1
|
Chen N, Wu Y, Wei H, Zhi S, Liu L. The advancement of structure, bioactivity, mechanism, and synthesis of bufotalin. Steroids 2025; 214:109555. [PMID: 39709107 DOI: 10.1016/j.steroids.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Toad venom, a family of toxic yet pharmacologically valuable biotoxins, has long been utilized in traditional medicine and holds significant promise in modern drug development. Bufotalin, a prominent bufotoxin, has demonstrated potent cytotoxic properties through mechanisms such as apoptosis induction, cell cycle arrest, endoplasmic reticulum stress activation, and inhibition of metastasis by modulating key pathways including Akt, p53, and STAT3/EMT signaling-these multi-target mechanisms position bufotalin as a promising agent to combat multidrug resistance in cancer therapy. Additionally, advances in bufotalin synthesis, including chemical and biocatalytic methods, have streamlined production, with strategies such as C14α-hydroxylation and novel coupling techniques enhancing yield and reducing environmental impact. This review consolidates recent progress on bufotalin's structure, activity, cytotoxic mechanisms, and synthetic methodologies, offering a foundation for further development as an innovative chemotherapy agent.
Collapse
Affiliation(s)
- Nuo Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yunqiang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huamao Wei
- Department of Marine Pharmacy, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Liwei Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Jamialahmadi K, Noruzi S. Matrix metalloproteinases, chemoresistance and cancer. PATHOPHYSIOLOGICAL ASPECTS OF PROTEASES IN CANCER 2025:385-409. [DOI: 10.1016/b978-0-443-30098-1.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
5
|
Hu A, Li K. Erianin Impedes the Proliferation and Metastatic Migration Through Suppression of STAT-3 Phosphorylation in Human Esophageal Cancer Cells. Appl Biochem Biotechnol 2024; 196:5859-5874. [PMID: 38165593 DOI: 10.1007/s12010-023-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
In this study, we have investigated erianin, a natural phenolic drug that impedes proliferation and metastatic migration through suppression of STAT-3 phosphorylation in human esophageal cancer cells. Eca-109 cells were treated with different concentrations of erianin (4, 8, 12 µM) for 24 h, and then cell proliferation, apoptosis, and metastatic markers were evaluated. Erianin-induced cytotoxicity and cell proliferation were examined using MTT and crystal violet staining techniques. The measurement of reactive oxygen species (ROS) and the study of apoptotic changes were conducted through flow cytometry. Furthermore, protein expression analyses via western blotting included an evaluation of JAK-STAT3, cell survival, cell cycle, proliferation, and apoptosis-related proteins. Moreover, erianin treatment-associated MMP expressions were studied by RT-PCR. In this study, erianin treatment induces substantial cytotoxicity and ROS production based on the concentrations in Eca-109 cells. Moreover, erianin inhibits the MAPK phosphorylation, proliferation, and metastatic protein in Eca-109 cells. STAT-3 is a crucial transcriptional factor that regulates numerous downstream proteins, such as proliferation, anti-apoptosis, and metastatic proteins. In this study, erianin treatment inhibited the protein expression of IL-6, IL-10, JAK-1, and p-STAT-3 expressions leading to induce apoptosis in Eca-109 cells. Moreover, erianin inhibited the expression of proliferation, metastatic, and anti-apoptotic markers in Eca-109 cells. Hence, erianin suppressed the JAK/STAT-3 signaling pathway and demonstrates potential as a chemotherapeutic agent for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Anxi Hu
- Department of Thoracic Surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
| |
Collapse
|
6
|
Kamiya T, Mizuno N, Hayashi K, Otsuka T, Haba M, Abe N, Oyama M, Hara H. Methoxylated Flavones from Casimiroa edulis La Llave Suppress MMP9 Expression via Inhibition of the JAK/STAT3 Pathway and TNFα-Dependent Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14678-14683. [PMID: 38910321 DOI: 10.1021/acs.jafc.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.
Collapse
|
7
|
Park SJ, Jung HJ. Bufotalin Suppresses Proliferation and Metastasis of Triple-Negative Breast Cancer Cells by Promoting Apoptosis and Inhibiting the STAT3/EMT Axis. Molecules 2023; 28:6783. [PMID: 37836626 PMCID: PMC10574664 DOI: 10.3390/molecules28196783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer and has a poor prognosis. As standardized TNBC treatment regimens cause drug resistance and tumor recurrence, the development of new TNBC treatment strategies is urgently required. Bufotalin is a bufadienolide isolated from the skin and parotid venom glands of the toad Bufo gargarizan, and has several pharmacological properties, including antiviral, anti-inflammatory, and anticancer activities. However, the anticancer effect and underlying molecular mechanisms of action of bufotalin in TNBC have not been fully studied. In the current study, we investigated the effects of bufotalin on the growth and metastasis of MDA-MB-231 and HCC1937 TNBC cells. Bufotalin potently inhibited the proliferation of both TNBC cell lines by promoting cell cycle arrest and caspase-mediated apoptosis. Furthermore, bufotalin effectively suppressed the migration and invasion of both TNBC cell lines by regulating the expression of key epithelial-mesenchymal transition (EMT) biomarkers, matrix metalloproteinases (MMPs), and integrin α6. Notably, the anticancer effect of bufotalin in TNBC cells was associated with the downregulation of the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. Collectively, our results suggest that the natural compound bufotalin may exert antiproliferative and antimetastatic activities in TNBC cells by modulating the apoptotic pathway and the STAT3/EMT axis.
Collapse
Affiliation(s)
- So Jin Park
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea;
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
8
|
Suresh D, Srinivas AN, Prashant A, Satish S, Vishwanath P, Nataraj SM, Koduru SV, Santhekadur PK, Kumar DP. AATF inhibition exerts antiangiogenic effects against human hepatocellular carcinoma. Front Oncol 2023; 13:1130380. [PMID: 37361585 PMCID: PMC10288852 DOI: 10.3389/fonc.2023.1130380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background and aims Angiogenesis is a key factor in the growth and metastasis of hepatic tumors and thus a potential therapeutic target in hepatocellular carcinoma (HCC). In this study, we aim to identify the key role of apoptosis antagonizing transcription factor (AATF) in tumor angiogenesis and its underlying mechanisms in HCC. Methods HCC tissues were analyzed for AATF expression by qRT-PCR and immunohistochemistry. Stable clones of control and AATF knockdown (KD) were established in human HCC cells. The effect of AATF inhibition on the angiogenic processes was determined by proliferation, invasion, migration, chick chorioallantoic membrane (CAM) assay, zymography, and immunoblotting techniques. Results We identified high levels of AATF in human HCC tissues compared to adjacent normal liver tissues, and the expression was found to be correlated with the stages and tumor grades of HCC. Inhibiting AATF in QGY-7703 cells resulted in higher levels of pigment epithelium-derived factor (PEDF) than controls due to decreased matric metalloproteinase activity. Conditioned media from AATF KD cells inhibited the proliferation, migration, and invasion of human umbilical vein endothelial cells as well as the vascularization of the chick chorioallantoic membrane. Furthermore, the VEGF-mediated downstream signaling pathway responsible for endothelial cell survival and vascular permeability, cell proliferation, and migration favoring angiogenesis was suppressed by AATF inhibition. Notably, PEDF inhibition effectively reversed the anti-angiogenic effect of AATF KD. Conclusion Our study reports the first evidence that the therapeutic strategy based on the inhibition of AATF to disrupt tumor angiogenesis may serve as a promising approach for HCC treatment.
