1
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Davidson E, Pereira J, Leon S, Navarro E, Kavalappara SR, Murphy Z, Anagnostopoulos V, Bag S, Santra S. Chitosan coated selenium: A versatile nano-delivery system for molecular cargoes. Int J Biol Macromol 2024; 267:131176. [PMID: 38599433 DOI: 10.1016/j.ijbiomac.2024.131176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16 ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.
Collapse
Affiliation(s)
- Edwin Davidson
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Jorge Pereira
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Sebastian Leon
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Ernesto Navarro
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Department of Physiology, Neuroscience and Behavioral Sciences, School of Medicine, St. George's University, St. George, Grenada
| | | | - Zachary Murphy
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Swadeshmukul Santra
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA..
| |
Collapse
|
3
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
4
|
Zakaria MY, Eraqi WA, Mohamed SA. Ultra-deformable free fatty acid based nano-carriers for topical delivery of Luteolin: A potential paradigm for management of Methicillin-Resistant Staphylococcus aureus skin infections. Int J Pharm 2023; 643:123259. [PMID: 37479100 DOI: 10.1016/j.ijpharm.2023.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The incidences of antimicrobial resistance in particular, Methicillin-Resistant Staphylococcus aureus (MRSA) have increased during the last two decades. However, conventional dosage forms are unable to evade the barrier effect of the stratum corneum to permit deep penetration of the skin to resolve deep skin infections. There is, therefore, an urgent need for an advanced drug delivery system. Thus the study reported herein was aimed to fabricate a novasome-loaded luteolin (LUT) to improve its topical delivery and to enhance its antibacterial activity. The system was investigated for the impact of the type of surfactant, stearic acid concentration (g %), cholesterol amount (mg) and Brij 52 amount (mg) on the percent entrapment efficiency, particle size, poly-dispersity index and zeta potential. Statistical optimization of these factors was conducted using the Design-Expert® software. The optimum formulation was further in-vitro characterized by release study, differential scanning calorimetry, transmission electron microscope, x-ray diffraction and antibacterial activity. Formulation F2 composed of Span 60, 0.4 g % of stearic acid, 100 mg cholesterol and 30 mg Brij 52 was selected as the optimum formula based on the highest desirability value (0.634). F2 demonstrated enhanced antimicrobial activity with lower minimum inhibitory concentrations against a panel of MRSA clinical isolates when compared to LUT dispersion. Furthermore, the F2 formula exhibited higher anti-virulence activity by effectively inhibiting biofilm formation and suppressing α-hemolysin activity in MRSA isolates. It also demonstrated improved biosafety based on cytotoxicity assessment on human skin fibroblasts (HSF). Finally, when assessed in an in vivo skin infection mouse model, the F2 formula and commercially available fusidic acid preparation significantly reduced the microbial load of infected skin lesions compared to both the negative control and LUT dispersion-treated groups. Based on the aforementioned results, the validity of novasomes as a nano-carrier to boost in vitro and in vivo anti-MRSA activity of LUT could be affirmed.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Department of pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr 46612, South Sinai, Egypt.
| | - Walaa A Eraqi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Sally A Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Pumipuntu N, Tanee T, Thamsenanupap P, Kyes P, Karaket A, Kyes RC. Molecular Characterization of Staphylococcus aureus Complex Isolated from Free-Ranging Long-Tailed Macaques at Kosumpee Forest Park, Maha Sarakham, Thailand. Trop Med Infect Dis 2023; 8:374. [PMID: 37505670 PMCID: PMC10386386 DOI: 10.3390/tropicalmed8070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The Staphylococcus (S.) aureus complex, including methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA), and S. argenteus are bacterial pathogens that are responsible for both human and animal infection. However, insights into the molecular characteristics of MRSA, MSSA, and S. argenteus carriages in wildlife, especially in long-tailed macaques, rarely have been reported in Thailand. The objective of this study was to assess molecular characterization of MRSA, MSSA, and S. argenteus strains isolated from free-ranging long-tailed macaques (Macaca fascicularis) at Kosumpee Forest Park, Maha Sarakham, Thailand. A total of 21 secondary bacterial isolates (including 14 MRSA, 5 MSSA, and 2 S. argenteus) obtained from the buccal mucosa of 17 macaques were analysed by a Polymerase chain reaction (PCR) to identify several virulence genes, including pvl, tst, hla, hlb clfA, spa (x-region), spa (IgG biding region), and coa. The most prevalent virulence genes were clfA, coa, and the spa IgG biding region which presented in all isolates. These data indicated that MRSA, MSSA, and S. argenteus isolates from the wild macaques at Kosumpee Forest Park possess a unique molecular profile, harbouring high numbers of virulence genes. These findings suggest that wild macaques may potentially serve as carriers for distribution of virulent staphylococcal bacteria in the study area.
Collapse
Affiliation(s)
- Natapol Pumipuntu
- One Health Research Unit, Mahasarakham University, Maha Sarakham 44000, Thailand
- Veterinary Infectious Disease Research Unit, Mahasarakham University, Maha Sarakham 44000, Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Tawatchai Tanee
- One Health Research Unit, Mahasarakham University, Maha Sarakham 44000, Thailand
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Penkhae Thamsenanupap
- One Health Research Unit, Mahasarakham University, Maha Sarakham 44000, Thailand
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Pensri Kyes
- Department of Psychology, Center for Global Field Study and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Apichat Karaket
- Department of National Parks, Wildlife and Plant Conservation, Bangkok 10900, Thailand
| | - Randall C. Kyes
- Departments of Psychology, Global Health, Anthropology and Center for Global Field Study, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Ullah A, Mirani ZA, Binbin S, Wang F, Chan MWH, Aslam S, Yonghong L, Hassan N, Naveed M, Hussain S, Khatoon Z. An Elucidative Study of the Anti-biofilm Effect of Selenium Nanoparticles (SeNPs) on Selected Biofilm Producing Pathogenic Bacteria: A Disintegrating Effect of SeNPs on Bacteria. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Pajares-Chamorro N, Hammer ND, Chatzistavrou X. Materials for restoring lost Activity: Old drugs for new bugs. Adv Drug Deliv Rev 2022; 186:114302. [PMID: 35461913 DOI: 10.1016/j.addr.2022.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/01/2022]
Abstract
The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.
