1
|
Minigaliyeva IA, Klinova SV, Sutunkova MP, Ryabova YV, Valamina IE, Shelomentsev IG, Shtin TN, Bushueva TV, Protsenko YL, Balakin AA, Lisin RV, Kuznetsov DA, Katsnelson BA, Toropova LV. On the Mechanisms of the Cardiotoxic Effect of Lead Oxide Nanoparticles. Cardiovasc Toxicol 2024; 24:49-61. [PMID: 38108959 PMCID: PMC10838250 DOI: 10.1007/s12012-023-09814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Lead compounds are one of the most common pollutants of the workplace air and the environment. In the occupational setting, the sources of their emission, including in nanoscale form, are various technological processes associated with lead smelting and handling of non-ferrous metals and their alloys, the production of copper and batteries. Both lead poisoning and lead exposure without obvious signs of poisoning have a detrimental effect on the cardiovascular system. The purpose of this research was to investigate the mechanisms of the cardiotoxic effect of lead oxide nanoparticles (PbO NPs). The toxicological experiment involved male albino rats subchronically exposed to PbO NPs (49.6 ± 16.0 nm in size) instilled intraperitoneally in a suspension. We then assessed post-exposure hematological and biochemical parameters of blood and urine, histological and ultrastructural changes in cardiomyocytes, and non-invasively recorded electrocardiograms and blood pressure parameters in the rodents. Myocardial contractility was studied on isolated preparations of cardiac muscles. We established that PbO NPs induced oxidative stress and damage to the ultrastructure of cardiomyocytes, and decreased efficiency of the contractile function of the myocardium and blood pressure parameters. We also revealed such specific changes in the organism of the exposed rats as anemia, hypoxia, and hypocalcemia.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Svetlana V Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, Yekaterinburg, Russian Federation, 620000
| | - Irene E Valamina
- Ural State Medical University, Yekaterinburg, Russian Federation, 620109
| | - Ivan G Shelomentsev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana N Shtin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Yuri L Protsenko
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Alexander A Balakin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Ruslan V Lisin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, 620049
| | - Boris A Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russian Federation, 620014
| | - Liubov V Toropova
- Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Ural Federal University, Yekaterinburg, Russian Federation, 620000.
- Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743, Jena, Germany.
| |
Collapse
|
2
|
Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14930. [PMID: 37834378 PMCID: PMC10573514 DOI: 10.3390/ijms241914930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Juan I. Chávez-Corona
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Luis E. Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - C. Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
| | - Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 04510, Mexico
| | - Jose L. Cerbón-Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José A. Herrera-Barragán
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| |
Collapse
|
3
|
Pacheco TS, Ludwig ZM, Oliveira VH, Barcelos ID, de Souza RL, Paiva EC, Martins MD, Marques FC, Andrade GFS, Ghosh S. Synthesis, Thermal Analysis, Spectroscopic Properties, and Degradation Process of Tutton Salts Doped with AgNO 3 or H 3BO 3. ACS OMEGA 2023; 8:17800-17808. [PMID: 37251174 PMCID: PMC10210023 DOI: 10.1021/acsomega.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
In this work, we synthesized and studied the spectroscopic properties of (NH4)2(SO4)2Y(H2O)6 (Y = Ni, Mg) crystals doped with AgNO3 or H3BO3. These crystals constitute a series of hexahydrated salts known as Tutton salts. We investigated the influence of dopants on the vibrational modes of the tetrahedral ligands NH4 and SO4, octahedral complexes Mg(H2O)6 and Ni(H2O)6, and H2O molecules present in these crystals through Raman and infrared spectroscopies. We were able to identify bands that are attributed to the presence of Ag and B dopants, as well as band shifts caused by the presence of these dopants in the crystal lattice. A detailed study of the crystal degradation processes was performed by thermogravimetric measurements, where there was an increase in the initial temperature of crystal degradation due to the presence of dopants in the crystal lattice. Raman spectroscopy of the crystal residues after the thermogravimetric measurements helped us to elucidate the degradation processes occurring after the crystal pyrolysis process.
Collapse
Affiliation(s)
- Tiago S. Pacheco
- Department
of Physics, Federal University of Juiz de
Fora, Juiz de
Fora 36036-330, MG, Brazil
- Centro
Federal de Educação Tecnológica de Minas Gerais—Unidade
Curvelo, Curvelo 35790-636, MG, Brasil
| | - Zélia M.
