping Lian
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 541100, China
| | - Zheng-Kai Huang
- Integrative Medicine Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jian Liang
- Medical College, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
28
|
Chen Y, Zhu Z, Chen J, Zheng Y, Limsila B, Lu M, Gao T, Yang Q, Fu C, Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 2021; 138:111350. [PMID: 33721752 DOI: 10.1016/j.biopha.2021.111350] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, β-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (β-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Yi Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yongfeng Zheng
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Boonjai Limsila
- Institute of Thai-Chinese Medicine Department of Thai Traditional and Alternative Medicines, Ministry of Public Health, Bangkok 11000, Thailand
| | - Meigui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Tianhui Gao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chaomei Fu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Wan Liao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
29
|
Yu D, Liu H, Qin J, Huangfu M, Guan X, Li X, Zhou L, Dou T, Liu Y, Wang L, Fu M, Wang J, Chen X. Curcumol inhibits the viability and invasion of colorectal cancer cells via miR-30a-5p and Hippo signaling pathway. Oncol Lett 2021; 21:299. [PMID: 33732375 PMCID: PMC7905558 DOI: 10.3892/ol.2021.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-30a-5p (miR-30a-5p), which functions as a tumor suppressor, has been reported to be downregulated in colorectal cancer (CRC) tissues and to be associated with cancer invasion. However, the detailed regulatory mechanism of curcumol in the malignant progression of CRC remains unknown. MTT, Transwell, scratch, western blotting and reverse transcription-quantitative PCR assays were performed to examine how curcumol inhibited CRC cell viability, invasion and migration, and to detect the role of miR-30a-5p and curcumol in the invasion and Hippo signaling pathways of CRC cells. The present study revealed that miR-30a-5p expression was downregulated in human CRC tissues and cells. The results demonstrated that miR-30a-5p downregulation was accompanied by the inactivation of the Hippo signaling pathway, which was demonstrated to promote CRC cell viability, invasion and migration. Curcumol treatment was identified to increase miR-30a-5p expression and to activate the Hippo signaling pathway, which in turn inhibited the invasion and migration of CRC cells. Overexpression of miR-30a-5p enhanced the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. Furthermore, downregulation of miR-30a-5p reversed the effects of curcumol on cell invasion and migration, and the Hippo signaling pathway in CRC cells. These findings identified novel signaling pathways associated with miR-30a-5p and revealed the effects of curcumol on miR-30a-5p expression. Therefore, curcumol may serve as a potential therapeutic strategy to delay CRC progression.
Collapse
Affiliation(s)
- Dan Yu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Haiping Liu
- Science and Technology Department, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Jianli Qin
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Mengjie Huangfu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Xiao Guan
- Department of Pharmacology, Xiangya School of Medicine of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xumei Li
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Lin Wang
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Minglei Fu
- Department of Dispensary, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China.,Department of Pharmacy, Guangxi Key Laboratory of Sphingolipid Metabolism (Incubated), Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| |
Collapse
|
30
|
Zhao M, Yang C, Chai S, Yuan Y, Zhang J, Cao P, Wang Y, Xiao X, Wu K, Yan H, Liu J, Sun S. Curcumol and FTY720 synergistically induce apoptosis and differentiation in chronic myelomonocytic leukemia via multiple signaling pathways. Phytother Res 2020; 35:2157-2170. [PMID: 33274566 DOI: 10.1002/ptr.6968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Chronic myelomonocytic leukemia (CML) is a myeloid tumor characterized by MDS (myelodysplastic syndrome) and MPN (myeloproliferative neoplasms). Allogeneic hematopoietic stem cell transplantation, chemotherapy, interferon, and targeted therapy are the main treatment methods for CML. Tyrosine kinase inhibitors (TKIs) are also a treatment option, and patients are currently recommended to take these drugs throughout their lives to prevent CML recurrence. Therefore, there is a need to investigate and identify other potential chemotherapy drugs. Currently, research on CML treatment with a single drug has shown little progress. Fingolimod (FTY720), an FDA-approved drug used to treat relapsing multiple sclerosis, has also shown great potential in the treatment of lymphocytic leukemia. In our study, we find that FTY720 and curcumol have a significant inhibitory effect on K562 cells, K562/ADR cells, and CD34+ cells from CML patients. RNAseq data analysis shows that regulation of apoptosis and differentiation pathways are key pathways in this process. Besides, BCR/ABL-Jak2/STAT3 signaling, PI3K/Akt-Jnk signaling, and activation of BH3-only genes are involved in CML inhibition. In a K562 xenograft mouse model, therapy with curcumol and FTY720 led to significant inhibition of tumor growth and induction of apoptosis. To summarize, curcumol and FTY720 synergistically inhibit proliferation involved in differentiation and induce apoptosis in CML cells. Therefore, synergistic treatment with two drugs could be the next choice of treatment for CML.