Collapse
|
8
|
A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Mohamed MBED, Abo El-Ela FI, Mahmoud RK, Farghali AA, Gamil S, Aziz SAAA. Cefotax-magnetic nanoparticles as an alternative approach to control Methicillin-Resistant Staphylococcus aureus (MRSA) from different sources. Sci Rep 2022; 12:624. [PMID: 35022432 PMCID: PMC8755787 DOI: 10.1038/s41598-021-04160-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the efficacy of magnetic nanocomposite of cefotax against MRSA. A total of 190 samples were collected from milk, farm personnel and different environmental components from the dairy farm under the study to isolate S. aureus. Cefotax based magnetic nanoparticles was synthetized by the adsorption method and marked using Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (XRD), then it was characterized using Scanning and Transmission Electron Microscope (SEM and TEM). The obtained results revealed that number of positive samples of S. aureus isolation were 63 (33.1%), mainly from feed manger followed by milk machine swabs (60.0 and 53.3%, respectively) at X2 = 48.83 and P < 0.001. Obtained isolates were identified biochemically and by using molecular assays (PCR), also mec A gene responsible for resistance to cefotax was detected. Testing the sensitivity of 63 isolates of S. aureus showed variable degree of resistance to different tested antibiotics and significant sensitivity to cefotax based magnetic nanoparticles at P < 0.05. It was concluded that dairy environment might act a potential source for transmission of MRSA between human and animal populations. In addition, cefotax based magnetic nanoparticles verified an extreme antimicrobial efficacy against MRSA.
Collapse
Affiliation(s)
- Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Associate professor of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rehab K Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed A Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Shymaa Gamil
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
10
|
Kong W, Tian Q, Yang Q, Liu Y, Wang G, Cao Y, Wang L, Xia S, Sun Y, Zhao C, Wang S. Sodium Selenite Enhances Antibiotics Sensitivity of Pseudomonas aeruginosa and Deceases Its Pathogenicity by Inducing Oxidative Stress and Inhibiting Quorum Sensing System. Antioxidants (Basel) 2021; 10:antiox10121873. [PMID: 34942975 PMCID: PMC8698442 DOI: 10.3390/antiox10121873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is commonly found in clinical settings and immuno-compromised patients. It is difficult to be eradicated due to its strong antibiotic resistance, and novel inactivation strategies have yet to be developed. Selenium is an essential microelement for humans and has been widely used in dietary supplement and chemoprevention therapy. In this study, the physiological and biochemical effects of sodium selenite on P. aeruginosa PAO1 were investigated. The results showed that 0~5 mM sodium selenite did not impact the growth of PAO1, but increased the lethality rate of PAO1 with antibiotics or H2O2 treatment and the antibiotics susceptibility both in planktonic and biofilm states. In addition, sodium selenite significantly reduced the expression of quorum sensing genes and inhibited various virulence factors of this bacterium, including pyocyanin production, bacterial motilities, and the type III secretion system. Further investigation found that the content of ROS in cells was significantly increased and the expression levels of most genes involved in oxidative stress were up-regulated, which indicated that sodium selenite induced oxidative stress. The RNA-seq result confirmed the phenotypes of virulence attenuation and the expression of quorum sensing and antioxidant-related genes. The assays of Chinese cabbage and Drosophila melanogaster infection models showed that the combination of sodium selenite and antibiotics significantly alleviated the infection of PAO1. In summary, the results revealed that sodium selenite induced oxidative stress and inhibited the quorum sensing system of P. aeruginosa, which in turn enhanced the antibiotic susceptibility and decreased the pathogenicity of this bacterium. These findings suggest that sodium selenite may be used as an effective strategy for adjunct treatment of the infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Qianqian Tian
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yu Liu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Gongting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yanjun Cao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Sizhe Xia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Cheng Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
11
|
Yang M, Feng Y, Yuan L, Zhao H, Gao S, Li Z. High Concentration and Frequent Application of Disinfection Increase the Detection of Methicillin-Resistant Staphylococcus aureus Infections in Psychiatric Hospitals During the COVID-19 Pandemic. Front Med (Lausanne) 2021; 8:722219. [PMID: 34778288 PMCID: PMC8578793 DOI: 10.3389/fmed.2021.722219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
The tolerance of certain multi-drug resistant bacteria to disinfectants may be promoted while the requirements of environmental disinfection have been raised in the high-risk areas of medical institutions during the COVID-19 pandemic. The current research addressed the mechanisms underlying a sharp increase in the detection of methicillin-resistant Staphylococcus aureus (MRSA) observed in a closed-management unit of elderly patients with mental disorders in 2020 as compared with the previous 4 years. We first conducted microbial detection in staff-hand and environment and a molecular epidemiology analysis, rejecting the hypothesis that the MRSA increase was due to an outbreak. Afterward, we turned to disinfectant concentration and frequency of use and analyzed the varied MRSA detection rates with different concentrations and frequencies of disinfection in 2020 and the previous 4 years. The MRSA detection rate increased with elevated concentration and frequency of disinfection, with 1,000 or 500 mg/L two times per day since January in 2020 vs. 500 mg/L 2-3 times per week in 2016-2019. When the disinfectant concentration was reduced from 1,000 to 500 mg/L, the MRSA detection decreased which indicated a modulatory role of disinfectant concentration. With a sustained frequency of disinfection in 2020, the MRSA detection rate was still higher, even after May, than that in the previous years. This suggested that the frequency of disinfection also contributed to the MRSA increase. Overall, the MRSA detection was augmented with the increase in disinfection concentration and frequency during the COVID-19 epidemic, suggesting that highly-concentrated and highly-frequent preventive long-term disinfection is not recommended without risk assessments in psychiatric hospitals.
Collapse
Affiliation(s)
- Mi Yang
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yuan
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Huachang Zhao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shan Gao
- University of Electronic Science and Technology of China, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, Kim YG, Joo HS, Kim W, Lee SH, Yoo D, Bhatia SK, Yang YH. Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA). J Microbiol Biotechnol 2021; 31:1060-1068. [PMID: 34226408 PMCID: PMC9705881 DOI: 10.4014/jmb.2104.04032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.