C. Ludwig
- Department
of Physics, Federal University of Juiz de
Fora, Juiz de
Fora 36036-330, MG, Brazil
| | - Victor H. Oliveira
- Department
of Physics, Federal University of Juiz de
Fora, Juiz de
Fora 36036-330, MG, Brazil
| | - Ingrid D. Barcelos
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian
Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Rafael L. de Souza
- Centro
de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil
- Federal
University of Vales do Jequitinhonha e Mucuri, Janaúba 39440-000, MG, Brazil
| | - Edinei C. Paiva
- Centro
de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil
- Instituto
Federal do Norte de Minas Gerais-Campus Januária, Januária 39480-000, MG, Brazil
| | | | - Flavia C. Marques
- Department
of Chemistry, Federal University of Juiz
de Fora, Juiz de Fora 36036-330, MG, Brazil
| | - Gustavo F. S. Andrade
- Department
of Chemistry, Federal University of Juiz
de Fora, Juiz de Fora 36036-330, MG, Brazil
| | - Santunu Ghosh
- Brazilian
Center for Physical Research, CBPF, Rio de Janeiro 22290-180, RJ, Brazil
| |
Collapse
|
4
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
5
|
More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:642. [PMID: 33807756 PMCID: PMC7999720 DOI: 10.3390/nano11030642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The exceptional physical and chemical properties of nickel nanomaterials have been exploited in a range of applications such as electrical conductors, batteries, and biomaterials. However, it has been suggested that these unique properties may allow for increased bioavailability, bio-reactivity, and potential adverse health effects. Thus, the purpose of this review was to critically evaluate data regarding the toxicity of oxidic nickel nanoparticles (nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles) with respect to: (1) physico-chemistry properties; (2) nanomaterial characterization in the defined delivery media; (3) appropriateness of model system and translation to potential human effects; (4) biodistribution, retention, and clearance; (5) routes and relevance of exposure; and (6) current research data gaps and likely directions of future research. Inhalation studies were prioritized for review as this represents a potential exposure route in humans. Oxidic nickel particle size ranged from 5 to 100 nm in the 60 studies that were identified. Inflammatory responses induced by exposure of oxidic nickel nanoparticles via inhalation in rodent studies was characterized as acute in nature and only displayed chronic effects after relatively large (high concentration and long duration) exposures. Furthermore, there is no evidence, thus far, to suggest that the effects induced by oxidic nickel nanoparticles are related to preneoplastic events. There are some data to suggest that nano- and micron-sized NiO particles follow a similar dose response when normalized to surface area. However, future experiments need to be conducted to better characterize the exposure-dose-response relationship according to specific surface area and reactivity as a dose metric, which drives particle dissolution and potential biological responses.
Collapse
Affiliation(s)
- Sharlee L. More
- Cardno ChemRisk, 6720 S Macadam Ave Suite 150, Portland, OR 97219, USA
| | - Michael Kovochich
- Cardno ChemRisk, 30 North LaSalle St Suite 3910, Chicago, IL 60602, USA;
| | - Tara Lyons-Darden
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Michael Taylor
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Alexandra M. Schulte
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| | - Amy K. Madl
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| |
Collapse
|
6
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
7
|
Bushueva TV, Minigalieva IA, Panov VG, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Naumova AS, Artemenko EP, Katsnelson BA. Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose Response 2021; 19:1559325820982163. [PMID: 33628148 PMCID: PMC7882761 DOI: 10.1177/1559325820982163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.
Collapse
Affiliation(s)
- Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Anna S Naumova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Elizaveta P Artemenko
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
8
|
Mohammadipour A, Haghir H, Ebrahimzadeh Bideskan A. A link between nanoparticles and Parkinson's disease. Which nanoparticles are most harmful? REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:545-556. [PMID: 32681785 DOI: 10.1515/reveh-2020-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, different kinds of nanoparticles (NPs) are produced around the world and used in many fields and products. NPs can enter the body and aggregate in the various organs including brain. They can damage neurons, in particular dopaminergic neurons in the substantia nigra (SN) and striatal neurons which their lesion is associated with Parkinson's disease (PD). So, NPs can have a role in PD induction along with other agents and factors. PD is the second most common neurodegenerative disease in the world, and in patients, its symptoms progressively worsen day by day through different pathways including oxidative stress, neuroinflammation, mitochondrial dysfunction, α-synuclein increasing and aggregation, apoptosis and reduction of tyrosine hydroxylase positive cells. Unfortunately, there is no effective treatment for PD. So, prevention of this disease is very important. On the other hand, without having sufficient information about PD inducers, prevention of this disease would not be possible. Therefore, we need to have sufficient information about things we contact with them in daily life. Since, NPs are widely used in different products especially in consumer products, and they can enter to the brain easily, in this review the toxicity effects of metal and metal oxide NPs have been evaluated in molecular and cellular levels to determine potential of different kinds of NPs in development of PD.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Sutunkova MP, Minigalieva IA, Klinova SV, Panov VG, Gurvich VB, Privalova LI, Sakhautdinova RR, Shur VY, Shishkina EV, Shtin TN, Riabova JV, Katsnelson BA. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology 2020; 15:205-222. [PMID: 33186499 DOI: 10.1080/17435390.2020.1845410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Julia V Riabova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
10
|
Minigalieva IA, Shtin TN, Makeyev OH, Panov VG, Privalova LI, Gurvic VB, Sutunkova MP, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Chernyshov IN, Shuman EA, Korotkov AA, Katsnelson BA. Some outcomes and a hypothetical mechanism of combined lead and benzo(a)pyrene intoxication, and its alleviation with a complex of bioprotectors. Toxicol Rep 2020; 7:986-994. [PMID: 32874921 PMCID: PMC7451791 DOI: 10.1016/j.toxrep.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022] Open
Abstract
Rats were injected repeatedly intraperitoneally with lead acetate and/or benzo(а)pyrene solutions in various dose ratios. Under combined exposure the organism load with benzo(а)pyrene was increased while that with its metabolites reduced. The genotoxic effect of the combined exposure was higher than that of benzo(a)pyrene alone. This effect was inhibited by a complex of antitoxic bioprotectors.