Collapse
Affiliation(s)
- Mingri Zhao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Siyu Chai
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Yijun Yuan
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Pengfei Cao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Huiwen Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
31
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
32
|
Study on the Drug Targets and Molecular Mechanisms of Rhizoma Curcumae in the Treatment of Nasopharyngeal Carcinoma Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2606402. [PMID: 32595725 PMCID: PMC7301251 DOI: 10.1155/2020/2606402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
Aim To analyse the target of Rhizoma Curcumae in nasopharyngeal carcinoma by using network pharmacological techniques and to explore the associated molecular mechanism. Methods The targets of nasopharyngeal carcinoma were retrieved from the GeneCards database. At the same time, the drug therapeutic targets of Rhizoma Curcumae were obtained from the TCMSP and SymMap databases. The data were imported into the STRING database and Cytoscape 3.7.1 to construct a network of “Chinese medicine component-target-disease” interactions; then, the intersection was screened as the core Rhizoma Curcumae antinasopharyngeal cancer targets. Through GO target function and KEGG pathway enrichment analyses of the core targets, we predicted the biological processes and key signalling pathways involved in the Rhizoma Curcumae treatment of nasopharyngeal carcinoma. Results Twenty-five core targets of Rhizoma Curcumae in nasopharyngeal carcinoma were mined: TP53, BCL2 ICAM1 RXRA, TLR3 and TLR9, TNF, PTGS2, IL-6, CTSD, MMP2, MMP9, MMP14, TIMP2, ABCC1, ABCB1, ABCG2, and so on. The results of visual analysis showed that the Rhizoma Curcumae treatment of nasopharyngeal carcinoma mainly involves leukocyte adhesion to vascular endothelial cells, positive regulation of NF-κB import into the nucleus, regulation of the reactive oxygen species biosynthetic and metabolic process, regulation of the chemokine biosynthetic and metabolic process, various cancer-related signalling pathways, and a variety of cytokine signal transduction pathways, such as the NF-κB, TLR, IL-17, and TNF signalling pathways. Conclusion The core targets predicted by our research can be used as molecular markers for the treatment and prediction of nasopharyngeal carcinoma. The mechanism of Rhizoma Curcumae treatment in NPC may be related to immune regulatory pathways, the inhibition of cancer cell proliferation, metastasis, and angiogenesis, as well as the regulation of tumour microenvironment. Combined with the prediction of its associated mechanism of action, the core targets can provide targeted reference value for subsequent drug development related to Curcuma.
Collapse
|
33
|
Li S, Zhou G, Liu W, Ye J, Yuan F, Zhang Z. Curcumol Inhibits Lung Adenocarcinoma Growth and Metastasis via Inactivation of PI3K/AKT and Wnt/-Catenin Pathway. Oncol Res 2020; 28:685-700. [PMID: 32886059 PMCID: PMC8420902 DOI: 10.3727/096504020x15917007265498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Curcumol (Cur), isolated from the Traditional Chinese Medical plant Rhizoma Curcumae, is the bioactive component of sesquiterpene reported to possess antitumor activity. However, its bioactivity and mechanisms against lung adenocarcinoma are still unclear. We investigated its effect on lung adenocarcinoma and elucidated its underlying molecular mechanisms. In vitro, Cur effectively suppressed proliferation, migration, and invasion of lung adenocarcinoma cells A549 and H460, which were associated with the altered expressions of signaling molecules, including p-AKT, p-PI3K, p-LRP5/6, AXIN, APC, GSK3 and p--catenin, matrix metalloproteinase (MMP)-2, and MMP-9. Furthermore, Cur significantly induced cell apoptosis of A549 and H460 by promoting the expression of Bax, caspase 3, and caspase 9 and suppressing the expression of Bcl-2, and arrested the cell cycle at the G0/G1 phase by lowering the levels of cyclin D1, CDK1, and CDK4. In vivo experiment revealed that Cur could inhibit lung tumor growth and lung metastasis, which were consistent with these in vitro results. In xenograft model mice, Cur strongly decreased tumor weight and tumor volume, which may be related to the downregulation of p-AKT and p-PI3K by immunofluorescence analysis. In addition, a lung metastasis model experiment suggested that Cur dramatically decreased the ratio of lung/total weight, tumor metastatic nodules, and the expressions of MMP-2 and MMP-9 in lung tissues compared with the control. Overall, these data suggested that the inhibitory activity of Cur on lung adenocarcinoma via the inactivation of PI3K/Akt and Wnt/-catenin pathways, at least in part, indicates that curcumol may be a potential antitumor agent for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Guoren Zhou
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Wei Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Jinjun Ye
- Department of Radiotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Fangliang Yuan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer HospitalNanjingP.R. China
| |
Collapse
|
34
|
The main active components of Curcuma zedoaria reduces collagen deposition in human lung fibroblast via autophagy. Mol Immunol 2020; 124:109-116. [PMID: 32554101 DOI: 10.1016/j.molimm.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
Abstract