Collapse
Affiliation(s)
- Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 07040, Republic of Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors S.K. Bhatia Phone: +82-2-450-3936 Fax: + 82-2-3437-8360 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,
Y.-H. Yang E-mail:
| |
Collapse
|
13
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Nowak M, Barańska-Rybak W. Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds? Antibiotics (Basel) 2021; 10:antibiotics10080941. [PMID: 34438991 PMCID: PMC8389008 DOI: 10.3390/antibiotics10080941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic wounds are a growing problem for both society and patients. They generate huge costs for treatment and reduce the quality of life of patients. The greatest challenge when treating a chronic wound is prolonged infection, which is commonly caused by biofilm. Biofilm makes bacteria resistant to individuals’ immune systems and conventional treatment. As a result, new treatment options, including nanomaterials, are being tested and implemented. Nanomaterials are particles with at least one dimension between 1 and 100 nM. Lipids, liposomes, cellulose, silica and metal can be carriers of nanomaterials. This review’s aim is to describe in detail the mode of action of those molecules that have been proven to have antimicrobial effects on biofilm and therefore help to eradicate bacteria from chronic wounds. Nanoparticles seem to be a promising treatment option for infection management, which is essential for the final stage of wound healing, which is complete wound closure.
Collapse
|
15
|
Lin W, Zhang J, Xu JF, Pi J. The Advancing of Selenium Nanoparticles Against Infectious Diseases. Front Pharmacol 2021; 12:682284. [PMID: 34393776 PMCID: PMC8361478 DOI: 10.3389/fphar.2021.682284] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases, caused by the direct exposure of cellular or acellular pathogens, are found to be closely associated with multiple inflammation and immune responses, keeping one of the top threats to human health. As an indispensable trace element, Selenium (Se) plays important roles in antioxidant defence and redox state regulation along with a variety of specific metabolic pathways. In recent decades, with the development of novel nanotechnology, Selenium nanoparticles (Se NPs) emerged as a promising agent for biomedical uses due to their low toxicity, degradability and high bioavailability. Taking the advantages of the strong ability to trigger apoptosis or autophagy by regulating reactive oxygen species (ROS), Se NPs have been widely used for direct anticancer treatments and pathogen killing/clearance in host cells. With excellent stability and drug encapsulation capacity, Se NPs are now serving as a kind of powerful nano-carriers for anti-cancer, anti-inflammation and anti-infection treatments. Notably, Se NPs are also found to play critical roles in immunity regulations, such as macrophage and T effector cell activation, which thus provides new possibilities to achieve novel nano-immune synergetic strategy for anti-cancer and anti-infection therapies. In this review, we summarized the progress of preparation methods for Se NPs, followed by the advances of their biological functions and mechanisms for biomedical uses, especially in the field of anti-infection treatments. Moreover, we further provide some prospects of Se NPs in anti-infectious diseases, which would be helpful for facilitating their future research progress for anti-infection therapy.
Collapse
Affiliation(s)
- Wensen Lin
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
16
|
Truong LB, Medina-Cruz D, Mostafavi E, Rabiee N. Selenium Nanomaterials to Combat Antimicrobial Resistance. Molecules 2021; 26:3611. [PMID: 34204666 PMCID: PMC8231168 DOI: 10.3390/molecules26123611] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The rise of antimicrobial resistance to antibiotics (AMR) as a healthcare crisis has led to a tremendous social and economic impact, whose damage poses a significant threat to future generations. Current treatments either are less effective or result in further acquired resistance. At the same time, several new antimicrobial discovery approaches are expensive, slow, and relatively poorly equipped for translation into the clinical world. Therefore, the use of nanomaterials is presented as a suitable solution. In particular, this review discusses selenium nanoparticles (SeNPs) as one of the most promising therapeutic agents based in the nanoscale to treat infections effectively. This work summarizes the latest advances in the synthesis of SeNPs and their progress as antimicrobial agents using traditional and biogenic approaches. While physiochemical methods produce consistent nanostructures, along with shortened processing procedures and potential for functionalization of designs, green or biogenic synthesis represents a quick, inexpensive, efficient, and eco-friendly approach with more promise for tunability and versatility. In the end, the clinical translation of SeNPs faces various obstacles, including uncertain in vivo safety profiles and mechanisms of action and unclear regulatory frameworks. Nonetheless, the promise possessed by these metalloid nanostructures, along with other nanoparticles in treating bacterial infections and slowing down the AMR crisis, are worth exploring.
Collapse
Affiliation(s)
- Linh B. Truong
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.-C.)
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.-C.)
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran
| |
Collapse
|
17
|
Czajkowska J, Junka A, Hoppe J, Toporkiewicz M, Pawlak A, Migdał P, Oleksy-Wawrzyniak M, Fijałkowski K, Śmiglak M, Markowska-Szczupak A. The Co-Culture of Staphylococcal Biofilm and Fibroblast Cell Line: The Correlation of Biological Phenomena with Metabolic NMR 1 Footprint. Int J Mol Sci 2021; 22:ijms22115826. [PMID: 34072418 PMCID: PMC8198359 DOI: 10.3390/ijms22115826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is one of the most prevalent pathogens associated with several types of biofilm-based infections, including infections of chronic wounds. Mature staphylococcal biofilm is extremely hard to eradicate from a wound and displays a high tendency to induce recurring infections. Therefore, in the present study, we aimed to investigate in vitro the interaction between S. aureus biofilm and fibroblast cells searching for metabolites that could be considered as potential biomarkers of critical colonization and infection. Utilizing advanced microscopy and microbiological methods to examine biofilm formation and the staphylococcal infection process, we were able to distinguish 4 phases of biofilm development. The analysis of staphylococcal biofilm influence on the viability of fibroblasts allowed us to pinpoint the moment of critical colonization-12 h post contamination. Based on the obtained model we performed a metabolomics analysis by 1H NMR spectroscopy to provide new insights into the pathophysiology of infection. We identified a set of metabolites related to the switch to anaerobic metabolism that was characteristic for staphylococcal biofilm co-cultured with fibroblast cells. The data presented in this study may be thus considered a noteworthy but preliminary step in the direction of developing a new, NMR-based tool for rapid diagnosing of infection in a chronic wound.