Rats were exposed 3 times a week during 6 weeks to repeated intraperitoneal injections of lead acetate solution in water (Pb) and/or benzo(а)pyrene solution in petrolatum oil (B(а)P) in various dose ratios. Towards the end of the period, the animals developed a moderate subchronic intoxication having some features characteristic of lead effects. The type of combined toxicity estimated with the help of isoboles constructed by the Response Surface Methodology was found to be varied depending on a particular effect, its level, and dose ratio. However, Pb and B(a)P in combination often displayed an additive or even superadditive action. In the group exposed to this combination compared with the group of rats exposed to B(a)P alone, its concentration in the organism was increased while the concentration of some B(a)P oxidative metabolism products was reduced. Such inhibition of B(a)P biotransformation, assumingly associated with impaired heme and, thus, cytochrome P450 synthesis induced by lead intoxication, can serve as an explanation for certain enhancement of the genotoxic effect of B(a)P. This effect was not present in the same combined intoxication if a complex of antitoxic bioprotectors was being administered in the background.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Tatiana N Shtin
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Ural State Medical University, 620109 Ekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia.,The Institute of Industrial Ecology UB of RAS, 620990 Ekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Vladimir B Gurvic
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Renata R Sakhautdinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| | - Eugene A Shuman
- The Ural State Medical University, 620109 Ekaterinburg, Russia
| | | | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Ekaterinburg, Russia
| |
Collapse
|
11
|
Katsnelson BA, Klinova SV, Gerzen OP, Balakin AA, Lookin ON, Lisin RV, Nabiev SR, Privalova LI, Minigalieva IA, Panov VG, Katsnelson LB, Nikitina LV, Kuznetsov DA, Protsenko YL. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem Toxicol 2020; 144:111641. [PMID: 32758638 DOI: 10.1016/j.fct.2020.111641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023]
Abstract
This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.
| | - Svetlana V Klinova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ruslan V Lisin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa I Privalova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia; The Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Daniil A Kuznetsov
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
12
|
Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. Biochemical, Toxicological, and Histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res 2020; 196:528-536. [PMID: 31902099 DOI: 10.1007/s12011-019-01941-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
Nickel oxide nanoparticle (NiO NPs) has been widely used in various fields such as catalysts, radiotherapy, and nanomedicine. The aim of this study was to compare the effects of nickel oxide (NiO) and NiO NPs on oxidative stress biomarkers and histopathological changes in brain tissue of rats. In this study, 49 male rats were randomly divided into one control group and 6 experimental groups (n = 7). The control group received normal saline and the treatment groups received NiO and NiO NPs at doses of 10, 25, and 50 mg/kg intraperitoneally for 8 days. After 8 days, animal was sacrificed, brain excised, homogenized, centrifuged, and then supernatant was collected for antioxidant assays. The results showed that activity of GST in NiO NPs groups with doses of 10, 25, and 50 mg/kg (79.42 ± 4.24, p = 0.035; 78.77 ± 8.49, p = 0.041; 81.38 ± 12.39, p = 0.042 to 47.26 ± 7.17) and catalase in NiO NPs groups with concentrations of 25 and 50 mg/kg (69.95 ± 8.65 to 39.75 ± 5.11, p = 0.02) and (68.80 ± 4.18 to 39.75 ± 5.11 p = 0.027) were significantly increased compared with the control, respectively. Total antioxidant capacity in NiONPs group with doses of 50 mg/kg was significantly decreased (345.00 ± 23.62, p = 0.015 to 496.66 ± 25.77) compared with control. The GSH level in all doses NiO and NiONPs was significantly decreased compared with the control (p = 0.002). MDA level in NiONPs and NiO groups with doses of 50 mg/kg was significantly increased (13.03 ± 1.29, p = < 0.01; 15.61 ± 1.08, p = < 0.001 to 7.32 ± 0.51) compared with the control, respectively. Our results revealed a range of histopathological changes, including necrosis, hyperemia, gliosis, and spongy changes in brain tissue. Thus, increasing level of MDA, GST, and CAT enzymes and decreasing GSH and TAC and also histopathological changes confirmed NiONPs and NiO toxicity.
Collapse
Affiliation(s)
- Aidin Marzban
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Golestan, Gorgan, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Manigheh Mianabady
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Golestan, Gorgan, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Seyed Mohammad Hoseini
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Babol branch, Babol, Iran
| |
Collapse
|
13
|
Minigaliyeva IA, Sutunkova MP, Gurvich VB, Bushueva TV, Klinova SV, Solovyeva SN, Chernyshov IN, Valamina IE, Shur VY, Shishkina EV, Makeyev OH, Panov VG, Privalova LI, Katsnelson BA. An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology 2020; 14:788-806. [PMID: 32396411 DOI: 10.1080/17435390.2020.1762132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.