Disordered collagen production by fibroblasts in response to tissue injury contributes to pulmonary fibrosis (PF). Therefore, elimination of collagen deposition has becoming a potential target in PF treatment which despite standard anti-fibrosis regiment still remains challenge. Curcumin and curcumol are regarded as the main active components extraction from the rhizomes of Curcuma zedoaria, which is widely used for inhibition the proliferation of multiple cells. However, the molecular basis for the function of curcumin and curcumol in limiting fibrogenesis still unknown. In this study, we have investigated the effects of curcumin and curcumol in the fibroblast overproliferation model human lung fibroblast (HLF) inducing by TGF-β1. The growth-inhibitory effects of the components wasn't observed from 8 to 64 μg/ml. Administration of curcumin or curcumol significantly diminished the level of hydroxyproline hydroxyproline and α-smooth muscle actin (α-SMA), also the collagen Ⅰ (Col-Ⅰ) and collagen Ⅲ (Col-Ⅲ) deposition were reduced in the HLF. Furthermore, related to the collagen synthesis proteins including N-terminal pro-peptide for Type Ⅰ collagen (PⅠNP), N-terminal pro-peptide for Type Ⅲ collagen (PⅢNP) and prolyl-hydroxylase (PHD) were degraded gracefully at dose-dependent manner. Autophagy as the scavenger was crippled in TGF-β1-fibroblast overproliferation HLF, conversely the increased autophagosomes have been spotted in cytoplasm under transmission electron microscope which is consistent with up-regulation of Beclin1 and ATG7 after treatment with curcumin or curcumol in this study. Additionally, blocking autophagy by inhibitor chloroquine (CQ) caused collagen deposition, providing further evidence regard to autophagy activation capacity of curcumin and curcumol. Our findings provide a detailed understanding that the function of curcumin and curcumol on decreasing collagen deposition mediating by autophagy mechanism, which may also inspire the further research on PF at different perspectives.
Collapse
|
35
|
Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R, Uddin S, Haris M, Bhat AA. Therapeutic Effects of Curcumol in Several Diseases; An Overview. Nutr Cancer 2020; 73:181-195. [PMID: 32285707 DOI: 10.1080/01635581.2020.1749676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | | | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Santosh K. Yadav
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Ajaz A. Bhat
- Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
36
|
Wang B, Liu F, Li Q, Xu S, Zhao X, Xue P, Feng X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:59-67. [PMID: 31400785 DOI: 10.1016/j.pestbp.2019.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Phytophthora capsici is a plant oomycete pathogen, which causes many devastating diseases on a broad range of hosts. Zedoary turmeric oil (ZTO) is a kind of natural plant essential oil that has been widely used in pharmaceutical applications. However, the antifungal activity of ZTO against phytopathogens remains unknown. In this study, we found ZTO could inhibit P. capsici growth and development in vitro and in detached cucumber and Nicotiana benthamiana leaves. Besides, ZTO treatment resulted in severe damage to the cell membrane of P. capsici, leading to the leakage of intracellular contents. ZTO also induced a significant increase in relative conductivity, malondialdehyde concentration and glycerol content. Furthermore, we identified 50 volatile organic compounds from ZTO, and uncovered Curcumol, β-elemene, curdione and curcumenol with strong inhibitory activities against mycelial growth of P. capsici. Overall, our results not only shed new light on the antifungal mechanism of ZTO, but also imply a promising alternative for the control of phytophthora blight caused by P. capsici.
Collapse
Affiliation(s)
- Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Qi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xingzeng Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Peilin Xue
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
37
|
Wei W, Rasul A, Sadiqa A, Sarfraz I, Hussain G, Nageen B, Liu X, Watanabe N, Selamoglu Z, Ali M, Li X, Li J. Curcumol: From Plant Roots to Cancer Roots. Int J Biol Sci 2019; 15:1600-1609. [PMID: 31360103 PMCID: PMC6643219 DOI: 10.7150/ijbs.34716] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Natural products, an infinite treasure of bioactive scaffolds, have provided an excellent reservoir for the discovery of drugs since millennium. These naturally occurring, biologically active and therapeutically effective chemical entities have emerged as novel paradigm for the prevention of various diseases. This review aims to give an update on the sources as well as pharmacological profile of curcumol, a pharmacologically active sesquiterpenoid, which is an imperative bioactive constituent of several plants mainly from genus Curcuma. Curcumol has potential to fight against cancer, oxidative stress, neurodegeneration, microbial infections, and inflammation. Curcumol has been documented as potent inducer of apoptosis in numerous cancer cells via targeting key signaling pathways as MAPK/ERK, PI3K/Akt and NF-κB which are generally deregulated in several cancers. The reported data reveals multitarget activity of curcumol in cancer treatment suggesting its importance as anticancer drug in future. It is speculated that curcumol may provide an excellent opportunity for the cure of cancer but further investigations on mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural cancer killer in anticancer therapies.