Collapse
Affiliation(s)
- Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Akshatha N. Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Akila Prashant
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Suchitha Satish
- Department of Pathology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, India
| | - Prashant Vishwanath
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Suma M. Nataraj
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Prasanna K. Santhekadur
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Divya P. Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
9
|
Somasundaram DB, Aravindan S, Major R, Natarajan M, Aravindan N. MMP-9 reinforces radiation-induced delayed invasion and metastasis of neuroblastoma cells through second-signaling positive feedback with NFκB via both ERK and IKK activation. Cell Biol Toxicol 2023; 39:1053-1076. [PMID: 34626302 DOI: 10.1007/s10565-021-09663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Neuroblastoma (NB) progression is branded with hematogenous metastasis and frequent relapses. Despite intensive multimodal clinical therapy, outcomes for patients with progressive disease remain poor, with negligible long-term survival. Therefore, understanding the acquired molecular rearrangements in NB cells with therapy pressure and developing improved therapeutic strategies is a critical need to improve the outcomes for high-risk NB patients. We investigated the rearrangement of MMP9 in NB with therapy pressure, and unveiled the signaling that facilitates NB evolution. Radiation-treatment (RT) significantly increased MMP9 expression/activity, and the induced enzyme activity was persistently maintained across NB cell lines. Furthermore, RT-triggered NFκB transcriptional activity and this RT-induced NFκB were required/adequate for MMP9 maintenance. RT-triggered NFκB-dependent MMP9 actuated a second-signaling feedback to NFκB, facilitating a NFκB-MMP9-NFκB positive feedback cycle (PFC). Critically, MMP9-NFκB feedback is mediated by MMP9-dependent activation of IKKβ and ERK phosphotransferase activity. Beyond its tumor invasion/metastasis function, PFC-dependent MMP9 lessens RT-induced apoptosis and favors survival pathway through the activation of NFκB signaling. In addition, PFC-dependent MMP9 regulates 19 critical molecular determinants that play a pivotal role in tumor evolution. Interestingly, seven of 19 genes possess NFκB-binding sites, demonstrating that MMP9 regulates these molecules by activating NFκB. Collectively, these data suggest that RT-triggered NFκB-dependent MMP9 actuates feedback to NFκB though IKKβ- and ERK1/2-dependent IκBα phosphorylation. This RT-triggered PFC prompts MMP9-dependent survival advantage, tumor growth, and dissemination. Targeting therapy-pressure-driven PFC and/or selective inhibition of MMP9 maintenance could serve as promising therapeutic strategies for treatment of progressive NB.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | | | - Ryan Major
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Mohan Natarajan
- Department of Pathology & Laboratory Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 311, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France,*Correspondence: Patrick Legembre,
| |
Collapse
|
11
|
Zuo X, Ren S, Zhang H, Tian J, Tian R, Han B, Liu H, Dong Q, Wang Z, Cui Y, Niu R, Zhang F. Chemotherapy induces ACE2 expression in breast cancer via the ROS-AKT-HIF-1α signaling pathway: a potential prognostic marker for breast cancer patients receiving chemotherapy. J Transl Med 2022; 20:509. [PMID: 36335375 PMCID: PMC9636712 DOI: 10.1186/s12967-022-03716-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin-angiotensin system and a well-known functional receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells. The COVID-19 pandemic has brought ACE2 into the spotlight, and ACE2 expression in tumors and its relationship with SARS-COV-2 infection and prognosis of cancer patients have received extensive attention. However, the association between ACE2 expression and tumor therapy and prognosis, especially in breast cancer, remains ambiguous and requires further investigation. We have previously reported that ACE2 is elevated in drug-resistant breast cancer cells, but the exact function of ACE2 in drug resistance and progression of this malignant disease has not been explored. Methods The expression of ACE2 and HIF-1α in parental and drug-resistant breast cancer cells under normoxic and hypoxic conditions was analyzed by Western blot and qRT-PCR methods. The protein levels of ACE2 in plasma samples from breast cancer patients were examined by ELISA. The relationship between ACE2 expression and breast cancer treatment and prognosis was analyzed using clinical specimens and public databases. The reactive oxygen species (ROS) levels in breast cancer cells were measured by using a fluorescent probe. Small interfering RNAs (siRNAs) or lentivirus-mediated shRNA was used to silence ACE2 and HIF-1α expression in cellular models. The effect of ACE2 knockdown on drug resistance in breast cancer was determined by Cell Counting Kit 8 (CCK-8)-based assay, colony formation assay, apoptosis and EdU assay. Results ACE2 expression is relatively low in breast cancer cells, but increases rapidly and specifically after exposure to anticancer drugs, and remains high after resistance is acquired. Mechanistically, chemotherapeutic agents increase ACE2 expression in breast cancer cells by inducing intracellular ROS production, and increased ROS levels enhance AKT phosphorylation and subsequently increase HIF-1α expression, which in turn upregulates ACE2 expression. Although ACE2 levels in plasma and cancer tissues are lower in breast cancer patients compared with healthy controls, elevated ACE2 in patients after chemotherapy is a predictor of poor treatment response and an unfavorable prognostic factor for survival in breast cancer patients. Conclusion ACE2 is a gene in breast cancer cells that responds rapidly to chemotherapeutic agents through the ROS-AKT-HIF-1α axis. Elevated ACE2 modulates the sensitivity of breast cancer cells to anticancer drugs by optimizing the balance of intracellular ROS. Moreover, increased ACE2 is not only a predictor of poor response to chemotherapy, but is also associated with a worse prognosis in breast cancer patients. Thus, our findings provide novel insights into the spatiotemporal differences in the function of ACE2 in the initiation and progression of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03716-w.
Collapse
|
12
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
13
|
Di Sotto A, Gullì M, Minacori M, Mancinelli R, Garzoli S, Percaccio E, Incocciati A, Romaniello D, Mazzanti G, Eufemi M, Di Giacomo S. β-Caryophyllene Counteracts Chemoresistance Induced by Cigarette Smoke in Triple-Negative Breast Cancer MDA-MB-468 Cells. Biomedicines 2022; 10:2257. [PMID: 36140359 PMCID: PMC9496176 DOI: 10.3390/biomedicines10092257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or repair CS damage. In the present study, we evaluated the chemopreventive properties of the natural sesquiterpene β-caryophyllene towards the damage induced by cigarette smoke condensate (CSC) in triple negative breast cancer MDA-MB-468 cells. Particularly, we assessed the ability of the sesquiterpene to interfere with the mechanisms exploited by CSC to promote cell survival and chemoresistance, including genomic instability, cell cycle progress, autophagy/apoptosis, cell migration and related pathways. β-Caryophyllene was found to be able to increase the CSC-induced death of MDA-MB-468 cells, likely triggering oxidative stress, cell cycle arrest and apoptosis; moreover, it hindered cell recovery, autophagy activation and cell migration; at last, a marked inhibition of the signal transducer and activator of transcription 3 (STAT3) activation was highlighted: this could represent a key mechanism of the chemoprevention by β-caryophyllene. Although further studies are required to confirm the in vivo efficacy of β-caryophyllene, the present results suggest a novel strategy to reduce the harmful effect of smoke in cancer patients and to improve the survival expectations in breast cancer women.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Incocciati
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Romaniello
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
14
|
Manore SG, Doheny DL, Wong GL, Lo HW. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment. Front Oncol 2022; 12:866014. [PMID: 35371975 PMCID: PMC8964978 DOI: 10.3389/fonc.2022.866014] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. Metastasis is the primary cause of mortality for breast cancer patients. Multiple mechanisms underlie breast cancer metastatic dissemination, including the interleukin-6 (IL-6)-mediated signaling pathway. IL-6 is a pleiotropic cytokine that plays an important role in multiple physiological processes including cell proliferation, immune surveillance, acute inflammation, metabolism, and bone remodeling. IL-6 binds to the IL-6 receptor (IL-6Rα) which subsequently binds to the glycoprotein 130 (gp130) receptor creating a signal transducing hexameric receptor complex. Janus kinases (JAKs) are recruited and activated; activated JAKs, in turn, phosphorylate signal transducer and activator of transcription 3 (STAT3) for activation, leading to gene regulation. Constitutively active IL-6/JAK/STAT3 signaling drives cancer cell proliferation and invasiveness while suppressing apoptosis, and STAT3 enhances IL-6 signaling to promote a vicious inflammatory loop. Aberrant expression of IL-6 occurs in multiple cancer types and is associated with poor clinical prognosis and metastasis. In breast cancer, the IL-6 pathway is frequently activated, which can promote breast cancer metastasis while simultaneously suppressing the anti-tumor immune response. Given these important roles in human cancers, multiple components of the IL-6 pathway are promising targets for cancer therapeutics and are currently being evaluated preclinically and clinically for breast cancer. This review covers the current biological understanding of the IL-6 signaling pathway and its impact on breast cancer metastasis, as well as, therapeutic interventions that target components of the IL-6 pathway including: IL-6, IL-6Rα, gp130 receptor, JAKs, and STAT3.
Collapse
Affiliation(s)
- Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin 2022; 43:1013-1023. [PMID: 34267347 PMCID: PMC8976066 DOI: 10.1038/s41401-021-00718-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperactive signal transducer and activator of transcription 3 (STAT3) signaling is frequently detected in human triple-negative breast cancer (TNBC) and gastric cancer, leading to uncontrolled tumor growth, resistance to chemotherapy, and poor prognosis. Thus, inhibition of STAT3 signaling is a promising therapeutic approach for both TNBC and gastric cancer, which have high incidences and mortality and limited effective therapeutic approaches. Here, we report a small molecule, WZ-2-033, capable of inhibiting STAT3 activation and dimerization and STAT3-related malignant transformation. We present in vitro evidence from surface plasmon resonance analysis that WZ-2-033 interacts with the STAT3 protein and from confocal imaging that WZ-2-033 disrupts HA-STAT3 and Flag-STAT3 dimerization in intact cells. WZ-2-033 suppresses STAT3-DNA-binding activity but has no effect on STAT5-DNA binding. WZ-2-033 inhibits the phosphorylation and nuclear accumulation of pY705-STAT3 and consequently suppresses STAT3-dependent transcriptional activity and the expression of STAT3 downstream genes. Moreover, WZ-2-033 significantly inhibited the proliferation, colony survival, migration, and invasion of TNBC cells and gastric cancer cells with aberrant STAT3 activation. Furthermore, administration of WZ-2-033 in vivo induced a significant antitumor response in mouse models of TNBC and gastric cancer that correlated with the inhibition of constitutively active STAT3 and the suppression of known STAT3 downstream genes. Thus, our study provides a novel STAT3 inhibitor with significant antitumor activity in human TNBC and gastric cancer harboring persistently active STAT3.