Collapse
Affiliation(s)
- Ilzira A Minigaliyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana V Bushueva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana V Klinova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ivan N Chernyshov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russia
| | | | - Oleg H Makeyev
- The Central Research Laboratory, Ural Medical University, Ekaterinburg, Russia
| | - Vladimir G Panov
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.,The Institute of Industrial Ecology, Russian Academy of Sciences - Urals Branch, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
14
|
Panov V, Minigalieva I, Bushueva T, Fröhlich E, Meindl C, Absenger-Novak M, Shur V, Shishkina E, Gurvich V, Privalova L, Katsnelson BA. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose Response 2020; 18:1559325820914180. [PMID: 32231470 PMCID: PMC7088228 DOI: 10.1177/1559325820914180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.
Collapse
Affiliation(s)
- Vladimir Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira Minigalieva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana Bushueva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Eleonore Fröhlich
- Center for Medical Research of the Medical University of Graz, Austria
| | - Claudia Meindl
- Center for Medical Research of the Medical University of Graz, Austria
| | | | - Vladimir Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Vladimir Gurvich
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa Privalova
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
15
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|
16
|
Magrone T, Russo MA, Jirillo E. Impact of Heavy Metals on Host Cells: Special Focus on Nickel-Mediated Pathologies and Novel Interventional Approaches. Endocr Metab Immune Disord Drug Targets 2019; 20:1041-1058. [PMID: 31782370 DOI: 10.2174/1871530319666191129120253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heavy metals [arsenic, aluminium, cadmium, chromium, cobalt, lead, nickel (Ni), palladium and titanium] are environmental contaminants able to impact with host human cells, thus, leading to severe damage. OBJECTIVE In this review, the detrimental effects of several heavy metals on human organs will be discussed and special emphasis will be placed on Ni. In particular, Ni is able to interact with Toll-like receptor-4 on immune and non-immune cells, thus, triggering the cascade of pro-inflammatory cytokines. Then, inflammatory and allergic reactions mediated by Ni will be illustrated within different organs, even including the central nervous system, airways and the gastrointestinal system. DISCUSSION Different therapeutic strategies have been adopted to mitigate Ni-induced inflammatoryallergic reactions. In this context, the ability of polyphenols to counteract the inflammatory pathway induced by Ni on peripheral blood leukocytes from Ni-sensitized patients will be outlined. In particular, polyphenols are able to decrease serum levels of interleukin (IL)-17, while increasing levels of IL- 10. These data suggest that the equilibrium between T regulatory cells and T helper 17 cells is recovered with IL-10 acting as an anti-inflammatory cytokine. In the same context, polyphenols reduced elevated serum levels of nitric oxide, thus, expressing their anti-oxidant potential. Finally, the carcinogenic potential of heavy metals, even including Ni, will be highlighted. CONCLUSION Heavy metals, particularly Ni, are spread in the environment. Nutritional approaches seem to represent a novel option in the treatment of Ni-induced damage and, among them, polyphenols should be taken into consideration for their anti-oxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
17
|
Klinova SV, Minigalieva IA, Privalova LI, Valamina IE, Makeyev OH, Shuman EA, Korotkov AA, Panov VG, Sutunkova MP, Ryabova JV, Bushueva TV, Shtin TN, Gurvich VB, Katsnelson BA. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem Toxicol 2019; 136:110971. [PMID: 31751644 DOI: 10.1016/j.fct.2019.110971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.
Collapse
Affiliation(s)
- Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str, Ekaterinburg, 620109, Russia
| | - Oleg H Makeyev
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Eugene A Shuman
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Artem A Korotkov
- The Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19 Mira Str, Ekaterinburg, 620002, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str, Ekaterinburg, 620990, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Julia V Ryabova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Tatiana N Shtin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str, Ekaterinburg, 620014, Russia.
| |
Collapse
|
18
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
19
|
Sutunkova MP, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, Shur VY, Shishkina EV, Zubarev IV, Saatkhudinova RR, Klinova SV, Tsaregorodtseva АE, Korotkov AV, Shuman EА, Privalova LI, Katsnelson BA. Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. Int J Mol Sci 2019; 20:ijms20071778. [PMID: 30974874 PMCID: PMC6479379 DOI: 10.3390/ijms20071778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023] Open
Abstract
Rats were exposed to nickel oxide nanoparticles (NiO-NP) inhalation at 0.23 ± 0.01 mg/m3 for 4 h a day 5 times a week for up to 10 months. The rat organism responded to this impact with changes in cytological and some biochemical characteristics of the bronchoalveolar lavage fluid along with a paradoxically little pronounced pulmonary pathology associated with a rather low chronic retention of nanoparticles in the lungs. There were various manifestations of systemic toxicity, including damage to the liver and kidneys; a likely allergic syndrome as indicated by some cytological signs; transient stimulation of erythropoiesis; and penetration of nickel into the brain from the nasal mucous membrane along the olfactory pathway. Against a picture of mild to moderate chronic toxicity of nickel, its in vivo genotoxic effect assessed by the degree of DNA fragmentation in nucleated blood cells (the RAPD test) was pronounced, tending to increasing with the length of the exposure period. When rats were given orally, in parallel with the toxic exposure, a set of innocuous substances with differing mechanisms of expected bioprotective action, the genotoxic effect of NiO-NPs was found to be substantially attenuated.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Irene E Valamina
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Oleg H Makeyev
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Vladimir Ya Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Ilya V Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia.