Collapse
Affiliation(s)
- Joanna Czajkowska
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Adam Junka
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy Wrocław Medical University, 50-556 Wrocław, Poland
- Correspondence: ; Tel.: +48-889-229-341
| | - Jakub Hoppe
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Monika Toporkiewicz
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Pawlak
- Department of Nervous System Diseases, Kazimierza Bartla 5, 50-996 Wrocław, Poland;
| | - Paweł Migdał
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Monika Oleksy-Wawrzyniak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Marcin Śmiglak
- Poznan Science and Technology Park (PPNT), Rubiez 5, 61-612 Poznań, Poland; (J.H.); (M.Ś.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (M.O.-W.); (A.M.-S.)
| |
Collapse
|
18
|
Lv Q, Liang X, Nong K, Gong Z, Qin T, Qin X, Wang D, Zhu Y. Advances in Research on the Toxicological Effects of Selenium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:715-726. [PMID: 33420800 DOI: 10.1007/s00128-020-03094-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/25/2020] [Indexed: 05/28/2023]
Abstract
Selenium is a trace element necessary for the growth of organisms. Moreover, selenium supplementation can improve the immunity and fertility of the body, as well as its ability to resist oxidation, tumors, heavy metals, and pathogenic microorganisms. However, owing to the duality of selenium, excessive selenium supplementation can cause certain toxic effects on the growth and development of the body and may even result in death in severe cases. At present, increasing attention is being paid to the development and utilization of selenium as a micronutrient, but its potential toxicity tends to be neglected. This study systematically reviews recent research on the toxicological effects of selenium, aiming to provide theoretical references for selenium toxicology-related research and theoretical support for the development of selenium-containing drugs, selenium-enriched dietary supplements, and selenium-enriched foods.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, Guangxi, China
| | - Xiaomei Liang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Keyi Nong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Zifeng Gong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Ting Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Daobo Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| |
Collapse
|
19
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
20
|
Muchová J, Hearnden V, Michlovská L, Vištejnová L, Zavaďáková A, Šmerková K, Kočiová S, Adam V, Kopel P, Vojtová L. Mutual influence of selenium nanoparticles and FGF2-STAB ® on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnology 2021; 19:103. [PMID: 33849566 PMCID: PMC8045349 DOI: 10.1186/s12951-021-00849-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.
Collapse
Affiliation(s)
- Johana Muchová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK
| | - Lenka Michlovská
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Lucie Vištejnová
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Kristýna Šmerková
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Silvia Kočiová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Vojtěch Adam
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Pavel Kopel
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Lucy Vojtová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic.
| |
Collapse
|
21
|
Majeed A, Javed F, Akhtar S, Saleem U, Anwar F, Ahmad B, Nadhman A, Shahnaz G, Hussain I, Hussain SZ, Sohail MF. Green synthesized selenium doped zinc oxide nano-antibiotic: synthesis, characterization and evaluation of antimicrobial, nanotoxicity and teratogenicity potential. J Mater Chem B 2021; 8:8444-8458. [PMID: 32812631 DOI: 10.1039/d0tb01553a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile, green synthesis of selenium doped zinc oxide nano-antibiotic (Se-ZnO-NAB) using the Curcuma longa extract is reported to combat the increased emergence of methicillin-resistant Staphylococcus aureus (MRSA). The developed Se-ZnO-NAB were characterized for their physicochemical parameters and extensively evaluated for their toxicological potential in an animal model. The prepared Se-ZnO-NABs were characterized via Fourier transformed infrared spectroscopy to get functional insight into their surface chemistry, scanning electron microscopy revealing the polyhedral morphology with a size range of 36 ± 16 nm, having -28.9 ± 6.42 mV zeta potential, and inductively coupled plasma optical emission spectrometry confirming the amount of Se and Zn to be 14.43 and 71.70 mg L-1 respectively. Moreover, the antibacterial activity against MRSA showed significantly low minimum inhibitory concentration at 6.2 μg mL-1 when compared against antibiotics. Also, total protein content and reactive oxygen species production in MRSA, under the stressed environment of Se-ZnO-NAB, significantly (p < 0.05) decreased compared to the negative control. Moreover, the results of acute oral toxicity in rats showed moderate variations in blood biochemistry and histopathology of vital organs. The teratogenicity and fetal evaluations also revealed some signs of toxicity along with changes in biochemical parameters. The overall outcomes suggest that Se-ZnO-NAB can be of significant importance for combating multi-drug resistance but must be used with extreme caution, particularly in pregnancy, as moderate toxicity was observed at a toxic dose of 2000 mg kg-1.
Collapse
Affiliation(s)
- Abdul Majeed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Faryal Javed
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Sundus Akhtar
- Department of Biotechnology, Minhaj University, Lahore, Pakistan
| | - Uzma Saleem
- Department of Pharmacy, Government College University (GCU), Faisalabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Phase VI, Hayatabad, Peshawar, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan. and Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan and Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore - 54792, Pakistan.
| |
Collapse
|
22
|
Analysis of selenium nanoparticles in human plasma by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2021; 413:2247-2255. [PMID: 33580829 DOI: 10.1007/s00216-021-03196-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
Nanoparticles (NPs) are increasingly applied in research and development of new therapies. Characterization of NP systems most often include size, shape, size distribution, and charge but information on the chemical stability of NPs and investigation of the presence of dissolved species is most often missing in efficacy studies due to lack of appropriate methods. In this study, a method based on capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS) was established for analysis of selenium (Se) NPs and dissolved Se species in aqueous media. Peak area and migration time precisions (RSD) of 1.4-3.0% and 1.0-2.6%, respectively, were obtained. CE-ICP-MS analysis of a commercially available SeNP suspension (Q-SeNP) revealed large amounts of selenite corresponding to 32% of the total Se content in the suspension, indicating considerable NP degradation upon storage. The CE-ICP-MS method was modified using a coated fused silica capillary in order to analyze SeNPs in human plasma. Peak area and migration time precisions (RSD) in the range of 3.3-10.7% and 0.8-2.8%, respectively, were achieved. Degradation of polyvinyl alcohol (PVA)-coated SeNPs to selenite in human plasma was demonstrated using the modified method. The amounts of SeNP and selenite were estimated based on a correction factor for the ICP-MS signals of PVA-SeNP and dissolved Se. To the best of our knowledge, this is the first study of SeNPs by CE-ICP-MS and highlights the potential of CE-ICP-MS for quantitative characterization of the behavior of SeNPs in biological media.