Collapse
|
16
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Qiong L, Yin J. Orosomucoid 1 promotes epirubicin resistance in breast cancer by upregulating the expression of matrix metalloproteinases 2 and 9. Bioengineered 2021; 12:8822-8832. [PMID: 34654351 PMCID: PMC8806942 DOI: 10.1080/21655979.2021.1987067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Orosomucoid 1 (ORM1) has been shown to be upregulated in the serum of breast cancer patients; however, the expression and function of ORM1 in breast cancer remains unknown. We measured the expression of ORM1 in breast cancer tissues and cell lines using qRT-PCR. A colony formation assay was done to assess cell proliferation and Transwell and wound healing assays were performed to determine the migration and invasion capacity of the cells, respectively. In addition, a CCK-8 assay was used to measure epirubicin cytotoxicity and western blot assays were done to analyze the putative mechanisms of epirubicin sensitivity. We found that the expression of ORM1 was upregulated in breast cancer tissues and cell lines. The expression of ORM1 enhanced the proliferation and migration of the cell lines. In contrast, down-regulation of ORM1 inhibited the expression of MMP-2 and MMP-9 and activation of the AKT/ERK signaling pathway. Therefore, ORM1 may represent a potential therapeutic target for breast cancer and promote epirubicin resistance by regulating the expression of MMP-2 and MMP-9, as well as activating the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Luo Qiong
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| | - Jun Yin
- Department of Breast and Thyroid Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, People's Republic of China
| |
Collapse
|
18
|
Zhang H, Han X, Wang Z, Wang Z, Cui Y, Tian R, Zhu Y, Han B, Liu H, Zuo X, Ren S, Tian J, Niu R, Zhang F. Mitochondrial Breast Cancer Resistant Protein Sustains the Proliferation and Survival of Drug-Resistant Breast Cancer Cells by Regulating Intracellular Reactive Oxygen Species. Front Cell Dev Biol 2021; 9:719209. [PMID: 34650973 PMCID: PMC8505676 DOI: 10.3389/fcell.2021.719209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette (ABC) transporter family are major contributors to the drug resistance establishment of breast cancer cells. Breast cancer resistant protein (BCRP), one of the ABC transporters, has long been recognized as a pump that effluxes the therapeutic drugs against the concentration gradient. However, recent studies suggest that the biological function of BCRP is not limited in its drug pump activity. Herein, the role of BCRP in the proliferation and survival of drug-resistant breast cancer cells was investigated. We found that BCRP is not the major drug pump to efflux epirubicin in the resistant cells that express multiple ABC transporters. Silencing of BCRP significantly impairs cell proliferation and induces apoptosis of the resistant cells in vitro and in vivo. RNA-sequencing and high-throughput proteomics suggest that BCRP is an inhibitory factor of oxidative phosphorylation (OXPHOS). Further research suggests that BCRP is localized in the mitochondria of the resistant cells. Knockdown of BCRP elevated the intracellular reactive oxygen species level and eventually promotes the cell to undergo apoptosis. This study demonstrated that BCRP exerts important onco-promoting functions in the drug-resistant breast cancer cells independent of its well-recognized drug efflux activity, which shed new light on understanding the complex functional role of ABC transporters in drug-resistant cells.
Collapse
Affiliation(s)
- He Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xingxing Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhaosong Wang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhiyong Wang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yanfen Cui
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ran Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yuying Zhu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Baoai Han
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hui Liu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoyan Zuo
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Sixin Ren
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jianfei Tian
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ruifang Niu
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Fei Zhang
- Public Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
19
|
Chen S, Shen Z, Gao L, Yu S, Zhang P, Han Z, Kang M. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1338. [PMID: 34532475 PMCID: PMC8422148 DOI: 10.21037/atm-21-4043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Background Esophageal cancer (EC) is a malignant tumor with high mortality. Correlations have been found between the expression level of tropomyosin 3 (TPM3) and the depth of tumor invasion, lymph node metastasis, and the 5-year survival rate. However, the specific mechanisms underlying EC remain unclear. Methods Stably transfected TPM3-overexpresing and TPM3-knockdown esophageal squamous cell carcinoma (ESCC) cell lines (ECa109 and EC9706) were constructed, and the association between TPM3 and the proliferation, invasion, and migration of ESCC was investigated using molecular biology methods. The associations between TPM3 and matrix metalloproteinase (MMP)2/9 or epithelial-mesenchymal transition (EMT)-related proteins were verified, and the potential tumor-promoting mechanism was explored by Gelatin Zymography Experiment. Results TPM3 was found to promote the proliferation, migration, and metastatic potential of ESCC in vivo and in vitro, and stimulate the expression of MMP2/9 and certain EMT markers other than E-cadherin. The replenishment of MMP2/9 restored the malignant behavior of ESCC caused by TPM3. A gelatinase assay showed that the expression of TPM3 was related to the activity of MMP9. Conclusions TPM3 promoted proliferation, migration, and metastatic potential in EC cells. Additionally, TPM3 promoted the EMT process. This function may be achieved via the regulation the expression of MMP2/9.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Zhu Y, Zhang H, Han X, Wang Z, Cui Y, Tian R, Wang Z, Han B, Tian J, Zhang F, Niu R. STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells. Cancer Lett 2021; 519:328-342. [PMID: 34348188 DOI: 10.1016/j.canlet.2021.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
Chemotherapy remains the most common treatment for all types of breast cancer. Chemoresistance in tumors is still a major obstacle for treating late-stage breast cancer. In the process of acquiring resistance, tumor cells dynamically evolve to adapt to the challenge of anti-cancer drugs. Besides the upregulation of drug-pumps, signal pathways related to proliferation and survival undergo adaptive evolution. Thus, these drug-resistant cells are more conducive to proliferation, even in stressful conditions. Nevertheless, the detailed mechanism that drives cancer cells to sustain their proliferation ability is unclear. Herein, we reported that the upregulated C-MET signaling acts as a compensatory mechanism that sustains the proliferation of chemoresistant cells in which EGFR family signaling was attenuated. Both C-MET and EGFR family are essential for cell proliferation due to their activation of the STAT3 signaling. Different from other cell models in which C-MET interacts with and phosphorylates EGFR family members, our cell model showed no direct interaction between C-MET and EGFR family members. Therefore, C-MET and EGFR family signaling pathways function independently to sustain the proliferation of resistant cells. Moreover, chemoresistant cells have evolved a novel, STAT3-C-MET feed-forward loop that plays a vital role in sustaining cell proliferation. The activated STAT3 interacts with the MET gene promoter to upregulate its transcription. Most importantly, the combined inhibition of C-MET and EGFR family synergistically inhibits the proliferation of drug-resistant cells in vitro and in xenograft tumor models. This work provides a new strategy for treating drug-resistant breast cancer.
Collapse
Affiliation(s)
- Yuying Zhu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xingxing Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Baoai Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
21
|
IFN-λ Modulates the Migratory Capacity of Canine Mammary Tumor Cells via Regulation of the Expression of Matrix Metalloproteinases and Their Inhibitors. Cells 2021; 10:cells10050999. [PMID: 33922837 PMCID: PMC8145483 DOI: 10.3390/cells10050999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.
Collapse
|
22
|
Gao Z, Han X, Zhu Y, Zhang H, Tian R, Wang Z, Cui Y, Wang Z, Niu R, Zhang F. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis 2021; 12:414. [PMID: 33879771 PMCID: PMC8058342 DOI: 10.1038/s41419-021-03692-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Tumor metastasis induced by drug resistance is a major challenge in successful cancer treatment. Nevertheless, the mechanisms underlying the pro-invasive and metastatic ability of drug resistance remain elusive. Exosome-mediated intercellular communications between cancer cells and stromal cells in tumor microenvironment are required for cancer initiation and progression. Recent reports have shown that communications between cancer cells also promote tumor aggression. However, little attention has been regarded on this aspect. Herein, we demonstrated that drug-resistant cell-derived exosomes promoted the invasion of sensitive breast cancer cells. Quantitative proteomic analysis showed that EphA2 was rich in exosomes from drug-resistant cells. Exosomal EphA2 conferred the invasive/metastatic phenotype transfer from drug-resistant cells to sensitive cells. Moreover, exosomal EphA2 activated ERK1/2 signaling through the ligand Ephrin A1-dependent reverse pathway rather than the forward pathway, thereby promoting breast cancer progression. Our findings indicate the key functional role of exosomal EphA2 in the transmission of aggressive phenotype between cancer cells that do not rely on direct cell-cell contact. Our study also suggests that the increase of EphA2 in drug-resistant cell-derived exosomes may be an important mechanism of chemotherapy/drug resistance-induced breast cancer progression.
