1
|
Alvarez-Herrera S, Rosel Vales M, Pérez-Sánchez G, Becerril-Villanueva E, Flores-Medina Y, Maldonado-García JL, Saracco-Alvarez R, Escamilla R, Pavón L. Risperidone Decreases Expression of Serotonin Receptor-2A (5-HT2A) and Serotonin Transporter (SERT) but Not Dopamine Receptors and Dopamine Transporter (DAT) in PBMCs from Patients with Schizophrenia. Pharmaceuticals (Basel) 2024; 17:167. [PMID: 38399382 PMCID: PMC10892557 DOI: 10.3390/ph17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Dopamine and serotonin receptors and transporters play an essential role in the pathophysiology of schizophrenia; changes in their expression have been reported in neurons and leukocytes. Each antipsychotic induces a unique pattern in leukocyte function and phenotype. However, the use of polytherapy to treat schizophrenia makes it challenging to determine the specific effects of risperidone on peripheral blood mononuclear cells (PBMCs). The aim of this study was to evaluate the changes in the expression of D3, D5, DAT, 5-HT2A, and SERT in PBMCs from healthy volunteers (HV), drug-naive patients with schizophrenia (PWS), drug-free PWS, and PWS treated with risperidone for up to 40 weeks using quantitative PCR. Our study revealed elevated mRNA levels of D3, DAT, 5-HT2A, and SERT in unmedicated PWS. Treatment with risperidone led to a reduction only in the expression of 5-HT2A and SERT. Furthermore, we observed a moderate correlation between 5-HT2A expression and the positive and negative syndrome scale (PANSS), as well as SERT expression and PANSS scale. We also found a moderate correlation between 5-HT2A and SERT expression and the positive subscale. The duration of risperidone consumption had a significant negative correlation with the expression of 5-HT2A and SERT. Our study introduces the measurement of 5-HT2A and SERT expression in PBMCs as a useful parameter for assessing the response to risperidone in PWS.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Mauricio Rosel Vales
- Clínica de Esquizofrenia, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Yvonne Flores-Medina
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - José Luis Maldonado-García
- Departamemto de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
- Departamemto de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (Y.F.-M.); (R.S.-A.)
| | - Raúl Escamilla
- Subdirección de Consulta Externa, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| |
Collapse
|
2
|
Jankowski MM, Ignatowska-Jankowska BM, Glac W, Wiergowski M, Kazmierska-Grebowska P, Swiergiel AH. Intravenous haloperidol and cocaine alter the distribution of T CD3 + CD4 + , non-T/NK and NKT cells in rats. Clin Exp Pharmacol Physiol 2023; 50:453-462. [PMID: 36802086 DOI: 10.1111/1440-1681.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
The modulation of dopamine transmission evokes strong behavioural effects that can be achieved by commonly used psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioural arousal, whereas haloperidol is a non-specific D2-like dopamine receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here, we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behaviour in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs' impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs' behavioural effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviours, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia, which was induced by haloperidol and cocaine (except for natural killer T cells), is independent of D2-like dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. Moreover, the increased systemic D2-like dopaminergic activity after cocaine administration is a significant factor in retaining T CD3+ CD4+ lymphocytes and non-T/NK CD45RA+ cells in the spleen.