| | - Renata R Saatkhudinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | | | - Artem V Korotkov
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Eugene А Shuman
- The Ural State Medical University; 17 Klyuchevskaya Str., 620109 Ekaterinburg, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers; 30 Popov Str., 620014 Ekaterinburg, Russia.
| |
Collapse
|
20
|
Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Nabiev SR, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB. Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem Toxicol 2019; 125:233-241. [PMID: 30634013 DOI: 10.1016/j.fct.2018.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin. Lead intoxication led in papillary muscles to a decrease in the maximal rate of isotonic shortening for all afterloads and a decrease in the thin filament sliding velocity. Papillary muscles from lead-exposed rats displayed marked changes in most of the main characteristics of afterload contraction-relaxation cycles, but in trabeculae these changes were less pronounced. The reported changes were attenuated to some extent in rats treated with a Ca-containing bioprotector. The amount of work produced by both types of heart muscle preparations was not changed by lead. Only in papillary muscles the load-dependent relaxation index was significantly increased in the lead-treated groups. Thus subchronic lead intoxication affects the peak rate of force development and relaxation properties of cardiac muscle contracting in isotonic/physiological regimes rather than the total amount of mechanical work, which may reflect adaptive changes in the myocardial function under decreased contractility.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia; Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
21
|
Varaksin AN, Panov VG, Katsnelson BA, Minigalieva IA. Using Various Nonlinear Response Surfaces for Mathematical Description of the Type of Combined Toxicity. Dose Response 2018; 16:1559325818816596. [PMID: 30574029 PMCID: PMC6299322 DOI: 10.1177/1559325818816596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
The article considers the problem of characterizing the type of combined action produced by a mixture of toxic substances with the help of nonlinear response functions. Most attention is given to second-order models: the linear model with a cross-term and the quadratic model. General propositions are formulated based on the data on combined toxicity patterns previously obtained by the Ekaterinburg nanotoxicology team in animal experiments and analyzed with the help of the linear model with a cross-term. It is shown now that the quadratic model features these general characteristics in full measure, but interpretation of combined toxicity types based on isobolograms obtained by the quadratic model is more difficult. This suggests that where both models ensure a comparable quality of combined toxicity type identification, it would be enough to use the linear model with a cross-term.
Collapse
Affiliation(s)
- Anatoly N Varaksin
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
22
|
Protsenko YL, Katsnelson BA, Klinova SV, Lookin ON, Balakin AA, Nikitina LV, Gerzen OP, Minigalieva IA, Privalova LI, Gurvich VB, Sutunkova MP, Katsnelson LB. Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem Toxicol 2018; 120:378-389. [PMID: 30036551 DOI: 10.1016/j.fct.2018.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/19/2018] [Indexed: 01/21/2023]
Abstract
Outbred male rats were repeatedly injected IP with sub-lethal doses of lead acetate 3 times a week during 5 weeks. They developed an explicit, even if moderate, lead intoxication characterized by typical hematological and some other features. The next day after the last injection the heart of each animal was excised, and the trabecules and papillary muscles from the right ventricle were used for modeling in vitro isometric (with varying starting length of the preparation) regimes of the contraction-relaxation cycle with different preloads. Several well-established parameters of this model were found changed compared with the preparations taken from the hearts of healthy control rats. Background in vivo calcium treatment attenuated both systemic and cardiotoxic effects of lead to an extent. We show for the first time that subchronic intoxication with lead caused myocardial preparations in a wide range of lengths to respond by a decrease in the time and speed parameters of the isometric contraction while maintaining its amplitude and by a decrease in the passive stiffness of trabecules. The responses of the various heart structures are outlined, and the isomyosin ratio is shown to have shifted towards the slow isoform. Mechanistic and toxicological inferences from the results are discussed.
Collapse
Affiliation(s)
- Yuri L Protsenko
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg N Lookin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander A Balakin
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
23
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Meshtcheryakova EY. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int J Mol Sci 2018. [PMID: 29534019 PMCID: PMC5877698 DOI: 10.3390/ijms19030837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Renata R Sakhautdinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|
24
|
Sutunkova MP, Privalova LI, Minigalieva IA, Gurvich VB, Panov VG, Katsnelson BA. The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol Rep 2018; 5:363-376. [PMID: 29854606 PMCID: PMC5977416 DOI: 10.1016/j.toxrep.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with Fe2O3, NiO and amorphous SiO2 nano-aerosols. We have demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although the physiological mechanisms of their elimination from the lungs proved to be highly active. Even if water-insoluble, Me-NPs are significantly solubilized in some biological milieus in vitro and in vivo, which may explain some important peculiarities of their toxicity. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs strongly depends on specific mechanisms characteristic of a particular metal. For some of the Me-NPs studied, we have proposed standards of presumably safe concentrations in workplace air. Along with this, we have proved that the adverse effects of Me-NPs could be significantly alleviated by background or preliminary administration of adequately composed combinations of some bioprotectors.