Collapse
Affiliation(s)
- Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xingxing Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yuying Zhu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhaosong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
23
|
The role of epithelial-mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res 2021; 44:281-292. [PMID: 33768509 PMCID: PMC8009775 DOI: 10.1007/s12272-021-01321-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
The complex orchestration of gene expression that mediates the transition of epithelial cells into mesenchymal cells is implicated in cancer development and metastasis. As the primary regulator of the process, epithelial-mesenchymal transition-regulating transcription factors (EMT-TFs) play key roles in metastasis. They are also highlighted in recent preclinical studies on resistance to cancer therapy. This review describes the role of three main EMT-TFs, including Snail, Twist1, and zinc-finger E homeobox-binding 1 (ZEB1), relating to drug resistance and current possible approaches for future challenges targeting EMT-TFs.
Collapse
|
24
|
Chung WP, Huang WL, Liao WA, Huang WL, Liu YY, Su WC. Development of the CK-MB-1 trastuzumab-resistant HER2-positive breast cancer cell line and xenograft animal models. Cancer Med 2021; 10:2370-2379. [PMID: 33665980 PMCID: PMC7982635 DOI: 10.1002/cam4.3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/28/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with human epidermal growth factor receptor 2 (HER2)‐positive breast cancer who fail to respond to anti‐HER2 treatments have poor prognoses. Most trastuzumab‐resistant breast cancer cell lines available from biobanks feature either phosphoinositide‐3‐kinase, catalytic, alpha (PIK3CA) mutation or the loss of phosphatase and tensin homolog (PTEN). However, PIK3CA mutations and/or PTEN loss do not account for most trastuzumab‐resistant tumors in humans. Methods Breast cancer cells were collected from one patient's malignant ascites. These cells were cultured and maintained to develop a stable cell line, which we named CK‐MB‐1. We used western blotting to evaluate protein expression. The PIK3CA status of CK‐MB‐1 cells was analyzed using Sanger sequencing and validated using next‐generation sequencing. In vivo, CK‐MB‐1 xenograft tumor models were developed in zebrafish and immunodeficient mice. Results CK‐MB‐1 cells maintained the major characteristics of the parental tumor including HER2 positivity and estrogen receptor negativity. The HER2 gene amplification of CK‐MB‐1 cells was detected by fluorescence in situ hybridization. The integrity of PTEN was confirmed by its positive protein expression and the absence of gene mutations. No common PIK3CA mutation was detected. Compared with the findings in two other HER2‐positive trastuzumab‐resistant cell lines, CK‐MB‐1 cells exhibited greater resistance to trastuzumab, chemotherapeutics, and small‐molecule drugs. Trastuzumab resistance in CK‐MB‐1 cells was confirmed in vivo using the NOD SCID mouse model. Conclusions CK‐MB‐1 cells represent a stable HER2‐positive trastuzumab‐resistant breast cancer cell line. The resistance of CK‐MB‐1 cells does not originate from the PTEN or phosphoinositide 3‐kinase signaling pathway, which can provide an alternative approach for potential drugs.
Collapse
Affiliation(s)
- Wei-Pang Chung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-An Liao
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - You-Yu Liu
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Prajumwongs P, Phumphu R, Waenphimai O, Lert-itthiporn W, Vaeteewoottacharn K, Wongkham S, Chamgramol Y, Pairojkul C, Sawanyawisuth K. High Monopolar Spindle 1 Is Associated with Short Survival of Cholangiocarcinoma Patients and Enhances the Progression Via AKT and STAT3 Signaling Pathways. Biomedicines 2021; 9:68. [PMID: 33450849 PMCID: PMC7828338 DOI: 10.3390/biomedicines9010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy of the bile duct epithelium. The major problems of this cancer are late diagnosis and a high rate of metastasis. CCA patients in advanced stages have poor survival and cannot be cured with surgery. Therefore, targeting molecules involved in the metastatic process may be an effective CCA treatment. Monopolar spindle 1 (MPS1) is a kinase protein that controls the spindle assemble checkpoint in mitosis. It is overexpressed in proliferating cells and various cancers. The functional roles of MPS1 in CCA progression have not been investigated. The aims of this study were to examine the roles and molecular mechanisms of MPS1 in CCA progression. Immunohistochemistry results showed that MPS1 was up-regulated in carcinogenesis of CCA in a hamster model, and positive expression of MPS1 in human CCA tissues was correlated to short survival of CCA patients (n = 185). Small interfering RNA (siRNA)-induced knockdown of MPS1 expression reduced cell proliferation via G2/M arrest, colony formation, migration, and invasion. Moreover, MPS1 controlled epithelial to mesenchymal transition (EMT)-mediated migration via AKT and STAT3 signaling transductions. MPS1 was also involved in MMPs-dependent invasion of CCA cell lines. The current research highlights for the first time that MPS1 has an essential role in promoting the progression of CCA via AKT and STAT3 signaling pathways and could be an attractive target for metastatic CCA treatment.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Ratthaphong Phumphu
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (R.P.); (O.W.); (W.L.-i.); (K.V.); (S.W.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (C.P.)
| |
Collapse
|
26
|
Delaney LM, Farias N, Ghassemi Rad J, Fernando W, Annan H, Hoskin DW. The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells. Nutr Cancer 2020; 73:2397-2410. [PMID: 33019824 DOI: 10.1080/01635581.2020.1825755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 01/06/2023]
Abstract
In this study, we determined the effect of low dose piperlongumine on the motility/invasive capacity and epithelial-to-mesenchymal transition (EMT) of MDA-MB-231 triple-negative breast cancer (TNBC) cells and the metastasis of 4T1 mouse mammary carcinoma cells. MTT assays measured the effect of piperlongumine on TNBC cell growth. Motility/invasiveness were determined by gap closure/transwell assays. Western blotting assessed ZEB1, Slug, and matrix metalloproteinase (MMP) 9 expression. Interleukin (IL) 6 was detected by ELISA. MMP2, E-cadherin, and miR-200c expression was determined by real-time quantitative polymerase chain reaction. Reactive oxygen species (ROS) were measured by flow cytometry. The orthotopic 4T1 mouse model of breast cancer was used to examine metastasis. Piperlongumine-treated MDA-MB-231 cells showed reduced motility/invasiveness, decreased MMP2 and MMP9 expression, increased miR-200c expression, reduced IL-6 synthesis, decreased expression of ZEB1 and Slug, increased E-cadherin expression, and epithelial-like morphology. Piperlongumine also inhibited transforming growth factor β-induced ZEB1 and Slug expression. ROS accumulated in piperlongumine-treated cells, while changes in metastasis-associated gene expression were ablated by exogenous glutathione. Metastasis of 4T1 cells to the lungs of BALB/c mice was dramatically reduced in piperlongumine-treated animals. These findings reveal a previously unknown capacity of low dose piperlongumine to interfere with TNBC metastasis via an oxidative stress-dependent mechanism.
Collapse
Affiliation(s)
- Leanne M Delaney
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nathan Farias
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Javad Ghassemi Rad
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Henry Annan
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Liu L, Zhang W, Hu Y, Ma L, Xu X. Downregulation of miR-1225-5p is pivotal for proliferation, invasion, and migration of HCC cells through NFκB regulation. J Clin Lab Anal 2020; 34:e23474. [PMID: 32720731 PMCID: PMC7676203 DOI: 10.1002/jcla.23474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background As one of the most frequently seen malignancies, hepatocellular carcinoma (HCC) serves as the second largest contributor to malignancy‐specific mortality worldwide. MicroRNA‐1225‐5p (miR‐1225) exerts an essential impact on the growth and metastasis of many malignancies. However, the contribution of miR‐125 to HCC and the molecular mechanism of cancer cell viability and apoptosis are still unclear. We focused our research on exploring the function and molecular mechanism of miR‐1225 in regulating HCC cell growth, migration, and invasion. Material Quantitative PCR data showed that miR‐1225 expression was repressed in HCC cell lines and in the tissues of HCC patients, compared to that in normal human hepatic cells and tissues. Transfection of a miR‐1225 mimic inhibited cell viability and proliferation as indicated by CCK‐8 staining and MTT assay. Transwell invasion, wound healing assay, and Western blotting were performed to assess whether miR‐1225 repressed the metastasis and invasion of HCC cells, and decreased matrix metalloproteinase 9 (MMP9) expression. Further bioinformatic prediction and dual‐luciferase reporter assay suggested that miR‐1225 targeted the 3′‐UTR of NFκB p65. Results Overexpression of p65 protein counteracted the repressive impact of miR‐1225 on invasion, migration, and proliferation of HCC cells. Conclusion This research provided new evidences that miR‐1225 inhibits the viability, migration, and invasion of HCC cells by downregulation of p65.