Collapse
Affiliation(s)
- Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bogna M Ignatowska-Jankowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.,Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marek Wiergowski
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
4
|
Obray JD, Jang EY, Klomp AM, Small CA, Richardson AP, LeBaron JJ, Lee JG, Yorgason JT, Yang CH, Steffensen SC. The peripheral dopamine 2 receptor antagonist domperidone attenuates ethanol enhancement of dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 2022; 46:396-409. [PMID: 35040146 PMCID: PMC8920780 DOI: 10.1111/acer.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine neuron firing in the ventral tegmental area (VTA) and dopamine release in the nucleus accumbens have been implicated in reward learning. Ethanol is known to increase both dopamine neuron firing in the VTA and dopamine levels in the nucleus accumbens. Despite this, some discrepancies exist between the dose of ethanol required to enhance firing in vivo and ex vivo. In the present study we investigated the effects of peripheral dopamine 2 subtype receptor antagonism on ethanol's effects on dopamine neurotransmission. METHODS Plasma catecholamine levels were assessed following ethanol administration across four different doses of EtOH. Microdialysis and voltammetry were used to assess the effects of domperidone pretreatment on ethanol-mediated increases in dopamine release in the nucleus accumbens. A place conditioning paradigm was used to assess conditioned preference for ethanol and whether domperidone pretreatment altered this preference. Open-field and loss-of-righting reflex paradigms were used to assess the effects of domperidone on ethanol-induced sedation. A rotarod apparatus was used to assess the effects of domperidone on ethanol-induced motor impairment. RESULTS Domperidone attenuated ethanol's enhancement of mesolimbic dopamine release under non-physiological conditions at intermediate (1.0 and 2.0 g/kg) doses of ethanol. Domperidone also decreased EtOH-induced sedation at 2.0 g/kg. Domperidone did not alter ethanol conditioned place preference nor did it affect ethanol-induced motor impairment. CONCLUSIONS These results show that peripheral dopamine 2 receptors mediate some of the effects of ethanol on nonphysiological dopamine neurotransmission, although these effects are not related to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- James Daniel Obray
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eun Young Jang
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anneke M. Klomp
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Christina A. Small
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Aaron P. Richardson
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Joshua J. LeBaron
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Scott C. Steffensen
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
5
|
Yan Q, Wu X, Zhou P, Zhou Y, Li X, Liu Z, Tan H, Yao W, Xia Y, Zhu F. HERV-W Envelope Triggers Abnormal Dopaminergic Neuron Process through DRD2/PP2A/AKT1/GSK3 for Schizophrenia Risk. Viruses 2022; 14:v14010145. [PMID: 35062349 PMCID: PMC8777930 DOI: 10.3390/v14010145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
An increasing number of studies have begun considering human endogenous retroviruses (HERVs) as potential pathogenic phenomena. Our previous research suggests that HERV-W Envelope (HERV-W ENV), a HERV-W family envelope protein, is elevated in schizophrenia patients and contributes to the pathophysiology of schizophrenia. The dopamine (DA) hypothesis is the cornerstone in research and clinical practice related to schizophrenia. Here, we found that the concentration of DA and the expression of DA receptor D2 (DRD2) were significantly higher in schizophrenia patients than in healthy individuals. Intriguingly, there was a positive correlation between HERV-W ENV and DA concentration. Depth analyses showed that there was a marked consistency between HERV-W ENV and DRD2 in schizophrenia. Studies in vitro indicated that HERV-W ENV could increase the DA concentration by regulating DA metabolism and induce the expression of DRD2. Co-IP assays and laser confocal scanning microscopy indicated cellular colocalization and a direct interaction between DRD2 and HERV-W ENV. Additionally, HERV-W ENV caused structural and functional abnormalities of DA neurons. Further studies showed that HERV-W ENV could trigger the PP2A/AKT1/GSK3 pathway via DRD2. A whole-cell patch-clamp analysis suggested that HERV-W ENV enhanced sodium influx through DRD2. In conclusion, we uncovered a relationship between HERV-W ENV and the dopaminergic system in the DA neurons. Considering that GNbAC1, a selective monoclonal antibody to the MSRV-specific epitope, has been promised as a therapy for treating type 1 diabetes and multiple sclerosis (MS) in clinical trials, understanding the precise function of HERV-W ENV in the dopaminergic system may provide new insights into the treatment of schizophrenia.
Collapse
Affiliation(s)
- Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Yan Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (H.T.)
| | - Huawei Tan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (H.T.)
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (Q.Y.); (X.W.); (P.Z.); (Y.Z.); (X.L.); (W.Y.); (Y.X.)