Collapse
|
23
|
|
24
|
Oak U, Hasani S, Khare T. Antibiofilm activity of selenium nanorods against multidrug-resistant staphylococcus aureus. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_35_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance. Antibiotics (Basel) 2020; 9:antibiotics9120896. [PMID: 33322639 PMCID: PMC7763688 DOI: 10.3390/antibiotics9120896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.
Collapse
|
26
|
Dorazilová J, Muchová J, Šmerková K, Kočiová S, Diviš P, Kopel P, Veselý R, Pavliňáková V, Adam V, Vojtová L. Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1971. [PMID: 33027935 PMCID: PMC7601368 DOI: 10.3390/nano10101971] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water‑retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.
Collapse
Affiliation(s)
- Jana Dorazilová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Johana Muchová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Kristýna Šmerková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Silvia Kočiová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic;
| | - Pavel Kopel
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Radek Veselý
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka 6, 662 50 Brno, Czech Republic;
| | - Veronika Pavliňáková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Vojtěch Adam
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| |
Collapse
|
27
|
Rajivgandhi GN, Ramachandran G, Maruthupandy M, Manoharan N, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Li WJ. Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124830] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules 2020; 25:molecules25163601. [PMID: 32784722 PMCID: PMC7464232 DOI: 10.3390/molecules25163601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Ozone has a high wound healing capacity and antibacterial properties and can be used as a complementary treatment in infections. Methicillin-resistant S. aureus (MRSA) is the most common pathogen found in infected diabetic foot ulcers. Most of MRSA are resistant to several classes of antibiotics and, therefore, there is a need for new, effective, and well-tolerated agents. Thus, we aimed evaluate the antimicrobial and antibiofilm potentials of ozonated vegetable oils against MRSA strains isolated from diabetic foot ulcers. Six ozonated oils were produced with concentrations of ozone ranging from 0.53 to 17 mg of ozone/g of oil. The peroxide values were determined for each oil. Ozonated oils content on fatty acid was determined by gas chromatography equipped with a flame ionization detector. The antimicrobial susceptibility testing was performed by the Kirby–Bauer disk diffusion method and the effect of ozonated oils on biofilm formation ability and on established biofilms was investigated. In general, the content in identified unsaturated fatty acid in oils decreased with the increase of ozonation time and, consequently, the peroxide value increased. Most bacterial strains were inhibited by ozonated oil at a concentration of 4.24 mg/g. Ozonated oils had moderate to high ability to remove adhered cells and showed a high capacity to eradicate 24 h old biofilms. Our results show promising use of ozonated oils on the treatment of infections, in particular those caused by multidrug-resistant MRSA strains.
Collapse
|
29
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
30
|
Ponnuvel S, Sankar S, Ponnuraj K. Analyzing the adhesion mechanism of FnBPA, a surface adhesin from Staphylococcus aureus on its interaction with nanoparticle. Microb Pathog 2020; 146:104239. [PMID: 32376360 DOI: 10.1016/j.micpath.2020.104239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus expresses many Microbial Surface Recognizing Adhesive Matrix Molecules (MSCRAMM's) to recognize host extracellular matrix (ECM) molecules to initiate colonization. The MSCRAMM, fibronectin binding protein A (FnBPA), is an important adhesin for S. aureus infection. FnBPA also binds with fibrinogen (Fg) by using a unique ligand binding mechanism called dock, lock and latch. Nanoparticles, especially nanosilver particles have been widely used in a variety of biomedical applications which includes disease diagnosis and treatment, drug delivery and implanted medical device coating. In a biological system, when protein molecules encounter nanoparticle, they can be absorbed onto its surface which results in the formation of protein corona. In the present study, we have analysed the fibrinogen binding ability of rFnBPA(189-512) in the presence of silver nanoparticles by employing techniques like gel shift assay, Western blot, size exclusion chromatography, enzyme-linked immunosorbent assay, bio-layer interferometry and circular dichroism spectroscopy. The results indicate that rFnBPA(189-512) is unable to bind to Fg in the presence of a nanoparticle. This could be due to the inaccessibility of the Fg binding site and conformational change in rFnBPA(189-512). With nanoparticles, rFnBPA(189-512) undergoes significant structural changes as the β-sheet content has drastically reduced to 10% from the initial 60% at higher concentration of the nanoparticle. Pathogenic bacteria interact with its surrounding environment through their surface molecules which includes MSCRAMMs. Therefore MSCRAMMs play an important role when bacteria encounter nanoparticles. The results of the present study suggest that the orientation of the protein during the absorption on the surface of a nanoparticle as well as the concentration of the nanoparticle, will dictate the function of the absorbed protein and in this case the Fg binding property of rFnBPA(189-512).
Collapse
Affiliation(s)
- Shobana Ponnuvel
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Sreejanani Sankar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
31
|
Leite TOC, Novais JS, de Carvalho BLC, Ferreira VF, Miceli LA, Fraga L, Abrahim-Vieira B, Rodrigues CR, Sá Figueiredo AM, Castro HC, Cunha AC. Synthesis, In Vitro and In Silico Studies of Indolequinone Derivatives against Clinically Relevant Bacterial Pathogens. Curr Top Med Chem 2020; 20:192-208. [DOI: 10.2174/1568026620666191223110518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Background:
According to the World Health Organization, antimicrobial resistance is one of
the most important public health threats of the 21st century. Therefore, there is an urgent need for the
development of antimicrobial agents with new mechanism of action, especially those capable of evading
known resistance mechanisms.
Objective:
We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series
of 1H-indole-4,7-dione derivatives.
Methods:
The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)-
mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached
to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular
docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds
was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C
– APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis.
Results:
Several indolequinone compounds showed effective antimicrobial profile against Grampositive
(MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials
current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an
important effect against different biofilm stages formed by a serious hospital life-threatening resistant
strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis
based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico
studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives,
reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising
indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological
activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole-
4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating
bacterial infections.