Collapse
Affiliation(s)
- Lin Liu
- Department of Oncology Hematology, People's Hospital of Linzi District, Zibo, China
| | - Weiguo Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yujing Hu
- Department of Obstetric Area 3, Shandong Qilu Hospital Pingyi Branch (Pingyi County People's Hospital), Linyi, China
| | - Liangliang Ma
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiangsu Xu
- Department of Hepatolibiary Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
28
|
Liu YL, Yan ZX, Xia Y, Xie XY, Zhou K, Xu LL, Shi YL, Wang Q, Bi JW. Ligustrazine reverts anthracycline chemotherapy resistance of human breast cancer by inhibiting JAK2/STAT3 signaling and decreasing fibrinogen gamma chain (FGG) expression. Am J Cancer Res 2020; 10:939-952. [PMID: 32266101 PMCID: PMC7136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023] Open
Abstract
Chemotherapy resistance is a major challenge for breast cancer treatment. It is necessary to elucidate the mechanisms of anthracycline resistance to develop new chemosensitizers for breast cancer. In this study, we explored the effects of ligustrazine (TMP) on reverting anthracycline resistance of breast cancer cells, as well as its related mechanisms. Clinical significance of fibrinogen gamma chain (FGG) expression was also analyzed in breast cancer tissues. We provided evidence that breast tumor cell derived FGG participated in anthracycline chemoresistance of breast cancer. Further, TMP reverted epirubicin resistance by inhibiting JAK2/STAT3 signaling and decreasing FGG expression. Meanwhile, the elimination of cancer stem cell was observed in TMP treated chemoresistant breast cancer cells. Clinical analysis demonstrated that patients with FGG expressing breast cancer showed a dramatically low response to anthracycline-based chemotherapy and poor survival. Our data collectively indicated that FGG was an independent detrimental factor for anthracycline based chemotherapy for breast cancer patients. TMP was a novel chemosensitizer for FGG-induced anthracycline chemoresistance in breast cancer treatment.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Clinical Laboratory, Navy 971 Hospital of PLAQingdao 266071, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical UniversityChongqing 400038, China
| | - Yu Xia
- Clinical Laboratory, Navy 971 Hospital of PLAQingdao 266071, China
| | - Xiao-Ye Xie
- Department of Oncology, 960 Hospital of PLAJinan 250031, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical UniversityChongqing 400038, China
| | - Li-Li Xu
- Clinical Laboratory, Navy 971 Hospital of PLAQingdao 266071, China
| | - Yan-Long Shi
- Department of Oncology, 960 Hospital of PLAJinan 250031, China
| | - Qiang Wang
- Clinical Laboratory, Navy 971 Hospital of PLAQingdao 266071, China
- Department of Oncology, 960 Hospital of PLAJinan 250031, China
| | - Jing-Wang Bi
- Department of Oncology, 960 Hospital of PLAJinan 250031, China
| |
Collapse
|
29
|
(-)-Catechin-7- O-β-d-Apiofuranoside Inhibits Hepatic Stellate Cell Activation by Suppressing the STAT3 Signaling Pathway. Cells 2019; 9:cells9010030. [PMID: 31861943 PMCID: PMC7017110 DOI: 10.3390/cells9010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (–)-catechin-7-O-β-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmus davidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.
Collapse
|
30
|
Cleistanthin A inhibits the invasion of MDA-MB-231 human breast cancer cells: involvement of the β-catenin pathway. Pharmacol Rep 2019; 72:188-198. [PMID: 32016834 DOI: 10.1007/s43440-019-00012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/01/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cleistanthin A (CleA), a natural diphyllin glycoside, has been shown to suppress the invasion of cancer cells, but the underlying mechanisms remain unclear. Here, the inhibitory effect of CleA on the invasion of MDA-MB-231 human breast cancer cells was investigated, and the mechanisms involved were clarified. METHODS Cell viability was studied by MTT assay. The migration and invasion of MDA-MB-231 cells were assessed by wound healing assay and transwell assay, respectively. The enzymatic activity of matrix metalloproteinases (MMPs) was detected by gelatin zymography. mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Nuclear translocation of β-catenin was observed by immunofluorescence and detected by Western blotting. RESULTS CleA effectively inhibited the migration and invasion of MDA-MB-231 cells and suppressed the expression and activation of MMP-2/9. Moreover, the expression and nuclear translocation of β-catenin were reduced by CleA treatment, as well as transcription of the Cyclin D1 and c-myc genes. In addition, the inhibitory effect of CleA on the β-catenin pathway was attributed to the promotion of β-catenin degradation by inhibition of GSK3β phosphorylation. When the phosphorylation of GSK3β was induced by LiCl, the inhibitory effect of CleA on the β-catenin pathway and the invasion of MDA-MB-231 cells were almost reversed. CONCLUSION CleA suppressed the invasion of MDA-MB-231 cells, likely through the β-catenin pathway.
Collapse
|
31
|
Liu F, Jin H, Shen J, Wu D, Tian Y, Huang C. Gp130 degradation induced by epirubicin contributes to chemotherapy efficacy. Biochem Biophys Res Commun 2019; 519:572-578. [PMID: 31537377 DOI: 10.1016/j.bbrc.2019.09.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
Abstract
Two anthracyclines, doxorubicin and epirubicin have been widely used alone or in combination with other antitumor reagents in the chemotherapeutic treatment of various malignancies. Although therapeutic efficacy of anthracyclines has been studied extensively, precise cytotoxic mechanism of these drugs is not been completely elucidated. Here we show that epirubicin-induced degradation of transmembrane protein gp130 contributes to antitumor effect of epirubicin. gp130 is degraded by epirubicin in a proteasome- and autophagy-dependent manner. Epirubicin induces activation of p38-MK2 signaling pathway to phosphorylate gp130 at Ser 782, which results in gp130 internalization and degradation by lysosome. Although mutation of Ser 782 to Ala or Cys in gp130 upregulates global epirubicin-induced autophagy, reduced degradation of gp130 accompanied with enhanced Stat3 phosphorylation at tyrosine 705 is observed. We also show that epirubicin-resistant tumor cells express higher level of gp130. Altogether, our results indicate that degradation of gp130 and subsequent reduction of gp130-Stat3 signaling contributes to epirubicin-induced tumor cell death.
Collapse
Affiliation(s)
- Fangming Liu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haizhen Jin
- The Central Lab at Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinhong Shen
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, 320 Yueyang Road, Shanghai, 200031, China
| | - Dan Wu
- The Central Lab at Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Chao Huang
- Thoracic Oncology Institute at Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
32
|
Huang L, Jian Z, Gao Y, Zhou P, Zhang G, Jiang B, Lv Y. RPN2 promotes metastasis of hepatocellular carcinoma cell and inhibits autophagy via STAT3 and NF-κB pathways. Aging (Albany NY) 2019; 11:6674-6690. [PMID: 31481647 PMCID: PMC6756868 DOI: 10.18632/aging.102167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the function and the molecular mechanism of Ribophorin II (RPN2) in regulating Hepatocellular carcinoma (HCC) cell growth, metastasis, and autophagy. Quantitative real-time PCR (qPCR), western blotting analysis, and immunofluorescence assay were utilized to detect the RPN2 expression in HCC cell lines and specimens of HCC patients. We discovered that RPN2 expression was upregulated in HCC cell lines and tissues of HCC patients, which correlated with the low histological grade and low survival rate. Enhanced RPN2 expression stimulated cell proliferation, metastasis, invasion, and epithelial-mesenchymal transition (EMT), and decreased Microtubule-associated protein light chain 3B (LC3B) synthesis and reduced the expression of p62 protein. Further studies suggested that matrix metalloproteinase 9 (MMP-9) was partially upregulated by RPN2 via Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65. Interestingly, we found that phosphorylated RPN2 activated the signal transducer and activator of transcription 3 (STAT3) in HCC cells. It was also accountable for RPN2-stimulated elevated expression of MMP-9 and for invading HCC cells. It can be concluded that over-expression of RPN2 in HCC aggravated the malignant progression into cancerous cells. This research provided new evidences that RPN2 could facilitate tumor invasion by increasing the expression of MMP-9 in HCC cells.