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
6
|
The role of dopamine receptors in lymphocytes and their changes in schizophrenia. Brain Behav Immun Health 2021; 12:100199. [PMID: 34589732 PMCID: PMC8474470 DOI: 10.1016/j.bbih.2021.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022] Open
Abstract
Dopamine and its 5 receptors, which are grouped into two families (D1-like and D2-like), modulate functions at a systemic level in both the central nervous system and periphery. The central nervous system and the immune system are the main adaptive systems, which participate in a continuous and functional crosstalk to guarantee homeostasis. On binding to its 5 dopamine receptors, dopamine acts as a co-regulator of the immune system, contributing to the interaction of the central nervous system and inflammatory events and as a source of communication between the different immune cells. Dopaminergic perturbations in the central nervous system are observed in several neurological and psychiatric disorders. Schizophrenia is one of the most common mental disorders with a poorly understood pathoaetiology that includes genetic and environmental components that promote alterations in the dopaminergic system. Interestingly, abnormalities in dopamine receptors expression in lymphocytes of schizophrenia patients have been reported, often significantly correlating with the severity of the psychotic illness. Here, we review the current literature regarding the dopaminergic system in human lymphocytes and its alterations in schizophrenia. The existence of DA in the bloodstream suggests the presence of dopaminergic components that modulate functions at a systemic level; therefore, its effects are not limited to the CNS and the signalling in the neuronal dopaminergic system should be independent from that of the peripheral systems. The effects by DA-mediated activation of different DRs on immune cells show different sensitivities to DA, but binding profiles of DA on T cells are similar to those in neuronal membranes, suggesting receptors act similarly to those found in neurons. All DRs are expressed on the LYM membrane. However, more detailed information is required on the expression patterns of DR in immune cells in healthy conditions and in pathologies. DA has been observed to influence LYM functions acting in a variety of important processes, like cytokine secretion, cell adhesion, chemotaxis, and cytotoxicity. In human LYM, DA on D1-like receptors decreases oxidative metabolism and apoptosis, activates the selective secretion of IL-10 and TNFα, and facilitates NK cells. In contrast, most of the immunostimulatory DA effects on LYM depend on stimulation of D2-like receptors including activation, proliferation, differentiation, and suppression of NK cells. To date, an altered expression or signalling of neurotransmitter receptors is observed in immune cells during psychiatric disorders and, consequently, these cells also markedly respond to antipsychotics. Numerous technologies have been used in search of biomarkers for SCZ. However, after a century of studying SCZ their application in psychiatry remains rare and there are currently no validated biomarkers for the diagnosis and prognosis of patients with SCZ or the prediction of treatment efficacy.
Collapse
|
7
|
The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol Psychiatry 2021; 26:1272-1285. [PMID: 31492942 DOI: 10.1038/s41380-019-0511-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
The dopamine D2 and D3 receptors are implicated in schizophrenia and its pharmacological treatments. These receptors undergo intracellular trafficking processes that are modulated by dysbindin-1 (Dys). Indeed, Dys variants alter cognitive responses to antipsychotic drugs through D2-mediated mechanisms. However, the mechanism by which Dys might selectively interfere with the D3 receptor subtype is unknown. Here, we revealed an interaction between functional genetic variants altering Dys and D3. Specifically, both in patients with schizophrenia and in genetically modified mice, concomitant reduction in D3 and Dys functionality was associated with improved executive and working memory abilities. This D3/Dys interaction produced a D2/D3 imbalance favoring increased D2 signaling in the prefrontal cortex (PFC) but not in the striatum. No epistatic effects on the clinical positive and negative syndrome scale (PANSS) scores were evident, while only marginal effects on sensorimotor gating, locomotor functions, and social behavior were observed in mice. This genetic interaction between D3 and Dys suggests the D2/D3 imbalance in the PFC as a target for patient stratification and procognitive treatments in schizophrenia.