Conclusion:
The highly substituted indolequinones were obtained in moderate to good yields. The
pharmacological study indicated that these compounds should be exploited in the search for a leading
substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.
Collapse
Affiliation(s)
- Talita Odriane Custodio Leite
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos- Graduacao em Quimica, 24020-141, Niteroi, Rio de Janeiro, Brazil
| | - Juliana Silva Novais
- Universidade Federal Fluminense, Programas de Pos-Graduacao em Patologia (HUAP) e em Ciencias e Biotecnologia (PPBI), 24020-150, Niteroi, Rio de Janeiro, Brazil
| | - Beatriz Lima Cosenza de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Departamento de Quimica Organica, 21941-909, Rio de Janeiro, Brazil
| | - Vitor Francisco Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, 24241-000, Departamento de Tecnologia Farmaceutica, Niteroi, Rio de Janeiro, Brazil
| | - Leonardo Alves Miceli
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Professor Paulo de Goes, Programa de Pos-Graduacao em Ciencias Farmaceuticas e Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Letícia Fraga
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Bárbara Abrahim-Vieira
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Carlos Rangel Rodrigues
- Universidade Federal do Rio de Janeiro, Programa de Pos-Graduacao em Ciências Farmaceuticas da Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Laboratorio de Modelagem Molecular e QSAR (MODMOLQSAR), Faculdade de Farmacia, 21941-902, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Universidade Federal Fluminense, Programas de Pos-Graduacao em Patologia (HUAP) e em Ciencias e Biotecnologia (PPBI), 24020-150, Niteroi, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, Programa de Pos- Graduacao em Quimica, 24020-141, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
33
|
Antiviral, Antimicrobial and Antibiofilm Activity of Selenoesters and Selenoanhydrides. Molecules 2019; 24:molecules24234264. [PMID: 31771095 PMCID: PMC6930503 DOI: 10.3390/molecules24234264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/24/2023] Open
Abstract
Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.
Collapse
|
34
|
Efimochkina NR, Stetsenko VV, Sheveleva SA. Peculiarities of Biofilms Formation by Campylobacter Bacteria in Mixed Populations with Other Microbial Contaminants of Food Products. Bull Exp Biol Med 2019; 168:62-65. [PMID: 31748868 DOI: 10.1007/s10517-019-04647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 10/25/2022]
Abstract
Peculiarities of biofilms formation by Campylobacter bacteria in mixed populations with other microbial contaminants was studied by real-time impedance spectroscopy on an automated xCelligence real time cell analyzer (RTCA). This method is based on measuring the medium resistance in special plates (E-plates) with interdigitated microelectrodes. Coculturing of campylobacter with coliform bacteria is accompanied by film formation; the intensity of this process varies depending on the type of the test cultures and the nature of their interaction in mixed populations. Film formation by C. jejuni during co-culturing with enterobacteria is maximum during the first hours and depends on the presence of stress factors in the environment. The biomatrix film was synthesized by 3 times more intensively in the presence of oxygen than in microaerobic conditions, and also by 1.7-4.3 times more active in the mixed culture with Enterobacter cloacae, E. coli, and K. pneumoniae. During co-culturing of campylobacter with salmonella, no enhanced film formation by the tested strains was observed. Unlike members of the genus Enterobacter intensively producing exopolysaccharides, pathogenic member of Enterobacteriaceae, salmonella, demonstrated weak capacity to form film matrix. The study of film formation by Campylobacter allows more accurate assessment of the effectiveness of sanitary bactericidal treatment of food industry facilities, predict the appearance of biofilms and the intensity of their formation depending son the nature of the antimicrobial effect and the used means.
Collapse
Affiliation(s)
- N R Efimochkina
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.
| | - V V Stetsenko
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - S A Sheveleva
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| |
Collapse
|
35
|
Fang JY, Lin YK, Wang PW, Alalaiwe A, Yang YC, Yang SC. The Droplet-Size Effect Of Squalene@cetylpyridinium Chloride Nanoemulsions On Antimicrobial Potency Against Planktonic And Biofilm MRSA. Int J Nanomedicine 2019; 14:8133-8147. [PMID: 31632023 PMCID: PMC6790405 DOI: 10.2147/ijn.s221663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Background It is important to explore the interaction between antibacterial nanoparticles and microbes for understanding bactericidal activity and developing novel applications. It is possible that the nanoparticulate size can govern the antibacterial potency. Purpose The purpose of this study was to evaluate the antimicrobial and antibiofilm properties of cetylpyridinium chloride (CPC)–decorated nanoemulsions against methicillin-resistant Staphylococcus aureus (MRSA). Methods The droplet size could be adjusted by varying the percentage of squalene, the main ingredient of the oily core. Results We fabricated cationic nanoemulsions of three different sizes, 55, 165, and 245 nm. The nanoemulsions showed greater storage stability than the self-assembled CPC micelles. The tested nanoemulsions exhibited more antimicrobial activity against Gram-positive bacteria than Gram-negative bacteria and fungi. The killing of MRSA was mainly induced by direct cell-membrane damage. This rupture led to the leakage of cytoplasmic DNA and proteins. The nanoemulsions might also degrade the DNA helix and disturb protein synthesis. The proteomic analysis indicated the significant downregulation of DNA-directed RNA polymerase (RNAP) subunits β and β’. The antibacterial effect of nanoemulsions increased with decreasing droplet size in the biofilm MRSA but not planktonic MRSA. The small-sized nanoemulsions had potent antibiofilm activity that showed a colony-forming unit (CFU) reduction of 10-fold compared with the control. The loss of total DNA concentration also negatively correlated with the nanoemulsion size. Conclusion The present report established a foundation for the development of squalene@CPC nanosystems against drug-resistant S. aureus.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Yin-Ku Lin
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yu-Ching Yang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| |
Collapse
|
36
|
Amoako DG, Somboro AM, Abia ALK, Allam M, Ismail A, Bester LA, Essack SY. Genome Mining and Comparative Pathogenomic Analysis of An Endemic Methicillin-Resistant Staphylococcus Aureus (MRSA) Clone, ST612-CC8-t1257-SCCmec_IVd(2B), Isolated in South Africa. Pathogens 2019; 8:E166. [PMID: 31569754 PMCID: PMC6963616 DOI: 10.3390/pathogens8040166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
This study undertook genome mining and comparative genomics to gain genetic insights into the dominance of the methicillin-resistant Staphylococcus aureus (MRSA) endemic clone ST612-CC8-t1257-SCCmec_IVd(2B), obtained from the poultry food chain in South Africa. Functional annotation of the genome revealed a vast array of similar central metabolic, cellular and biochemical networks within the endemic clone crucial for its survival in the microbial community. In-silico analysis of the clone revealed the possession of uniform defense systems, restriction-modification system (type I and IV), accessory gene regulator (type I), arginine catabolic mobile element (type II), and type 1 clustered, regularly interspaced, short palindromic repeat (CRISPR)Cas array (N = 7 ± 1), which offer protection against exogenous attacks. The estimated pathogenic potential predicted a higher probability (average Pscore ≈ 0.927) of the clone being pathogenic to its host. The clone carried a battery of putative virulence determinants whose expression are critical for establishing infection. However, there was a slight difference in their possession of adherence factors (biofilm operon system) and toxins (hemolysins and enterotoxins). Further analysis revealed a conserved environmental tolerance and persistence mechanisms related to stress (oxidative and osmotic), heat shock, sporulation, bacteriocins, and detoxification, which enable it to withstand lethal threats and contribute to its success in diverse ecological niches. Phylogenomic analysis with close sister lineages revealed that the clone was closely related to the MRSA isolate SHV713 from Australia. The results of this bioinformatic analysis provide valuable insights into the biology of this endemic clone.