Collapse
Affiliation(s)
- Linsheng Huang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zhiyuan Jian
- The First General Surgery Department of the Hospital Affiliated Guilin Medical University, Guilin, Guangxi Province, China
| | - Yi Gao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Ping Zhou
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Gan Zhang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Bin Jiang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
33
|
Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a Natural Polyphenol, Inhibits Migration, Metastasis, and Tumor Growth of Breast Cancer via a ROS-Dependent Proteasome Degradation of STAT3. Front Oncol 2019; 9:743. [PMID: 31456939 PMCID: PMC6698796 DOI: 10.3389/fonc.2019.00743] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated that carnosol, a naturally occurring diterpene, inhibited in vitro cell viability and colony growth, as well as induced cell cycle arrest, autophagy and apoptosis in human triple negative breast cancer (TNBC) cells. In the present study, we evaluated the ability of carnosol to inhibit tumor growth and metastasis in vivo. We found that non-cytotoxic concentrations of carnosol inhibited the migration and invasion of MDA-MB-231 cells in wound healing and matrigel invasion assays. Furthermore, gelatin zymography, ELISA, and RT-PCR assays revealed that carnosol inhibited the activity and downregulation the expression of MMP-9. Mechanistically, we demonstrated that carnosol suppressed the activation of STAT3 signaling pathway through a ROS-dependent targeting of STAT3 to proteasome-degradation in breast cancer cells (MDA-MB-231, Hs578T, MCF-7, and T47D). We show that blockade of proteasome activity, by MG-132 and bortezomib, or ROS accumulation, by N-acetylcysteine (NAC), restored the level of STAT3 protein. In addition, using chick embryo tumor growth assay, we showed that carnosol significantly and markedly suppressed tumor growth and metastasis of breast cancer xenografts. To the best of our knowledge, this is the first report which shows that carnosol specifically targets signal transducer and activator of transcription 3 (STAT3) for proteasome degradation in breast cancer. Our study further provide evidence that carnosol may represent a promising therapeutic candidate that canmodulate breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Halima Alsamri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussain El Hasasna
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res 2019; 21:66. [PMID: 31113450 PMCID: PMC6530024 DOI: 10.1186/s13058-019-1147-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Acquirement of resistance is always associated with a highly aggressive phenotype of tumor cells. Recent studies have revealed that Annexin A2 (Anxa2) is a key protein that links drug resistance and cancer metastasis. A high level of Anxa2 in cancer tissues is correlated to a highly aggressive phenotype. Increased Anxa2 expression appears to be specific in many drug-resistant cancer cells. The functional activity of Anxa2 is regulated by tyrosine phosphorylation at the Tyr23 site. Nevertheless, the accurate molecular mechanisms underlying the regulation of Anxa2 tyrosine phosphorylation and whether phosphorylation is necessary for the enhanced invasive phenotype of drug-resistant cells remain unknown. Methods Small interfering RNAs, small molecule inhibitors, overexpression, loss of function or gain of function, rescue experiments, Western blot, wound healing assays, transwell assays, and in vivo metastasis mice models were used to investigate the functional effects of Rack1 and Src on the tyrosine phosphorylation of Anxa2 and the invasion and metastatic potential of drug-resistant breast cancer cells. The interaction among Rack1, Src, and Anxa2 in drug-resistant cells was verified by co-immunoprecipitation assay. Results We demonstrated that Anxa2 Tyr23 phosphorylation is necessary for multidrug-resistant breast cancer invasion and metastasis. Rack1 is required for the invasive and metastatic potential of drug-resistant breast cancer cells through modulating Anxa2 phosphorylation. We provided evidence that Rack1 acts as a signal hub and mediates the interaction between Src and Anxa2, thereby facilitating Anxa2 phosphorylation by Src kinase. Conclusions Our findings suggest a convergence point role of Rack1/Src/Anxa2 complex in the crosstalk between drug resistance and cancer aggressiveness. The interaction between Anxa2 and Rack1/Src is responsible for the association between drug resistance and invasive/metastatic potential in breast cancer cells. Thus, our findings provide novel insights on the mechanism underlying the functional linkage between drug resistance and cancer aggressiveness. Electronic supplementary material The online version of this article (10.1186/s13058-019-1147-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Fan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weiyao Si
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Weijie Song
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
35
|
Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, Song W, Zhang H, Niu R, Zhang F. Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis 2019; 10:394. [PMID: 31113938 PMCID: PMC6529477 DOI: 10.1038/s41419-019-1633-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022]
Abstract
The failure of chemotherapy and the emergence of multidrug resistance (MDR) are the major obstacles for effective therapy in locally advanced and metastatic breast cancer. Overexpression of the drug transporter P-glycoprotein (P-gp) in cancer cells is one of the main causes of MDR due to its ability to efflux anticancer drugs out of cells. Although the signaling node that regulates the expression of P-gp has been intensively investigated; the regulatory mechanism underlying P-gp transport activity remains obscure. Herein, we reported that Rack1 and tyrosine kinase Src confer drug resistance through modulating the transport function of P-gp without altering its protein level. We provide evidences that Rack1 and Src regulate P-gp activity by modulating caveolin-1 (Cav1) phosphorylation. Importantly, Rack1 acts as a signaling hub and mediates Src binding to P-gp, thereby facilitating the phosphorylation of Cav1 by Src and abolishing the inhibitory effect of Cav1 on P-gp. Taken together, our results demonstrate the pivotal roles of Rack1 and Src in modulating P-gp activity in drug-resistant cells. Our findings also provide novel insights into the mechanism regulating P-gp transport activity. Rack1 may represent a new target for the development of effective therapies for reversing drug resistance.
Collapse
Affiliation(s)
- Yanling Fan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Weiyao Si
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Weijie Song
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
36
|
Wang Z, Wang C, Zuo D, Zhang T, Yin F, Zhou Z, Wang H, Xu J, Mao M, Wang G, Hua Y, Sun W, Cai Z. Attenuation of STAT3 Phosphorylation Promotes Apoptosis and Chemosensitivity in Human Osteosarcoma Induced by Raddeanin A. Int J Biol Sci 2019; 15:668-679. [PMID: 30745853 PMCID: PMC6367581 DOI: 10.7150/ijbs.30168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in adolescents. One major obstacle for current OS treatment is drug-resistance. Raddeanin A (RA), an oleanane-type triterpenoid saponin, exerts anti-tumor effects in several tumor models, but the effect of RA in human drug-resistant OS remained to be elucidated. In the present study, we investigated the anti-tumor effects of RA in both drug-sensitive and drug-resistant OS cells and its underlying mechanism. RA inhibited cell proliferation and colony formation and induced apoptotic cell death in a dose-dependent manner in both drug-sensitive and drug-resistant cells. Moreover, RA exposure resulted in the inhibition of interleukin-6 (IL-6)-induced JAK2/STAT3 signaling pathway activation and target gene expression in both drug-sensitive and drug-resistant cells. Meanwhile, we observed significantly increased MDR1 and STAT3 expression in drug-resistant OS cells compared with parental cells. STAT3 overexpression promoted chemo-resistance and MDR1 protein expression in both drug-sensitive OS cells and drug-resistant OS cells, while inhibiting STAT3 with siRNA sensitized OS cells to doxorubicin treatment. In addition, RA synergistically increased doxorubicin toxicity by increasing its cellular uptake, ablating efflux and downregulating MDR1 in drug-resistant cells with attenuation of STAT3 Phosphorylation. Finally, RA suppressed in vivo tumor growth and induced apoptosis in nude mouse using drug-resistant OS tibia orthotopic model. Taken together, RA is a promising potential therapeutic for the treatment of doxorubicin resistance in OS.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Shanghai Bone Tumor Institution, Shanghai, China
| | | | - Jing Xu
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Min Mao
- Shanghai Bone Tumor Institution, Shanghai, China
| | | | - Yingqi Hua
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
37
|
Li S, Zhao X, Chang S, Li Y, Guo M, Guan Y. ERp57‑small interfering RNA silencing can enhance the sensitivity of drug‑resistant human ovarian cancer cells to paclitaxel. Int J Oncol 2018; 54:249-260. [PMID: 30431082 DOI: 10.3892/ijo.2018.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
ERp57 has been identified to be associated with the chemoresistance of human ovarian cancer. However, its biological roles in the chemoresistance phenotype remain unclear. In the present study, the association of ERp57 with paclitaxel‑resistant cellular behavior was investigated and the sensitivity enhancement of chemoresistant human ovarian cancer cells to paclitaxel was examined using ERp57‑small interfering (si)RNA silencing. Cell viability, cell proliferation, cell apoptosis and cell migration were detected using an MTT assay, clonogenic assay, flow cytometry analysis and transwell assay. Furthermore, mRNA expression levels of ERp57 and protein expression levels of ERp57, STAT3, phosphorylated STAT3, PCNA, nucelolin, TUBB3, P-gp, vimentin, Bcl-2, Bax, Bcl-xl, p53, MMP1, MMP2 and MMP9 of paclitaxel-sensitive human SKOV3 ovarian cancer cells were compared with paclitaxel-resistant counterpart SKOV3/tax using the real-time PCR and western blot analysis. ERp57 was highly expressed in the paclitaxel‑resistant SKOV3/tax cells, and experimental results concluded that the paclitaxel‑resistance phenotype was due primarily to the activation of the STAT3 signaling pathway. ERp57 overexpression by lentiviral particle infection decreased the sensitivity of SKOV3 cells to paclitaxel. Furthermore, ERp57‑siRNA silencing restored paclitaxel sensitivity of SKOV3/tax cells. Notably, the IC50 value of ERp57‑siRNA silenced SKOV3/tax cells was reduced to the original level and colony survival was significantly decreased in comparison with that of SKOV3/tax cells. Additionally, co‑treatment of ERp57‑siRNA silencing and paclitaxel could inhibit the STAT3 signaling pathway and downregulate the expression levels of downstream proteins. Notably, ERp57‑siRNA and 100 nM paclitaxel co‑treatment downregulated Bcl‑2, Bcl‑xl, MMP2, MMP9, TUBB3 and P‑gp expression levels and upregulated the expression of Bax protein. Furthermore, co‑treatment promoted change of the isoform of p53 to p53/p47. Bioinformatics analyses supported the experimental observations that ERp57 was associated with drug resistance in ovarian cancer. The present study implies that ERp57 is a potential therapeutic target for the treatment of paclitaxel‑resistant human ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yanqiu Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
38
|
Norouzi S, Gorgi Valokala M, Mosaffa F, Zirak MR, Zamani P, Behravan J. Crosstalk in cancer resistance and metastasis. Crit Rev Oncol Hematol 2018; 132:145-153. [PMID: 30447920 DOI: 10.1016/j.critrevonc.2018.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/17/2018] [Accepted: 09/29/2018] [Indexed: 01/26/2023] Open
Abstract
The main obstacles that lead to clinical failure in cancer treatment are the development of resistant to chemotherapy and a rise in invasive characteristics in cancer tumor cells due to prolonged chemotherapeutic processes. Recent studies have revealed some evidence about the existence of a direct relationship between development of drug resistance and triggering of invasive capability in tumor cells. Therefore, devising and application of chemotherapeutic procedures that are not prone to the development of chemotherapy resistance are necessary. Here, we focus on CD147, CD44, ANAX2, P-gp, MMPs, and UCH-L1 proteins involved in the crosstalk between metastasis and cancer treatment. We think that further structural and functional analysis of these proteins may direct scientists towards designing highly effective chemotherapy procedures.