Collapse
Affiliation(s)
- Wei Wei
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Azhar Rasul
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.,Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ayesha Sadiqa
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Bushra Nageen
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), 38000, Pakistan
| | - Xintong Liu
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240 Turkey
| | - Muhammad Ali
- Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
38
|
Li YQ, Li GZ, Dong Y, Ma X, Dong HJ, Wu QQ, Zhao WJ. Orobanone analogues from acid-promoted aromatization rearrangement of curcumol inhibit hypoxia-inducible factor-1 (HIF-1) in cell-based reporter assays. Bioorg Chem 2019; 85:357-363. [DOI: 10.1016/j.bioorg.2019.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 01/20/2023]
|
39
|
Li Z, Sun X, Liu X, Sun Z, Li J. Antitumor Effects of Ruyiping on Cell Growth and Metastasis in Breast Cancer. Cancer Biother Radiopharm 2019; 34:297-305. [PMID: 30901274 DOI: 10.1089/cbr.2018.2703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Ruyiping is an effective traditional Chinese herbal medicine formula for preventing postoperative recurrence and metastasis of breast cancer. However, the exact function and underlying mechanism of Ruyiping in breast cancer remain unclear. Materials and Methods: After breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with Ruyiping, the CCK8, colony formation, wound-healing, and transwell invasion assays were used to examine cell proliferation, migration, and invasion, respectively. Flow cytometry was performed to examine the effect of Ruyiping on cell cycle distribution. Western blot was performed to examine the expression of related proteins, and the activity of MMP9 was detected using Gelatin zymography assay. Results: Ruyiping treatment significantly inhibited cell proliferation and viability of MDA-MB-231 and MDA-MB-468 cells. Ruyiping was also revealed to trigger cell cycle arrest at the G2 phase in MDA-MB-231 and MDA-MB-468 cells. Moreover, Ruyiping suppressed the migration and invasion abilities of MDA-MB-231 and MDA-MB-468 cells in vitro. Furthermore, Ruyiping blocked the activity of MMP9 in MDA-MB-231 and MDA-MB-468 cells. Additionally, western blotting showed that Ruyiping attenuated epithelial-to-mesenchymal transition (EMT) of breast cancer through downregulation of N-cadherin, Vimentin, Snail1, and Snail2 and upregulation of E-cadherin. The authors observed that the components of Ruyiping Pseudobulbus Cremastra seu pleiones polysaccharide and curcumol showed significant suppression in the growth and invasion of breast cancer cell. Conclusions: The observations of this study suggest the antitumor properties of Ruyiping in cell growth and invasion of breast cancer, which are modulated by induction of cell cycle arrest and reduction of MMP9 and EMT.
Collapse
Affiliation(s)
- Zhiyuan Li
- 1 Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaohui Sun
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,3 Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoming Liu
- 1 Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ziyuan Sun
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jingwei Li
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
40
|
Curcumin and Curcumol Inhibit NF- κB and TGF- β 1/Smads Signaling Pathways in CSE-Treated RAW246.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3035125. [PMID: 31007701 PMCID: PMC6441512 DOI: 10.1155/2019/3035125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
E-Zhu (Curcuma zedoaria) is known as a classical traditional Chinese medicine and widely used in the treatment of cancers, cardiovascular disease, inflammation, and other diseases. Its main components include curcumol and curcumin, which have anti-inflammatory and antifibrosis effects. Here we established an in vitro inflammatory injury model by stimulating RAW246.7 cells with cigarette smoke extract (CSE) and detected the intervention effects of curcumin and curcumol on CSE-treated Raw246.7 macrophage cells to explore whether the two compounds inhibited the expression of inflammatory cytokines by inhibiting the NF-κB signaling pathway. We detected the antifibrosis effects of curcumin and curcumol via TGF-β1/Smads signaling pathways. The model of macrophage damage group was established by CSE stimulation. Curcumol and curcumin were administered to Raw246.7 macrophage cells. The efficacy of curcumol and curcumin was evaluated by comparing the activation of proinflammatory factors, profibrotic factors, and NF-κB and TGF-β1/Smads signaling pathway. In addition, CSE-treated group was employed to detect whether the efficacy of curcumol and curcumin was dependent on the NF-κB signaling via the pretreatment with the inhibitor of NF-κB. Our findings demonstrated that curcumol and curcumin could reduce the release of intracellular ROS from macrophages, inhibit the NF-κB signaling pathway, and downregulate the release of proinflammatory factor. Curcumol and curcumin inhibited the TGF-β1/Smads signaling pathway and downregulated the release of fibrotic factors. Curcumin showed no anti-inflammatory effect in CSE-treated cells after the inhibition of NF-κB. Curcumol and curcumin showed an anti-inflammatory effect by inhibiting the NF-κB signaling pathway.