Collapse
|
8
|
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, Ruda-Kucerova J, D'Addario C, Kratka L, Pekarik V, Piscitelli F, Babinska Z, Fedotova J, Giurdanella G, Salomone S, Sulcova A, Bucolo C, Wotjak CT, Starcuk Z, Drago F, Mechoulam R, Di Marzo V, Micale V. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol 2020; 177:114004. [PMID: 32360362 DOI: 10.1016/j.bcp.2020.114004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Gestational methylazoxymethanol acetate (MAM) treatment produces offspring with adult phenotype relevant to schizophrenia, including positive- and negative-like symptoms, cognitive deficits, dopaminergic dysfunction, structural and functional abnormalities. Here we show that adult rats prenatally treated with MAM at gestational day 17 display significant increase in dopamine D3 receptor (D3) mRNA expression in prefrontal cortex (PFC), hippocampus and nucleus accumbens, accompanied by increased expression of dopamine D2 receptor (D2) mRNA exclusively in the PFC. Furthermore, a significant change in the blood perfusion at the level of the circle of Willis and hippocampus, paralleled by the enlargement of lateral ventricles, was also detected by magnetic resonance imaging (MRI) techniques. Peripubertal treatment with the non-euphoric phytocannabinoid cannabidiol (30 mg/kg) from postnatal day (PND) 19 to PND 39 was able to reverse in MAM exposed rats: i) the up-regulation of the dopamine D3 receptor mRNA (only partially prevented by haloperidol 0.6 mg/kg/day); and ii) the regional blood flow changes in MAM exposed rats. Molecular modelling predicted that cannabidiol could bind preferentially to dopamine D3 receptor, where it may act as a partial agonist according to conformation of ionic-lock, which is highly conserved in GPCRs. In summary, our results demonstrate that the mRNA expression of both dopamine D2 and D3 receptors is altered in the MAM model; however only the transcript levels of D3 are affected by cannabidiol treatment, likely suggesting that this gene might not only contribute to the schizophrenia symptoms but also represent an unexplored target for the antipsychotic activity of cannabidiol.
Collapse
Affiliation(s)
- Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Di Marco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julia Fedotova
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, St. Petersburg, Russian Federation; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology RASci., St. Petersburg, Russian Federation; Lobachevsky State University of Nizhny Novgorod, Institute of Biology and Biomedicine, Nizhny Novgorod, Russian Federation
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alexandra Sulcova
- ICCI - International Cannabis and Cannabinoid Institute, Praha, Czech Republic
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carsten T Wotjak
- RG "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany; Boehringer Ingelheim Pharma GmbH & KO KG, Germany
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raphael Mechoulam
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Endocannabinoid Research Group, Naples, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Université Laval and Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
9
|
Sao T, Yoshino Y, Yamazaki K, Ozaki Y, Mori Y, Ochi S, Yoshida T, Mori T, Iga JI, Ueno SI. TREM1 mRNA Expression in Leukocytes and Cognitive Function in Japanese Patients with Alzheimer's Disease. J Alzheimers Dis 2019; 64:1275-1284. [PMID: 30010135 DOI: 10.3233/jad-180418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2) activates the innate immune system, promotes phagocytosis by microglia, and is associated with Alzheimer's disease (AD). The possible role of a related molecule, TREM1, in AD remains unknown. OBJECTIVE We investigated a possible role for TREM1 in AD by determining the gene expression and methylation levels of TREM1 in leukocytes from AD patients. METHODS Fifty patients with AD and 50 age-matched healthy controls were enrolled. AD patients underwent a battery of neuropsychiatric tests. Peripheral blood samples were obtained from each participant, RNA and DNA were extracted, and samples were assessed for TREM1 mRNA expression and methylation rates at three CpG sites in the TREM1 promoter. RESULTS TREM1 mRNA expression levels in AD patients were significantly higher than those in controls (p = 0.008). TREM1 mRNA expression levels were not correlated with sex, age, duration of illness, APOE genotype, donepezil treatment, or scores of most neuropsychiatric tests. TREM1 mRNA expression levels in AD patients were correlated with the total score of the Montgomery-Åsberg Depression Rating Scale (p = 0.047, r = - 0.344). Methylation rates at the three CpG sites were significantly lower in AD patients than in controls. We also found a significant correlation between TREM1 mRNA expression and TREM1 DNA methylation rates (p < 0.001). CONCLUSION TREM1 may be associated with the immune responses in AD, and along with hypomethylation at CpG sites in the TREM1 promoter, may become part of a biomarker panel for AD pathogenesis.