Collapse
Affiliation(s)
- Daniel Gyamfi Amoako
- Infection Genomics and Applied Bioinformatics Division, Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa.
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal; Durban 4000, South Africa.
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
37
|
Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger Z, Vaculovicova M, Moulick A, Adam V. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307:166-185. [DOI: 10.1016/j.jconrel.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
38
|
Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules 2019; 24:molecules24081487. [PMID: 31014009 PMCID: PMC6514980 DOI: 10.3390/molecules24081487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022] Open
Abstract
Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogens.
Collapse
|
39
|
Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE) in the food production chain and biofilm formation on abiotic surfaces. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Igrejas G, Correia S, Silva V, Hébraud M, Caniça M, Torres C, Gomes C, Nogueira F, Poeta P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front Microbiol 2018; 9:2964. [PMID: 30581421 PMCID: PMC6292916 DOI: 10.3389/fmicb.2018.02964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant nosocomial pathogens worldwide with infections leading to high rates of morbidity and mortality, a significant burden to human and veterinary clinical practices. The ability of S. aureus colonies to form biofilms on biotic and abiotic surfaces contributes further to its high antimicrobial resistance (AMR) rates and persistence in both host and non-host environments, adding a major ecological dimension to the problem. While there is a lot of information on MRSA prevalence in humans, data about MRSA in animal populations is scarce, incomplete and dispersed. This project is an attempt to evaluate the current epidemiological status of MRSA in Portugal by making a single case study from a One Health perspective. We aim to determine the prevalence of MRSA in anthropogenic sources liable to contaminate different animal habitats. The results obtained will be compiled with existing data on antibiotic resistant staphylococci from Portugal in a user-friendly database, to generate a geographically detailed epidemiological output for surveillance of AMR in MRSA. To achieve this, we will first characterize AMR and genetic lineages of MRSA circulating in northern Portugal in hospital wastewaters, farms near hospitals, farm animals that contact with humans, and wild animals. This will indicate the extent of the AMR problem in the context of local and regional human-animal-environment interactions. MRSA strains will then be tested for their ability to form biofilms. The proteomes of the strains will be compared to better elucidate their AMR mechanisms. Proteomics data will be integrated with the genomic and transcriptomic data obtained. The vast amount of information expected from this omics approach will improve our understanding of AMR in MRSA biofilms, and help us identify new vaccine candidates and biomarkers for early diagnosis and innovative therapeutic strategies to tackle MRSA biofilm-associated infections and potentially other AMR superbugs.
Collapse
Affiliation(s)
- Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Susana Correia
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Vanessa Silva
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Michel Hébraud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR0454 MEDiS, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France.,Institut National de la Recherche Agronomique, Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR0370 QuaPA, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Catarina Gomes
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Nogueira
- Centro de Administração e Políticas Públicas, Instituto Superior de Ciências Sociais e Políticas, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
41
|
Nanostructured biomedical selenium at the biological interface (Review). Biointerphases 2018; 13:06D301. [DOI: 10.1116/1.5042693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Cremonini E, Boaretti M, Vandecandelaere I, Zonaro E, Coenye T, Lleo MM, Lampis S, Vallini G. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol 2018; 11:1037-1047. [PMID: 29635772 PMCID: PMC6196382 DOI: 10.1111/1751-7915.13260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/25/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing emergence of drug-resistant microorganisms poses a great concern to clinicians; thus, new active products are urgently required to treat a number of infectious disease cases. Different metallic and metalloid nanoparticles have so far been reported as possessing antimicrobial properties and proposed as a possible alternative therapy against resistant pathogenic microorganisms. In this study, selenium nanoparticles (SeNPs) synthesized by the environmental bacterial isolate Stenotrophomonas maltophilia SeITE02 were shown to exert a clear antimicrobial and antibiofilm activity against different pathogenic bacteria, either reference strains or clinical isolates. Antimicrobial and antibiofilm capacity seems to be strictly linked to the organic cap surrounding biogenic nanoparticles, although the actual role played by this coating layer in the biocidal action remains still undefined. Nevertheless, evidence has been gained that the progressive loss in protein and carbohydrate content of the organic cap determines a decrease in nanoparticle stability. This leads to an alteration of size and electrical properties of SeNPs along with a gradual attenuation of their antibacterial efficacy. Denaturation of the coating layer was proved even to have a negative effect on the antibiofilm activity of these nanoparticles. The pronounced antimicrobial efficacy of biogenic SeNPs compared to the denatured ones can - in first instance - be associated with their smaller dimensions. This study showed that the native organic coating layer of biogenic SeNPs functions in avoiding aggregation and maintaining electrostatic stability of the nanoparticles, thus allowing them to maintain efficient antimicrobial and antibiofilm capabilities.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Diagnostic and Public HealthUniversity of VeronaStrada Le Grazie 837134VeronaItaly
| | - Marzia Boaretti
- Department of Diagnostic and Public HealthUniversity of VeronaStrada Le Grazie 837134VeronaItaly
| | - Ilse Vandecandelaere
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityOttergemsesteenweg 4609000GentBelgium
| | - Emanuele Zonaro
- Department of BiotechnologyUniversity of VeronaStrada Le Grazie 1537134VeronaItaly
| | - Tom Coenye
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityOttergemsesteenweg 4609000GentBelgium
| | - Maria M. Lleo