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Ilzira A. Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir B. Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir G. Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Boris A. Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
25
|
Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 2017; 392:47-54. [PMID: 29032222 DOI: 10.1016/j.tox.2017.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Abstract
Nickel (Ni) is widely used in many industrial sectors such as alloy, welding, printing inks, electrical and electronics industries. Excessive environmental or occupational exposure to Ni may result in tumor, contact dermatitis, as well as damages to the nervous system. In recent years, more and more research has demonstrated that Ni induced nerve damages are related to mitochondrial dysfunction. In this paper, we try to characterize Ni induced neurotoxicity as well as the underlying mechanisms, and how to find new drugs for chemoprevention, by reviewing chemicals with neuroprotective effects on Ni induced neurotoxicity.
Collapse
Affiliation(s)
- Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
26
|
Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn 3O 4 nanoparticles. Food Chem Toxicol 2017; 109:393-404. [PMID: 28935498 DOI: 10.1016/j.fct.2017.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Comparative and combined damaging effects of NiO and Mn3O4 nanoparticles were estimated on cultures of several established human cell lines. The cytotoxicity indices used were: (a) reduction in cellular dehydrogenase activity, (b) decrease in the ATP-content, (c) for SH-SY5Y cells also decrease in the tyrosine hydroxylase content. The combined cytotoxicity was modeled using the Response Surface Methodology. When assessing the stability of metal oxide nanoparticles (MeO-NPs) in cultural media used by us, we found that the addition of the fetal bovine serum (FBS) to them renders NiO-NPs and, to even greater extent, Mn3O4-NPs exponentially slow soluble while without FBS their dissolution was virtually undetectable. At the same time, sedimentation of these MeO-NPs noticeably slowed down in the presence of the same FBS. We have found dependence of cell damage on concentrations of MeO-NPs and higher cytotoxicity of Mn3O4-NP compared with NiO-NP. Thus, comparative assessment of the NPs unspecific toxicity obtained in our animal experiments was reproduced by the "in vitro" tests. However, with respect to manganese-specific brain damage "in vivo" discovered previously, present experiments on neurons "in vitro" showed only a certain enhancing effect of Mn3O4-NP on the action of NiO-NP, but the role of NiO-NP in the combination prevailed.
Collapse
|
27
|
Sutunkova MP, Solovyeva SN, Katsnelson BA, Gurvich VB, Privalova LI, Minigalieva IA, Slyshkina TV, Valamina IE, Makeyev OH, Shur VY, Zubarev IV, Kuznetsov DK, Shishkina EV. A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology 2017; 384:59-68. [PMID: 28450064 DOI: 10.1016/j.tox.2017.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
Abstract
While engineered SiO2 nanoparticle toxicity is being widely investigated, mostly on cell lines or in acute animal experiments, the practical importance of as well as the theoretical interest in industrial condensation aerosols with a high SiO2 particle content seems to be neglected. That is why, to the best of our knowledge, long-term inhalation exposure to nano-SiO2 has not been undertaken in experimental nanotoxicology studies. To correct this data gap, female white rats were exposed for 3 or 6 months 5 times a week, 4h a day to an aerosol containing predominantly submicron (nanoscale included) particles of amorphous silica at an exposure concentration of 2.6±0.6 or 10.6±2.1mg/m3. This material had been collected from the flue-gas ducts of electric ore smelting furnaces that were producing elemental silicon, subsequently sieved through a<2μm screen and redispersed to feed a computerized "nose only" inhalation system. In an auxiliary experiment using a single-shot intratracheal instillation of these particles, it was shown that they induced a pulmonary cell response comparable with that of a highly cytotoxic and fibrogenic quartz powder, namely DQ12. However, in long-term inhalation tests, the aerosol studied proved to be of very low systemic toxicity and negligible pulmonary fibrogenicity. This paradox may be explained by a low SiO2 retention in the lungs and other organs due to the relatively high solubility of these nanoparticles. nasal penetration of nanoparticles into the brain as well as their genotoxic action were found in the same experiment, results that make one give a cautious overall assessment of this aerosol as an occupational or environmental hazard.
Collapse
Affiliation(s)
- Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Svetlana N Solovyeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatyana V Slyshkina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Dmitry K Kuznetsov
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
28
|
Minigalieva IA, Katsnelson BA, Panov VG, Varaksin AN, Gurvich VB, Privalova LI, Sutunkova MP, Klinova SV. Experimental study and mathematical modeling of toxic metals combined action as a scientific foundation for occupational and environmental health risk assessment. A summary of results obtained by the Ekaterinburg research team (Russia). Toxicol Rep 2017; 4:194-201. [PMID: 28959640 PMCID: PMC5615118 DOI: 10.1016/j.toxrep.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022] Open
Abstract
Cumulative health risks assessment should be based on toxicology of mixtures. Some principal discrepancies between these domains are discussed by the authors. While simplification of the theory is inevitable, its vulgarization should be avoided. Our contribution to this theory and its practical applications is summarized here.