Collapse
Affiliation(s)
- Saeed Norouzi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Gorgi Valokala
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto, Canada; School of Pharmacy, University of Waterloo, 200 University Ave W., Waterloo, Canada.
| |
Collapse
|
39
|
Chen L, Lu Z, Yang Y, Du L, Zhou X, Chen Y. Effects of purified Omphalia lapidescens protein on metastasis, cell cycle, apoptosis and the JAK-STAT signaling pathway in SGC-7901 human gastric cells. Oncol Lett 2018. [PMID: 29541181 PMCID: PMC5835924 DOI: 10.3892/ol.2018.7830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is one of the most common cancers globally with high rates of morbidity and mortality. Purified Omphalia lapidescens protein (pPeOp) is a protein extracted from the sclerotium of Omphalia lapidescens. The present study aimed to investigate the effects of pPeOp on the viability, migration, cell cycle progression and apoptosis of SGC-7901 cells. The expression of numerous proteins, namely matrix metallopeptidase (MMP)2, MMP9, p53, caspase-3, B-cell lymphoma (Bcl)-2, cyclin A2, cyclin B1, cyclin D1, cyclin dependent kinase (CDK)1, CDK2 and CDK4, were investigated using western blot analysis and reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that treating SGC-7901 cells with pPeOp markedly suppressed their migration, induced their apoptosis and arrested their progression in S phase. pPeOp also downregulated the expression of migration-associated proteins (MMP2 and MMP9) and cyclin-associated proteins (cyclin A2, cyclin B1, cyclin D1, CDK1, CDK2 and CDK4) in a dose-dependent manner. Cells treated with pPeOp significantly upregulated caspase-3 and p53 and downregulated Bcl-2. Finally, the impact of pPeOp on three key nodes of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway were investigated and it was revealed that expression levels of JAK1, JAK2 and STAT3 were significantly downregulated following treatment. Together, the results of the present study suggested that pPeOp suppresses metastasis, arrests cell cycle, induces apoptosis and inhibits the JAK-STAT signaling pathway in SGC-7901 cells. Therefore, pPeOp may serve as a novel therapeutic agent for patients with gastric cancer.
Collapse
Affiliation(s)
- Luchao Chen
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhongxia Lu
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yongle Yang
- Institute of Preventive and Veterinary Medicine and The Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lijun Du
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaofang Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yitao Chen
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
40
|
Liu X, Lv Z, Zou J, Liu X, Ma J, Sun C, Sa N, Xu W. Elevated AEG-1 expression in macrophages promotes hypopharyngeal cancer invasion through the STAT3-MMP-9 signaling pathway. Oncotarget 2018; 7:77244-77256. [PMID: 27793010 PMCID: PMC5363584 DOI: 10.18632/oncotarget.12886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a critical role in tumor invasion and metastasis, which remain major causes of mortality in patients with hypopharyngeal cancer. Here we investigate the effect of an oncogene, AEG-1 expressed in macrophages on the invasion of hypopharyngeal cancer cells. AEG-1 is more highly expressed in macrophages of human hypopharyngeal cancer samples compared with adjacent non-tumor controls. Using matrigel invasion assay system, THP-1-derived macrophages with forced AEG-1 overexpression enhance FaDu cell invasion whereas macrophages with AEG-1 silence inhibit. Matrix metalloproteinase 9 (MMP-9), which is important in tumor invasion and metastasis through degrading extracellular matrix, is up-reulated by AEG-1 partly through NF-κB p65 in macrophages. Intriguingly, macrophage AEG-1 also induces MMP-9 up-regulated expression in FaDu cells. Furthermore, macrophage AEG-1 activates signal transducer and activator of transcription 3 (STAT3) in FaDu cells, which is responsible for macrophage AEG-1-induced an increase in MMP-9 expression and invasion of FaDu cells. This is the first to demonstrate that macrophage AEG-1 promotes tumor invasion through up-regulation of MMP-9 in both macrophages and cancer cells. Thus, the results provide evidences that macrophage AEG-1 contributes to promotion of tumor invasion, and represents as a potential target in hypopharyngeal cancer therapy.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jidong Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Chengtao Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Na Sa
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| |
Collapse
|
41
|
Zhang D, Yang XJ, Luo QD, Fu DL, Li HL, Li HC, Zhang P, Chong T. EZH2 enhances the invasive capability of renal cell carcinoma cells via activation of STAT3. Mol Med Rep 2017; 17:3621-3626. [PMID: 29286132 PMCID: PMC5802166 DOI: 10.3892/mmr.2017.8363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
The enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) gene has been recognized to be a proto-oncogene and to be linked to human malignancies. However, the additional functions of EZH2 in renal cell carcinoma (RCC) are not completely understood. In the present study, a possible role of EZH2 in RCC was identified. EZH2 was demonstrated to promote the cell proliferation and invasion potential of 769-P cells, and inhibition of EZH2 was demonstrated to prevent these two processes in 786-O cells. Mechanically, EZH2 was demonstrated to increase the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and upregulate 72 kDa type IV collagenase (MMP-2) expression. When cells were treated with small interfering RNA targeting STAT3 or Stattic, a specific inhibitor of STAT3, the invasive ability of the cells was decreased and downregulation of MMP-2 was observed. Based on these results, in the present study it was hypothesized that EZH2 may serve a critical role in the progression of RCC. Its ability to facilitate invasion makes EZH2 a promising target for the management of advanced RCC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Jie Yang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qi-Dong Luo
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - De-Lai Fu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong-Liang Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - He-Cheng Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Peng Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
42
|
Zhang ZL, Jiang QC, Wang SR. Schisandrin A reverses doxorubicin-resistant human breast cancer cell line by the inhibition of P65 and Stat3 phosphorylation. Breast Cancer 2017; 25:233-242. [PMID: 29181822 DOI: 10.1007/s12282-017-0821-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) in breast cancer therapy occurs frequently. Thus, anti-MDR agents from natural products or synthetic compounds were tested extensively. We have also explored the reverse effect and mechanism of Schisandrin A (Sch A), a natural product, on MCF-7 breast cancer doxorubicin (DOX)-resistant subline MCF-7/DOX. METHODS MTT assay was performed to measure the viability of MCF-7 cells to assess the reverse effect of Sch A. Western blot analysis was used to study the protein levels. Laser scanning confocal microscopy was performed to detect the intercellular DOX and Rhodamine 123 accumulation. The qRT-PCR was used to analysis the target gene expression. Dual-luciferase reporter assay was performed to test the transcriptional activity of P-glycoprotein (P-gp). RESULTS Sch A, at the concentration of 20 µM, showed selective reverse effect (better than the positive control, verapamil at 5 µM) on MCF-7/DOX cell line but not on BEL-7402/DOX, Hep G2/DOX, and K-562/DOX cells. In addition, Sch A enhanced DOX-induced cleavage of Caspase-9 and PARP levels by increasing intracellular DOX accumulation and inhibiting P-gp function. Furthermore, Sch A selectively suppressed P-gp at gene and protein levels in MCF-7/DOX cells which express high level of MDR1 but not MRP1, MRP3, or BCRP. Besides, Sch A showed inhibitory effect on P-gp transcriptional activity. Sch A significantly reduced p-IκB-α (Ser32) and p-Stat3 (Tyr705) levels which mediate P-gp expression. In addition, Stat3 knockdown enhanced the reverse effect of siP65. The combined effect of siStat3 and siP65 was better than Sch A single treatment in MCF-7/DOX cells. CONCLUSION Sch A specifically reverses P-gp-mediated DOX resistance in MCF-7/DOX cells by blocking P-gp, NF-κB, and Stat3 signaling. Inhibition of P65 and Stat3 shows potent anti-MDR effect on MCF-7/DOX cells.