Collapse
Affiliation(s)
- Tomoko Sao
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoko Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
10
|
Taraskina AE, Nasyrova RF, Zabotina AM, Sosin DN, Sosina КА, Ershov EE, Grunina MN, Krupitsky EM. Potential diagnostic markers of olanzapine efficiency for acute psychosis: a focus on peripheral biogenic amines. BMC Psychiatry 2017; 17:394. [PMID: 29221470 PMCID: PMC5723030 DOI: 10.1186/s12888-017-1562-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Biomarkers are now widely used in many fields of medicine, and the identification of biomarkers that predict antipsychotic efficacy and adverse reactions is a growing area of psychiatric research. Monoamine molecules of the peripheral bloodstream are possible prospective biomarkers based on a growing body of evidence indicating that they may reflect specific changes in neurotransmitters in the brain. The aim of this study was to detect peripheral biogenic amine indicators of patients with acute psychosis and to test the correlations between the biological measures studied and the psychopathological status of the patients. METHODS This research included 60 patients with acute psychosis treated with olanzapine (n = 30) or haloperidol (n = 30). Here, we measured biogenic amine indicators, including mRNA levels of dopamine receptor D4 (DRD4) and the serotonin 2A receptor (5HTR2A), in peripheral blood mononuclear cells (PBMCs) using quantitative real-time polymerase chain reaction and serum dopamine concentrations by enzyme linked immunosorbent assay (ELISA). Psychopathological status was evaluated using psychometric scales. The assessments were conducted prior to and after 14 and 28 days of treatment. RESULTS The administration of haloperidol, but not olanzapine, up-regulated 5HTR2A mRNA in a linear manner, albeit without statistical significance (p = 0.052). Both drugs had non-significant effects on DRD4 mRNA levels. Nevertheless, a positive correlation was found between DRD4 and 5HTR2A mRNA levels over a longitudinal trajectory, suggesting co-expression of the two genes. A significant positive correlation was observed between 5HTR2A mRNA levels and total Positive and Negative Syndrome Scale (PANSS) scores in both groups of patients before treatment. A significant correlation between baseline 5HTR2A mRNA levels and PANSS scores on days 14 and 28 of treatment remained for patients treated with olanzapine only. Moreover, a significant positive correlation was observed between blood serum dopamine levels and scores on extrapyramidal symptom scales in the olanzapine group. CONCLUSIONS The DRD4 and 5HTR2A genes are co-expressed in PBMCs during antipsychotic administration. Despite a correlation between the studied biogenic amine indicators and the psychopathological status of patients, reliable biomarkers of treatment response could not be determined.
Collapse
Affiliation(s)
- A. E. Taraskina
- Department of Addictions, Department of personalized psychiatry and neurology, V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, ul. Bekhterev, d. 3, Saint-Petersburg, 192019 Russia
- Laboratory of Molecular Biology, First Saint Petersburg Pavlov State Medical University, L’va Tolstogo str. 6/8, Saint-Petersburg, 197022 Russia
- Laboratory of Molecular Human Genetics, National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute named after B.P. Konstantinov, Leningrad district, Orlova Roscha, Leningrad district, Gatchina, 188300 Russia
| | - R. F. Nasyrova
- Department of Addictions, Department of personalized psychiatry and neurology, V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, ul. Bekhterev, d. 3, Saint-Petersburg, 192019 Russia
| | - A. M. Zabotina
- Laboratory of Molecular Biology, First Saint Petersburg Pavlov State Medical University, L’va Tolstogo str. 6/8, Saint-Petersburg, 197022 Russia
- Laboratory of Molecular Human Genetics, National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute named after B.P. Konstantinov, Leningrad district, Orlova Roscha, Leningrad district, Gatchina, 188300 Russia
| | - D. N. Sosin
- Department of Addictions, Department of personalized psychiatry and neurology, V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, ul. Bekhterev, d. 3, Saint-Petersburg, 192019 Russia
| | - К. А. Sosina
- Department of Addictions, Department of personalized psychiatry and neurology, V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, ul. Bekhterev, d. 3, Saint-Petersburg, 192019 Russia
| | - E. E. Ershov
- Saint Petersburg Psychiatric Hospital no. 1 named after P.P. Kashchenko, Leningrad region, district, s. Nikolskoye, ul. Menkovskaya, d. 10, Gatchina, Russia
| | - M. N. Grunina
- Laboratory of Molecular Human Genetics, National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute named after B.P. Konstantinov, Leningrad district, Orlova Roscha, Leningrad district, Gatchina, 188300 Russia