Collapse
|
41
|
Nair A, Amalraj A, Jacob J, Kunnumakkara AB, Gopi S. Non-Curcuminoids from Turmeric and Their Potential in Cancer Therapy and Anticancer Drug Delivery Formulations. Biomolecules 2019; 9:biom9010013. [PMID: 30609771 PMCID: PMC6358877 DOI: 10.3390/biom9010013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Over the past decades curcuminoids have been extensively studied for their biological activities such as antiulcer, antifibrotic, antiviral, antibacterial, antiprotozoal, antimutagenic, antifertility, antidiabetic, anticoagulant, antivenom, antioxidant, antihypotensive, antihypocholesteremic, and anticancer activities. With the perception of limited toxicity and cost, these compounds forms an integral part of cancer research and is well established as a potential anticancer agent. However, only few studies have focused on the other bioactive molecules of turmeric, known as non-curcuminoids, which are also equally potent as curcuminoids. This review aims to explore the comprehensive potency including the identification, physicochemical properties, and anticancer mechanism inclusive of molecular docking studies of non-curcuminoids such as turmerones, elemene, furanodiene (FN), bisacurone, germacrone, calebin A (CA), curdione, and cyclocurcumin. An insight into the clinical studies of these curcumin-free compounds are also discussed which provides ample evidence that favors the therapeutic potential of these compounds. Like curcuminoids, limited solubility and bioavailability are the most fragile domain, which circumscribe further applications of these compounds. Thus, this review credits the encapsulation of non-curcuminoid components in diverse drug delivery systems such as co-crystals, solid lipid nanoparticles, liposomes, microspheres, polar-non-polar sandwich (PNS) technology, which help abolish their shortcomings and flaunt their ostentatious benefits as anticancer activities.
Collapse
Affiliation(s)
- Akhila Nair
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, India.
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| |
Collapse
|
42
|
Wang J, Song Y, Zhang M, Wu Z, Xu YJ, Lin J, Ling D, Sheng Y, Lu Y, Wu Q. A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. J Mater Chem B 2019. [DOI: 10.1039/c8tb03123a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A liposomal curcumol nanocomposite has been successfully synthesized for the theranostics of human primary ovarian cancer cells from solid tumor tissue in patients.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Obstetrics and Gynecology
| | - Yonghong Song
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Mingxun Zhang
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Zhensheng Wu
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yun-Jun Xu
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jun Lin
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Daishun Ling
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Youjing Sheng
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yang Lu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Qiang Wu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Pathology
| |
Collapse
|
43
|
Li X, Liu H, Wang J, Qin J, Bai Z, Chi B, Yan W, Chen X. Curcumol induces cell cycle arrest and apoptosis by inhibiting IGF-1R/PI3K/Akt signaling pathway in human nasopharyngeal carcinoma CNE-2 cells. Phytother Res 2018; 32:2214-2225. [PMID: 30069933 DOI: 10.1002/ptr.6158] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
Curcumol has been proved to possess antitumor effects in vivo and in vitro in several cancers. Previously, we have found that curcumol induced apoptosis in CNE-2 cells, but its underlying mechanism has not yet been studied well. Recently, our team clarified that curcumol inhibited colorectal cancer cells' growth partially through insulin-like growth factor 1 receptor (IGF-1R) pathway. Given the key importance of IGF-1R pathway in tumorigenesis, we want to explore whether curcumol effects on nasopharyngeal carcinoma (NPC) cells relates to IGF-1R and its downstream pathway inactivation. In this study, we found that curcumol inhibited IGF-1R and p-Akt expression in a dose- and time-dependent way. In addition, it also regulated their downstream GSK-3β's activity in CNE-2 cells, which further triggering alterations in the expression of cycle- and apoptosis-related molecules, and then leading to G0/G1-phase arrest and apoptosis. Moreover, curcumol's effect on CNE-2 cells was partly eliminated by IGF-1R's agonist IGF-1. In conclusion, our findings indicated that the inhibitory effect of curcumol on proliferation of NPC cells is related to the inhibition of IGF-1R and its downstream PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhun Bai
- Intensive Care Unit, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bixia Chi
- Digestive System Department, The Frist People's Hospital of Yueyang, Yueyang, China
| | - Wei Yan
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
44
|
Wang J, Wu J, Li X, Liu H, Qin J, Bai Z, Chi B, Chen X. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells. J Proteomics 2018; 182:1-11. [PMID: 29684682 DOI: 10.1016/j.jprot.2018.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. SIGNIFICANCE Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions through affinity chromatography approach coupled with mass spectrometry, has been conventionally used to identify target proteins and has yielded good results. Curcumol, has shown effective inhibition on Nasopharyngeal Carcinoma (NPC) Cells, interacted with NCL and then initiated the anti-tumor biological effect. This research demonstrated the effectiveness of chemical proteomics approaches in natural drugs molecular target identification, revealing and understanding of the novel mechanism of actions of curcumol is crucial for cancer prevention and treatment in nasopharynx cancer.