Collapse
Affiliation(s)
- Zong-Lin Zhang
- Department of Pharmacy, Linyi People's Hospital, Linyi, Shandong, China
| | - Qing-Cheng Jiang
- Department of Pharmacy, First People's Hospital of Tancheng County, Tancheng, Shandong, China
| | - Su-Rong Wang
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27# Jie fang lu dong duan, Linyi, Shandong, China.
| |
Collapse
|
43
|
Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX, Yang SM. miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett 2017; 408:23-32. [PMID: 28842285 DOI: 10.1016/j.canlet.2017.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 01/23/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) plays an important role in gastric cancer (GC) development. miR-93-5p has shown opposing functions in different types of cancers, but the exact expression pattern and molecular mechanism of miR-93-5p in GC development remain to be elucidated. Here, we reported that miR-93-5p expression was increased in GC tissues compared with the adjacent normal tissues and that its overexpression was correlated with distant metastasis and poor survival in GC patients. miR-93-5p knockdown inhibited the migration, invasion and proliferation of GC cells in vitro and in vivo, while its overexpression displayed an opposite result. Using an mRNA microarray, we found that miR-93-5p significantly downregulated IFNAR1 expression in GC cells, which was further identified as a direct target of miR-93-5p. IFNAR1 knockdown promoted GC cell migration and invasion, but its restoration could rescue GC cell migration and invasion induced by miR-93-5p overexpression. Moreover, miR-93-5p-IFNAR1 axis increased MMP9 expression via STAT3 pathway in GC cells. Taken together, we reveal that miR-93-5p overexpression is associated with the poor survival of GC patients and miR-93-5p-IFNAR1 axis promotes GC metastasis through activation of STAT3 pathway.
Collapse
Affiliation(s)
- Dong-Hong Ma
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Jing-Jing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Shu-Ming Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Hong-Bin Zhu
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China
| | - Dong-Xu Wang
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China.
| |
Collapse
|
44
|
Roy R, Dagher A, Butterfield C, Moses MA. ADAM12 Is a Novel Regulator of Tumor Angiogenesis via STAT3 Signaling. Mol Cancer Res 2017; 15:1608-1622. [PMID: 28765266 DOI: 10.1158/1541-7786.mcr-17-0188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
ADAM12, (ADisintegrin and metalloproteinase domain-containing protein 12), is upregulated in epithelial cancers and contributes to increased tumor proliferation, metastasis, and endocrine resistance. However, its role in tumor angiogenesis is unknown. Here, we report that ADAM12 is upregulated in the vessels of aggressive breast tumors and exerts key regulatory functions. ADAM12 significantly increases bFGF-mediated angiogenesis in vivo and ADAM12 levels are upregulated in tumors that have undergone a switch to the angiogenic phenotype. Importantly, ADAM12-overexpressing breast tumors display a higher microvessel density (MVD). Our goal was to identify the mechanisms by which tumor-associated ADAM12 promotes angiogenesis. ADAM12 expression in breast tumor cells correlated with a significant upregulation of proangiogenic factors such as VEGF and MMP-9 and downregulation of antiangiogenic factors such as Thrombospondin-1 (THBS1/TSP1) and Tissue Inhibitor of Metalloproteinases-2 (TIMP-2). Co-culture with ADAM12-expressing tumor cells promoted endothelial cell (EC) recruitment and capillary tube formation. Conversely, downregulation of endogenous ADAM12 in breast cancer cell lines resulted in reduction of pro-angiogenic factors and EC recruitment. These ADAM12-mediated effects are driven by the activation of EGFR, STAT3 and Akt signaling. Blockade of EGFR/STAT3 or silencing of ADAM12 reversed the proangiogenic tumor phenotype, significantly downregulated pro-angiogenic mitogens and reduced EC recruitment. In human breast cancer tissues, ADAM12 expression was significantly positively correlated with pro-angiogenic factors including VEGF and MMP-9 but negatively associated with TSP1.Implications: These novel findings suggest that ADAM12 regulates EC function and facilitates a proangiogenic microenvironment in a STAT3-dependent manner. A combined approach of targeting ADAM12 and STAT3 signaling in breast cancer may represent a promising strategy to inhibit tumor neovascularization. Mol Cancer Res; 15(11); 1608-22. ©2017 AACR.
Collapse
Affiliation(s)
- Roopali Roy
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts. .,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Adelle Dagher
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Catherine Butterfield
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Marsha A Moses
- The Program in Vascular Biology, Boston Children's Hospital, Boston, Massachusetts. .,Department of Surgery, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Shi Y, An D, Liu Y, Feng Q, Fang X, Pan G, Wang Q. Propoxur enhances MMP-2 expression and the corresponding invasion of human breast cancer cells via the ERK/Nrf2 signaling pathway. Oncotarget 2017; 8:87107-87123. [PMID: 29152067 PMCID: PMC5675619 DOI: 10.18632/oncotarget.19081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Propoxur is considered a prime etiological suspect of increasing tumor incidence, but the role is still undefined. In this study, two human breast cancer cells lines, MCF-7 and MDA-MB-231 cells, were used as cell models. Cells were respectively treated with 0, 0.01, 1, or 100 μM propoxur. PD98059, a MEK inhibitor, was administered to block the ERK/MAPK pathway. Migration and reactive oxygen species were measured by wound healing and Transwell assays, and flow cytometry. Protein expression and subcellular location were detected by western blotting and immunofluorescence staining, respectively. Results showed that propoxur treatment enhanced cell migration and invasion in a dose-dependent manner, while MMP-2 expression, but not MMP-9, was significantly increased in two cell lines. Meanwhile, the treatment increased intracellular reactive oxygen species, Nrf2 expression and nuclear translocation, and ERK1/2 phosphorylation. Inversely, inhibition of ERK1/2 activation with PD98059 significantly attenuated propoxur-induced Nrf2 expression and nuclear translocation. Moreover, PD98059 suppressed propoxur-induced cell migration and invasion, and MMP-2 overexpression. Collectively, these results indicate that propoxur can trigger reactive oxygen species overproduction, further promoting breast cancer cell migration and invasion by regulating the ERK/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yunxiang Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Daizhi An
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yiping Liu
- Beijing Municipal Public Security Hospital, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Qiong Feng
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xu Fang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guilan Pan
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Qiang Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
46
|
Yuan J, Yang Y, Gao Z, Wang Z, Ji W, Song W, Zhang F, Niu R. Tyr23 phosphorylation of Anxa2 enhances STAT3 activation and promotes proliferation and invasion of breast cancer cells. Breast Cancer Res Treat 2017; 164:327-340. [PMID: 28470457 DOI: 10.1007/s10549-017-4271-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/29/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE Overexpression of Annexin A2 (Anxa2) is positively correlated with breast cancer progression, drug resistance, and poor prognosis of patients with breast cancer. Tyr23 Phosphorylation by Src-family tyrosine kinase is an important post-translational modification of Anxa2. This modification regulates the subcellular localization and functions of Anxa2 and has significant effects on cell proliferation, migration, and invasion. This study aims at revealing the association of Anxa2-Tyr23 phosphorylation in Anxa2-mediated acceleration of breast cancer progression and their elaborate molecular mechanisms. METHODS Cell biological function experiments were performed to determine the effects of Anxa2-Tyr23 Phosphorylation on breast cancer cell proliferation and invasion in vitro and metastasis in vivo. The interaction of Tyr23 phosphorylated Anxa2 and STAT3 was verified by co-immunoprecipitation assay. Related mRNA and protein expression levels of cyclin D1 and MMP2/9 and phosphorylation level of STAT3 were detected. RESULTS Anxa2-Tyr23 phosphorylation is necessary for proliferation, invasion, and metastasis of breast cancer cells in vitro and in vivo. Tyr23 phosphorylated Anxa2 binds and enhances the sensitivity of STAT3 activation in response to IL-6, thereby increasing the protein and mRNA expression levels of cyclin D1 and MMP2/9 which are STAT3 key target genes and serve pivotal regulatory functions in cell proliferation and invasion, respectively. CONCLUSION Our findings further confirmed the regulatory role of Anxa2 and revealed the direct relationship between Anxa2-Tyr23 phosphorylation and activation of STAT3. Moreover, this study provides novel insights into the function of Anxa2-Tyr23 phosphorylation in signal transduction for further understanding of the mechanism through which Anxa2 promotes the progression of breast cancer.
Collapse
Affiliation(s)
- Jie Yuan
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Yi Yang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Zicong Gao
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Wei Ji
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Weijie Song
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China.
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
47
|
Chan YC, Chen CW, Chan MH, Chang YC, Chang WM, Chi LH, Yu HM, Lin YF, Tsai DP, Liu RS, Hsiao M. MMP2-sensing up-conversion nanoparticle for fluorescence biosensing in head and neck cancer cells. Biosens Bioelectron 2016; 80:131-139. [DOI: 10.1016/j.bios.2016.01.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/08/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
|