| | - E. M. Krupitsky
- Department of Addictions, Department of personalized psychiatry and neurology, V.M. Bekhterev National Medical Research Center Psychiatry and Neurology, ul. Bekhterev, d. 3, Saint-Petersburg, 192019 Russia
- Laboratory of Molecular Biology, First Saint Petersburg Pavlov State Medical University, L’va Tolstogo str. 6/8, Saint-Petersburg, 197022 Russia
| |
Collapse
|
11
|
Liu L, Luo Y, Zhang G, Jin C, Zhou Z, Cheng Z, Yuan G. Correlation of DRD2 mRNA expression levels with deficit syndrome severity in chronic schizophrenia patients receiving clozapine treatment. Oncotarget 2017; 8:86515-86526. [PMID: 29156812 PMCID: PMC5689702 DOI: 10.18632/oncotarget.21230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a complex, severe, chronic psychiatric disorder, and the associated deficit syndrome is widely regarded as an important clinical aspect of schizophrenia. This study analyzed the relationship of deficit syndrome severity with the mRNA levels of members of signaling pathways that associate with the pathophysiology of schizophrenia, including the dopamine D2 receptor (DRD2), protein kinase B (AKT1), and phosphoinositide-3 kinase (PI3KCB), in peripheral blood leukocytes (PBLs) of 20 healthy controls and 19 chronic schizophrenia patients with long-term clozapine treatment. The DRD2 expression levels in chronic schizophrenia group were statistically higher than those in controls (t=2.168, p=0.037). Moreover, in chronic schizophrenia group, correlations were observed between the expression levels of DRD2 and PI3KCB (r=0.771, p<0.001), DRD2 and AKT1 (r=0.592, p=0.008), and PI3KCB and AKT1 (r=0.562, p=0.012) and between the DRD2 mRNA levels and the Proxy for the Deficit Syndrome score (r=0.511, p=0.025). In control group, the correlation between PI3KCB expression levels and DRD2 expression levels was only observed (r=0.782, p<0.001). In conclusion, a correlation was observed between increased deficit syndrome severity and elevated expression levels of DRD2 in PBLs of chronic schizophrenia patients receiving long-term clozapine treatment.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Yin Luo
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guofu Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
12
|
Torrisi SA, Salomone S, Geraci F, Caraci F, Bucolo C, Drago F, Leggio GM. Buspirone Counteracts MK-801-Induced Schizophrenia-Like Phenotypes through Dopamine D 3 Receptor Blockade. Front Pharmacol 2017; 8:710. [PMID: 29046641 PMCID: PMC5632784 DOI: 10.3389/fphar.2017.00710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Several efforts have been made to develop effective antipsychotic drugs. Currently, available antipsychotics are effective on positive symptoms, less on negative symptoms, but not on cognitive impairment, a clinically relevant dimension of schizophrenia. Drug repurposing offers great advantages over the long-lasting, risky and expensive, de novo drug discovery strategy. To our knowledge, the possible antipsychotic properties of buspirone, an azapirone anxiolytic drug marketed in 1986 as serotonin 5-HT1A receptor (5-HT1AR) partial agonist, have not been extensively investigated despite its intriguing pharmacodynamic profile, which includes dopamine D3 (D3R) and D4 receptor (D4R) antagonist activity. Multiple lines of evidence point to D3R as a valid therapeutic target for the treatment of several neuropsychiatric disorders including schizophrenia. In the present study, we tested the hypothesis that buspirone, behaving as dopamine D3R antagonist, may have antipsychotic-like activity. Materials and Methods: Effects of acute administration of buspirone was assessed on a wide-range of schizophrenia-relevant abnormalities induced by a single administration of the non-competitive NMDAR antagonist MK-801, in both wild-type mice (WT) and D3R-null mutant mice (D3R-/-). Results: Buspirone (3 mg⋅kg-1, i.p.) was devoid of cataleptogenic activity in itself, but resulted effective in counteracting disruption of prepulse inhibition (PPI), hyperlocomotion and deficit of temporal order recognition memory (TOR) induced by MK-801 (0.1 mg⋅kg-1, i.p.) in WT mice. Conversely, in D3R-/- mice, buspirone was ineffective in preventing MK-801-induced TOR deficit and it was only partially effective in blocking MK-801-stimulated hyperlocomotion. Conclusion: Taken together, these results indicate, for the first time, that buspirone, might be a potential therapeutic medication for the treatment of schizophrenia. In particular, buspirone, through its D3R antagonist activity, may be a useful tool for improving the treatment of cognitive deficits in schizophrenia that still represents an unmet need of this disease.