Collapse
Affiliation(s)
- Juan Wang
- Xiangya Hospital, Central South University, Changsha 410008, China; College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jiacai Wu
- Research Center for Science, Guilin Medical University, Guilin 541004, China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Zhun Bai
- Intensive Care Unit, The Affiliated Zhuzhou Hospital XiangYa Medical College CSU, Zhuzhou 412007, China
| | - Bixia Chi
- Department of Gastroenterology, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
45
|
Zhou L, Wei E, Zhou B, Bi G, Gao L, Zhang T, Huang J, Wei Y, Ge B. Anti-proliferative benefit of curcumol on human bladder cancer cells via inactivating EZH2 effector. Biomed Pharmacother 2018; 104:798-805. [PMID: 29852354 DOI: 10.1016/j.biopha.2018.05.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
We investigated the molecular mechanism of curcumol-induced apoptosis in bladder cancer cells. The mitochondrial membrane potential was measured using JC-1 staining. ROS generation of bladder cancer cells was determined using the DCFH staining method. The apoptosis of bladder cancer cells was examined using the Annexin V-FITC and PI double-staining method. Enforced expression of EZH2 in bladder cancer cells was accomplished by transfecting an EZH2 expression plasmidinto EJ and T24 cells. siRNAs targeting EZH2 were used to inhibit endogenous expression of EZH2. Curcumol dose-dependently inhibited proliferation and colony formation and induced apoptosis in EJ and T24 bladder cancer cells. These effects correlated with decreased accumulation of EZH2. In addition, suppression of EZH2 enhanced the inhibitory effects of curcumol on cell growth and colony formation and increased curcumol-induced apoptosis. Conversely, enforced expression of EZH2 ameliorated the inhibitory effects of curcumol on cell growth and colony formation and decreased curcumol-induced apoptosis in EJ and T24 cells. We also found that suppression of EZH2 induced ROS generation and MMP loss in both EJ and T24 cells. Conversely, up-regulation of EZH2 suppressed ROS generation and MMP loss. Our data indicate that curcumol inhibits proliferation and induces apoptosis by targeting EZH2 and modulating the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Li Zhou
- Department of Urology Surgery, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541100, PR China; Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450000, PR China
| | - Erdong Wei
- Department of Urology Surgery, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541100, PR China; Guilin Medical University, Guilin, Guangxi, 541004, PR China
| | - Baotong Zhou
- Department of Urology Surgery, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541100, PR China; Guilin Medical University, Guilin, Guangxi, 541004, PR China
| | - Gewen Bi
- Department of Urology Surgery, the Affiliated Hospital of Guangxi Chinese Medical University, Nanning, Guangxi, 537400, PR China
| | - Li Gao
- Department of Urology Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, PR China
| | - Tianyu Zhang
- Department of Urology Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, PR China
| | - Jiefu Huang
- Department of Urology Surgery, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, PR China
| | - Yi Wei
- Department of Urology Surgery, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541100, PR China; Guilin Medical University, Guilin, Guangxi, 541004, PR China
| | - Bo Ge
- Department of Urology Surgery, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541100, PR China.