Assessment of cumulative health risks associated with the widely observed combined effects of two or more metals and their compounds on the organism has the toxicology of mixtures as its scientific basis although there is no full match between such assessment and this basis while some of the contradictions between them are of a fundamental nature. This state of things may be explained not only by simplifications characteristic of the generally recognized methodology of risk assessment but also by extreme complexity of the theory of combined toxicity, the most essential issues of which are considered by authors on the basis of literary and, mostly, their own previously published data.
Collapse
Affiliation(s)
- Ilzira A. Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
- Corresponding author at: DSci – 30 Popov Str, Ekaterinburg 620014, Russia.
| | - Vladimir G. Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Anatoly N. Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
29
|
Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Zubarev IV, Makeyev OH, Meshtcheryakova EY, Klinova SV. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology 2017; 380:72-93. [PMID: 28212817 DOI: 10.1016/j.tox.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | | | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
30
|
Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 2017; 108:7-14. [PMID: 28159626 DOI: 10.1016/j.neuint.2017.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022]
Abstract
Nickel oxide nanoparticles (NiO-NPs) are used in many industrial sectors including printing inks, ceramics and catalysts, and electrical and electronics industry because of their magnetic and optical properties. However, there has been still a serious lack of information about their toxicity at the cellular and molecular levels on nervous system. For that, we aimed to investigate the in vitro toxic potentials of NiO-NPs in neuronal (SH-SY5Y) cells. The particle characterisation, cellular uptake and morphological changes were determined using Transmission Electron Microscopy, dynamic light scattering and Inductively Coupled Plasma-Mass Spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, the oxidative potentials by the determination of malondialdehyde, 8-hydroxy deoxyguanosine, protein carbonyl, and glutathione levels with Enzyme-Linked Immune Sorbent Assays, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. According to the results, it was observed that NiO-NPs (15.0 nm ± 4.2-38.1 nm); (i) were taken up by the cells in concentration dependent manner, (ii) caused 50% inhibition in cell viability at ≥229.34 μg/mL, (iii) induced some morphological changes, (iv) induced dose-dependent DNA damage (3.2-11.0 fold) and apoptosis (80-99%), (v) significantly induced oxidative damage. In conclusion, our results support the hypothesis that NiO-NPs affect human health especially neuronal system negatively and should raise the concern about the safety associated with their applications in consumer products.
Collapse
|
31
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Shishkina EV, Makeyev OH, Valamina IE, Varaksin AN, Panov VG. Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Katsnelson BA, Panov VG, Varaksin AN, Minigalieva IA, Privalova LI, Sutunkova MP. Changes in the Dose-Response Relationship of One Toxicant Under Simultaneous Exposure to Another Toxicant. Dose Response 2016; 14:1559325816672935. [PMID: 27867320 PMCID: PMC5105299 DOI: 10.1177/1559325816672935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We considered, in general form for a 22 full factorial experiment, linear approximations of the organism's dose-response relationship for some factors operating alone and modification of this relationship by another factor operating in the background. A typological classification of such modifications is suggested. An analysis of the outcomes obtained in a number of subchronic animal experiments on rats in which this response was assessed by changes in a large number of biomedical indices revealed that all theoretically possible variants (types) of the modification under consideration are actually observed depending on a specific index and specific harmful exposure. Statistical significance estimation procedures are formulated for each of them.
Collapse
Affiliation(s)
- B. A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - V. G. Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - A. N. Varaksin
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - I. A. Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - L. I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - M. P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
33
|
Privalova LI, Katsnelson BA, Varaksin AN, Panov VG, Balesin SL. The pulmonary phagocytosis response to separate and combined impacts of manganese (IV) and chromium (VI) containing particulates. Toxicology 2016; 370:78-85. [PMID: 27693498 DOI: 10.1016/j.tox.2016.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
We investigated by the optical microscopy some cytological characteristics of the bronchoalveolar lavage fluid cell population 24h after intratracheal instillation of microscale MnO2 and BaCrO4 particles (separately or together at two different doses) into the lungs of Wistar rats. Besides, the cytotoxicity of both particulates for rat peritoneal macrophages in vitro was assessed by the trypan blue exclusion test and proved significant. They were found to evoke a typical dose-dependent pulmonary phagocytosis response usually observed under inhalation or intratracheal impacts of low-soluble mineral and metal particles. A significant shift in the above mentioned cell population toward the prevalence of neutrophllic leukocytes (NL) over alveolar macrophages (AM) proved once more to be the most characteristic feature of this response. Although the particle load of a unit AM was always higher than that of a unit NL, the collective contribution of the recruited NLs to the total particles internalization by both AMs and NLs together was quite significant. This fact confirms that NL recruitment is an important auxiliary mechanism of the cytotoxic particle elimination from lungs compensating for the macrophage damage caused by them. Well adjusted functioning of this compensatory mechanism was additionally demonstrated by isobolographic analysis based on the Response Surface Methodology. On the other hand, this analysis confirmed that the type of combined toxicity depends on a particular effect this type is assessed for and on the effect's dose-dependent level.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia
| | - Vladimir G Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia
| | - Sergey L Balesin
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia
| |
Collapse
|
34
|