Collapse
Affiliation(s)
- Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
14
|
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8:53791-53803. [PMID: 28881851 PMCID: PMC5581150 DOI: 10.18632/oncotarget.17339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
15
|
Zadka Ł, Dzięgiel P, Kulus M, Olajossy M. Clinical Phenotype of Depression Affects Interleukin-6 Synthesis. J Interferon Cytokine Res 2017; 37:231-245. [PMID: 28418766 DOI: 10.1089/jir.2016.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is not a single disease, but a number of various ailments that form one entity. Psychomotor retardation, anhedonia, sleep disorders, an increased suicide risk, and anxiety are the main symptoms that often define the clinical diagnosis of depression. Interleukin-6 (IL-6), as one of the proinflammatory cytokines, seems to be overexpressed during certain mental disorders, including MDD. Overexpression of IL-6 in depression is thought to be a factor associated with bad prognosis and worse disease course. IL-6 may directly affect brain functioning and production of neurotransmitters; moreover, its concentration is correlated with certain clinical symptoms within the wide range of depressive symptomatology. Furthermore, there is a strong correlation between IL-6 synthesis and psychosomatic functioning of the patient. This article discusses potential sources and significance of IL-6 in the pathogenesis of depression.
Collapse
Affiliation(s)
- Łukasz Zadka
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland .,2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| | - Piotr Dzięgiel
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Michał Kulus
- 1 Department of Histology and Embryology, Wroclaw Medical University , Wrocław, Poland
| | - Marcin Olajossy
- 2 II Department of Psychiatry and Psychiatric Rehabilitation, Independent Public Teaching Hospital No 1 in Lublin, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
16
|
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin Ther Targets 2017; 21:259-272. [PMID: 28052701 DOI: 10.1080/14728222.2017.1279149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment. Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson's disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities. Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.
Collapse
Affiliation(s)
- Akinori Nishi
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| | - Takahide Shuto
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| |
Collapse
|
17
|
Immunomodulatory Effects Mediated by Dopamine. J Immunol Res 2016; 2016:3160486. [PMID: 27795960 PMCID: PMC5067323 DOI: 10.1155/2016/3160486] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.
Collapse
|
18
|
Liu L, Luo Y, Zhang G, Jin C, Zhou Z, Cheng Z, Yuan G. The mRNA expression of DRD2, PI3KCB, and AKT1 in the blood of acute schizophrenia patients. Psychiatry Res 2016; 243:397-402. [PMID: 27449010 DOI: 10.1016/j.psychres.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
The phosphoinositide 3 kinase - protein kinase B (PI3K-Akt) signaling pathway plays an important role in the dopamine D2 receptor (DRD2) pathway and in the pathophysiology of schizophrenia. This study measured the mRNA levels of DRD2, PI3KCB, and AKT1 in peripheral blood samples from 24 acute schizophrenia patients and 20 healthy controls using real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR). We found that in the acute schizophrenia patients, the mRNA expression levels of DRD2 and PI3KCB were significantly lower than those in the healthy controls, while the AKT1 mRNA levels were significantly higher than those in the healthy controls. A significant relationship between the mRNA levels of DRD2 and PI3KCB was found only in the controls. In conclusion, the gene expression state of the DRD2-PI3K-AKT signaling cascade differed significantly between acute schizophrenia patients and healthy controls.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China.
| | - Yin Luo
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guofu Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China; Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China; Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|