| |
Collapse
|
46
|
艾 晓, 姚 芳, 王 晓, 段 东, 李 科, 胡 子, 殷 果, 王 梅, 吴 炳. [Role of allograft inflammatory factor-1 in regulating the proliferation, migration and apoptosis of colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:511-519. [PMID: 29891445 PMCID: PMC6743897 DOI: 10.3969/j.issn.1673-4254.2018.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the role of allograft inflammatory factor-1 (AIF-1) in colorectal cancer (CRC) progression and explore the possible mechanism. METHODS The expression levels of AIF-1 in 70 CRC tissues and paired adjacent tissues were detected using immunohistochemistry and Western blotting, and the correlation of AIF-1 expression with the clinicopathological features of the patients was analyzed. In the CRC cell line SW480, the functional role of AIF-1 in regulating tumor progression was investigated by transfecting the cells with an AIF-1-overexpressing plasmid (AIF-1) and a negative control plasmid (NC). EdU proliferation assay and flow cytometry were used to assess the cell proliferation and cell cycle changes; Transwell migration assay and Annexin V-APC/7-AAD apoptosis assay kit were used to analyze the cell migration and apoptosis. The changes in the biological behaviors of the cells were observed after application of SB203580 to block the p38 MAPK pathway. The expression levels of CDK4, cyclin D1, P21, P27, MMP2, MMP9, Bax, Bcl2, Bcl-xl, p38 and p-p38 were detected using Western blotting. RESULTS AIF-1 was down-regulated in CRC tissues compared with the adjacent normal tissues, and its expression level was positively correlated with lymph node metastasis (P=0.008), TNM stage (P=0.003) and tumor size (P=0.023). Overexpression of AIF-1 in SW480 cells significantly reduced EdU-positive cells and caused obvious cell cycle arrest in G1 phase (P<0.05). AIF-1 overexpression resulted in significantly lowered protein expressions of CDK4 and cyclin D1, enhanced expressions of P21 and P27, attenuated cell migration ability (P<0.001), and decreased protein levels of MMP2 and MMP9. AIF-1 overexpression also induced obvious apoptosis of SW480 cells (P<0.01), significantly increased the protein levels of Bax and p-p38, and decreased the protein levels of Bcl-2 and Bcl-xl; SB203580 significantly attenuated the apoptosis-inducing effect of AIF-1 overexpression. CONCLUSION AIF-1 plays the role of a tumor suppressor in CRC by inhibiting cell proliferation, suppressing cell migration and inducing cell apoptosis. AIF-1 overexpression promotes the apoptosis of CRC cells by activating the p38 MAPK pathway.
Collapse
Affiliation(s)
- 晓兰 艾
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 芳 姚
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓睛 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 东北 段
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 科 李
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 子有 胡
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 果 殷
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 梅 王
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 炳义 吴
- />南方医科大学南方医院临床医学实验研究中心,广东 广州 510515Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
47
|
Liu X, Chen H, Xu X, Ye M, Cao H, Xu L, Hou Y, Tang J, Zhou D, Bai Y, Ma X. Insulin-like growth factor-1 receptor knockdown enhances radiosensitivity via the HIF-1α pathway and attenuates ATM/H2AX/53BP1 DNA repair activation in human lung squamous carcinoma cells. Oncol Lett 2018; 16:1332-1340. [PMID: 30061953 DOI: 10.3892/ol.2018.8705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor involved in cell proliferation and apoptosis, which is highly expressed in lung squamous cell carcinoma (SCC). The present study aimed to observe the influence of IGF-1R silencing on the radiosensitivity of SCC and investigate the potential mechanisms involved. Human lung SCC H520 cells with relatively high expression of IGF-1R were used. IGF-1R expression was silenced using short hairpin RNA. The influence of IGF-1R silencing on radiosensitivity and apoptosis was assessed using a clone formation assay and flow cytometry. The expression levels of proteins relevant in DNA damage repair and hypoxic signaling pathways were analyzed using western blotting. Decreased expression of IGF-1R led to an increase in the sensitivity of H520 cells to irradiation. Molecular analysis showed that the reduced expression of IGF-1R decreased the protein expression of ataxia-telangiectasia mutated (ATM), H2A histone family member X (H2AX) and p53 binding protein 1 (53BP1), which are associated with the DNA repair pathway. Furthermore, 53BP1 is also known to be involved in apoptosis. Proteins involved in the hypoxic pathway, including hypoxia inducible factor 1 α (HIF-1α), matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor A (VEGFA) were also involved in the radiosensitivity. In conclusion, decreased expression of IGF-1R leads to improved radiosensitivity of SCC cells, and the underlying mechanism may be associated with the decreased expression of proteins involved in ATM/H2AX/53BP1 DNA damage repair and the HIF-1α/MMP-9 hypoxic pathway, which results in the induction of apoptosis and increased radiosensitivity. These findings suggest that targeting of IGF-1R may represent a novel approach for lung SCC radiation treatment.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Haiyan Chen
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xin Xu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ming Ye
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hongbin Cao
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Xu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yanli Hou
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jianmin Tang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Di Zhou
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
48
|