Chang XH, Zhu A, Liu FF, Zou LY, Su L, Liu SK, Zhou HH, Sun YY, Han AJ, Sun YF, Li S, Li J, Sun YB. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-β1 activation in rats. Hum Exp Toxicol 2016; 36:802-812. [DOI: 10.1177/0960327116666650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nano nickel oxide (NiO), widely used in industry, has recently been discovered to have pulmonary toxicity. However, no subchronic exposure studies about nano NiO-induced pulmonary fibrosis have been reported. The objective of this study was to investigate pulmonary fibrosis induced by nano NiO and its potential mechanism in rats. Male Wistar rats ( n = 40, 200–240 g) were randomized into control group, nano NiO groups (0.015, 0.06, and 0.24 mg/kg), and micro NiO group (0.024 mg/kg). All rats were killed to collect lung tissue after intratracheal instillation of NiO particles twice a week for 6 weeks. To identify pulmonary fibrosis, Masson trichrome staining, hydroxyproline content, and collagen protein expression were performed. The results showed widespread lung fibrotic injury in histological examination and increased content of hydroxyproline, collagen types I and III in rat lung tissue exposed to nano NiO. To explore the potential pulmonary fibrosis mechanism, transforming growth factor beta 1 (TGF- β1) content was measured by enzyme-linked immunosorbent assay, and the messenger RNA expression of key indicators was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The TGF- β1 content was increased in nano NiO exposure groups, as well as the upregulated gene expression of TGF- β1, Smad2, Smad4, matrix metalloproteinase, and tissue inhibitor of metalloproteinase. The findings indicated that nano NiO could induce pulmonary fibrosis, which may be related to TGF- β1 activation.
Collapse
Affiliation(s)
- XH Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - A Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - FF Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - LY Zou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - L Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - SK Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - HH Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - YY Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - AJ Han
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - YF Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - S Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - J Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - YB Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Katsnelson B, Tsepilov N, Panov V, Sutunkova M, Varaksin A, Gurvich V, Minigalieva I, Valamina I, Makeyev O, Meshtcheryakova E. Applying theoretical premises of binary toxicity mathematical modeling to combined impacts of chemical plus physical agents (A case study of moderate subchronic exposures to fluoride and static magnetic field). Food Chem Toxicol 2016; 95:110-20. [DOI: 10.1016/j.fct.2016.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/25/2022]
|
36
|
Sutunkova MP, Katsnelson BA, Privalova LI, Gurvich VB, Konysheva LK, Shur VY, Shishkina EV, Minigalieva IA, Solovjeva SN, Grebenkina SV, Zubarev IV. On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology 2016; 363-364:19-28. [PMID: 27424278 DOI: 10.1016/j.tox.2016.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
The aim of our study was to test a hypothesis according to which the pulmonary clearance vs. retention of metal oxide nanoparticles (NPs) is controlled not only by physiological mechanisms but also by their solubilization which in some cases may even prevail. Airborne Fe2O3 NPs with the mean diameter of 14±4nm produced by sparking from 99.99% pure iron rods were fed into a nose-only exposure tower. Rats were exposed to these NPs for 4h a day, 5days a week during 3, 6 or 10 months at the mean concentration of 1.14±0.01mg/m(3). NPs collected from the air exhausted from the exposure tower proved insoluble in water but dissolved markedly in the cell free broncho-alveolar lavage fluid supernatant and in the sterile bovine blood serum. The Fe2O3 content of the lungs and lung-associated lymph nodes was measured by the Electron Paramagnetic Resonance (EPR) spectroscopy. We found a relatively low but significant pulmonary accumulation of Fe2O3, gradually increasing with time. Besides, we obtained TEM-images of nanoparticles within alveolocytes and the myelin sheaths of brain fibers associated with ultrastructural damage. We have developed a multicompartmental system model describing the toxicokinetics of inhaled nanoparticles after their deposition in the lower airways as a process controlled by their (a) high ability to penetrate through the alveolar membrane; (b) active endocytosis; (c) in vivo dissolution. To conclude, both experimental data and the identification of the system model confirmed our initial hypothesis and demonstrated that, as concerns iron oxide NPs of the dimensions used, the dissolution-depending mechanisms proved to be dominant.
Collapse
Affiliation(s)
- M P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - B A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia.
| | - L I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - L K Konysheva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - V Ya Shur
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - E V Shishkina
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| | - I A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S N Solovjeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - S V Grebenkina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Rospotrebnadzor, Ekaterinburg, Russia
| | - I V Zubarev
- The Ural Center for Shared Use "Modern Nanotechnology", Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
37
|
Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol 2015; 86:351-64. [PMID: 26607108 DOI: 10.1016/j.fct.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/22/2023]
Abstract
Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory.
Collapse
|
38
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Makeyev OH, Valamina IE, Grigoryeva EV. Is it possible to enhance the organism's resistance to toxic effects of metallic nanoparticles? Toxicology 2015; 337:79-82. [PMID: 26364982 DOI: 10.1016/j.tox.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Boris A Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | - Larisa I Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Irina E Valamina
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ekaterina V Grigoryeva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia; The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg, Russia; The Central Research Laboratory, the Ural State Medical University, Ekaterinburg, Russia; The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|