- Department of Diagnostic and Public HealthUniversity of VeronaStrada Le Grazie 837134VeronaItaly
| | - Silvia Lampis
- Department of BiotechnologyUniversity of VeronaStrada Le Grazie 1537134VeronaItaly
| | - Giovanni Vallini
- Department of BiotechnologyUniversity of VeronaStrada Le Grazie 1537134VeronaItaly
| |
Collapse
|
43
|
Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljević V, Kucharek M, Makarewicz M, Adam V. Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Alalaiwe A, Wang PW, Lu PL, Chen YP, Fang JY, Yang SC. Synergistic Anti-MRSA Activity of Cationic Nanostructured Lipid Carriers in Combination With Oxacillin for Cutaneous Application. Front Microbiol 2018; 9:1493. [PMID: 30034381 PMCID: PMC6043785 DOI: 10.3389/fmicb.2018.01493] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles have become a focus of interest due to their ability as antibacterial agents. The aim of this study was to evaluate the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of cationic nanostructured lipid carriers (NLC) combined with oxacillin against ATCC 33591 and clinical isolate. The cationic resource on the NLC surface was soyaethyl morpholinium ethosulfate (SME). NLC loaded with oxacillin was produced to assess the antibacterial activity and the effectiveness of topical application for treating cutaneous infection. The hydrodynamic diameter and zeta potential of oxacillin-loaded NLC were 177 nm and 19 mV, respectively. When combined with NLC, oxacillin exhibited synergistic MRSA eradication. After NLC encapsulation, the minimum bactericidal concentration (MBC) of oxacillin decreased from 250 to 62.5 μg/ml. The combined NLC and oxacillin reduced the MRSA biofilm thickness from 31.2 to 13.0 μm, which was lower than the effect of NLC (18.2 μm) and antibiotic (25.2 μm) alone. The oxacillin-loaded NLC showed significant reduction in the burden of intracellular MRSA in differentiated THP-1 cells. This reduction was greater than that achieved with individual treatment. The mechanistic study demonstrated the ability of cationic NLC to disrupt the bacterial membrane, leading to protein leakage. The cell surface disintegration also increased oxacillin delivery into the cytoplasm, activating the bactericidal process. Topical NLC treatment of MRSA abscess in the skin decreased the bacterial load by log 4 and improved the skin’s architecture and barrier function. Our results demonstrated that a combination of nanocarriers and an antibiotic could synergistically inhibit MRSA growth.
Collapse
Affiliation(s)
- Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ping Chen
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| |
Collapse
|
45
|
Raic A, Riedel S, Kemmling E, Bieback K, Overhage J, Lee-Thedieck C. Biomimetic 3D in vitro model of biofilm triggered osteomyelitis for investigating hematopoiesis during bone marrow infections. Acta Biomater 2018; 73:250-262. [PMID: 29679779 DOI: 10.1016/j.actbio.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
In this work, we define the requirements for a human cell-based osteomyelitis model which overcomes the limitations of state of the art animal models. Osteomyelitis is a severe and difficult to treat infection of the bone that develops rapidly, making it difficult to study in humans. We have developed a 3D in vitro model of the bone marrow, comprising a macroporous material, human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). Inclusion of biofilms grown on an implant into the model system allowed us to study the effects of postoperative osteomyelitis-inducing bacteria on the bone marrow. The bacteria influenced the myeloid differentiation of HSPCs as well as MSC cytokine expression and the MSC ability to support HSPC maintenance. In conclusion, we provide a new 3D in vitro model which meets all the requirements for investigating the impact of osteomyelitis. STATEMENT OF SIGNIFICANCE Implant-associated osteomyelitis is a persistent bacterial infection of the bone which occurs in many implant patients and can result in functional impairments or even entire loss of the extremity. Nevertheless, surprisingly little is known on the triangle interaction between implant material, bacterial biofilm and affected bone tissue. Closing this gap of knowledge would be crucial for the fundamental understanding of the disease and the development of novel treatment strategies. For this purpose, we developed the first biomaterial-based system that is able to mimic implant-associated osteomyelitis outside of the body, thus, opening the avenue to study this fatal disease in the laboratory.
Collapse
Affiliation(s)
- Annamarija Raic
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sophie Riedel
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Elena Kemmling
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167 Mannheim, Germany
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel by Drive, Ottawa ON, K1S 5B6, Canada
| | - Cornelia Lee-Thedieck
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
46
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018; 13:2107-2128. [PMID: 29692609 PMCID: PMC5901133 DOI: 10.2147/ijn.s157541] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, People's Republic of China
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Radka Opatrilova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Rana, Norway
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.,Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
47
|
Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol 2018; 10:1429788. [PMID: 29410771 PMCID: PMC5795696 DOI: 10.1080/20002297.2018.1429788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans ATCC25175 biofilm formation was monitored using impedance real-time measurements with the xCELLigence system®, confocal laser microscopy, and the crystal violet quantification method. Results: The addition of the cell extract from Tenacibaculum sp. 20J reduced biofilm formation in S. mutans ATCC25175 by 40–50% compared to the control without significantly affecting growth. A decrease of almost 40% was also observed in S. oralis DSM20627 and S. dentisani 7747 biofilms. Conclusions: The ability of Tenacibaculum sp. 20J to interfere with AI-2 and inhibit biofilm formation in S. mutans was demonstrated. The results indicate that the inhibition of quorum sensing processes may constitute a suitable strategy for inhibiting dental plaque formation, although additional experiments using mixed biofilm models would be required.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara Camino
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria D Ferrer
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Alex Mira
- Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
48
|
|
49
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
50
|
Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One 2017. [PMID: 27695058 DOI: 10.1371/journalpone0163966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|