Han B, Zhang YY, Xu K, Bai Y, Wan LH, Miao SK, Zhang KX, Zhang HW, Liu Y, Zhou LM. NUDCD1 promotes metastasis through inducing EMT and inhibiting apoptosis in colorectal cancer. Am J Cancer Res 2018; 8:810-823. [PMID: 29888104 PMCID: PMC5992514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the third leading cause of cancer death in both men and women. NudC domain containing 1 (NUDCD1) was identified as an oncoprotein which was activated or over-expressed in various human cancers. We aimed to investigate the effects and mechanisms of NUDCD1 in human CRC. The expression of NUDCD1 in CRC and pericarcinous tissues from 70 CRC patients were determined by real-time PCR, western blotting, and immunohistochemistry. The correlation between the expression of NUDCD1 and clinical characteristics was analyzed. The expression of NUDCD1 in five CRC cell lines and normal colon mucosal epithelial cell line was measured by real-time PCR. Then we knock down NUDCD1 in HCT116 and HT 29 cells. The cell viability assay, scratch assay, migration and invasion assay and flow cytometry were used to analyze NUDCD1's effects on the proliferation, migration, invasion, cell cycle and apoptosis of CRC cells. NUDCD1's effects on CRC xenografts of nude mice was also determined. Results showed that the expression of NUDCD1 was much higher in CRC tissues than that in pericarcinous tissues. Over-expression of NUDCD1 in human CRC tissues was significantly associated with lymph node metastasis, distant metastasis, and advanced stages. The expression of NUDCD1 was higher in all of the CRC cell lines than that in normal colon epithelial mucosal cells. To knockdown NUDCD1 resulted in significant decreases in cell viability and proliferation, decreased protein expression of N-cadherin and increased protein expression of E-cadherin which were biomarkers of EMT, arrested the cell cycle and increased apoptosis via down-regulated cyclin D1, Bcl2, and up-regulated cleaved-caspase3. Furthermore, to knockdown NUDCD1 inactivated IGF1R-ERK1/2 signaling pathway in vitro and in vivo, and suppressed the xenografts of CRC. In conclusion, NUDCD1 promotes the carcinogenesis and metastasis of CRC through inducing EMT and inhibiting apoptosis, which suggests NUDCD1 be a potential biomarker for CRC.
Collapse
Affiliation(s)
- Bin Han
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan Province, China
| | - Yuan-Yuan Zhang
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| | - Ke Xu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| | - Yang Bai
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| | - Shi-Kun Miao
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| | - Ke-Xian Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of ChinaChengdu 610041, Sichuan Province, China
| | - Hong-Wei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of ChinaChengdu 610041, Sichuan Province, China
| | - Yin Liu
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of ChinaChengdu 610041, Sichuan Province, China
| | - Li-Ming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan UniversityChengdu 610041, Sichuan Province, China
| |
Collapse
|
49
|
Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R. p38 inhibitor inhibits the apoptosis of cowanin-treated human colorectal adenocarcinoma cells. Int J Oncol 2018; 52:2031-2040. [PMID: 29620273 DOI: 10.3892/ijo.2018.4353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
Collapse
Affiliation(s)
- Nittiya Chowchaikong
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sirinun Nilwarangkoon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Surat Laphookhieo
- Department of Chemistry, Faculty of Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Chantra Tanunyutthawongse
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
50
|
Yan D, Deng S, Gan W, Li S, Li Y. Curcumol attenuates epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via TGF-β1. Mol Med Rep 2018; 17:7513-7520. [PMID: 29620189 PMCID: PMC5983941 DOI: 10.3892/mmr.2018.8817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to identify the effect and primary mechanism of Curcumol on the migration of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo. Curcumol was dissolved in absolute ethyl alcohol and the experiment was performed in NPC 5–8F cells in vitro and in vivo. The effect of different concentrations of Curcumol on cell migration was determined using wound healing and Transwell assays. A cell counting kit-8 (CCK-8) assay was also performed in order to determine cell viability. Flow cytometry was used to detect the effect of Curcumol on apoptosis. The expression of epithelial-mesenchymal transition (EMT)-associated proteins and genes was evaluated by western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA. In addition, the antitumor activity of Curcumol was investigated in female BALB/C nude mice with orthotopic tumor implants. The results indicated that cell apoptosis was increased and the viability of NPC 5–8F cells was decreased following treatment with Curcumol at doses of 0.1, 0.2 and 0.4 µM/ml. The results of in vivo experiments indicated that tumor growth and weight were decreased following Curcumol administration. Furthermore, the results of western blotting and RT-qPCR demonstrated that Curcumol altered the level of E-cadherin and N-cadherin in a dose-dependent manner in vivo. Curcumol also regulated the secretion of protein markers in the serum that were associated with EMT and TGF-β1 in the 5–8F xenograft mouse model. Thus, the results indicated that Curcumol induced TGF-β1-mediated EMT arrest by regulating E-cadherin and N-cadherin, which may prevent further development of NPC.
Collapse
Affiliation(s)
- Dazhong Yan
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shishan Deng
- Department of Human Anatomy Teaching and Research, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Weigang Gan
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Sijun Li
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuanquan Li
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|