1
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
He M, Wu H, Hu L, Liu N, Zhang G, Wang S. Regulatory mechanism of the Glabrene against non-small cell lung cancer by suppressing FGFR3. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38517198 DOI: 10.1002/tox.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a highly malignant tumor with limited effective treatment options. This study aimed to investigate the regulatory mechanism of Glabrene on NSCLC through its interaction with FGFR3. METHODS HCC827 cells were implanted into nude mice and treated with Glabrene. Tumor volume was monitored at 0, 3, 6, and 9 days after medical treatment. Tissue analysis included Hematoxylin and Eosin (HE) and Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) staining, as well as immunohistochemistry for Ki67, ERK1/2, and p-ERK1/2 expression. Cell viability was determined with the CCK8 method. We utilized immunofluorescence techniques to observe apoptosis, as well as the levels of E-cadherin and Vimentin expression. Cellular proliferation was determined via plate cloning assay and cellular mobility was determined via scratch assay. Cellular invasion ability was assessed via a transwell assay. mRNA and protein levels of FGFR3, MMP1, MMP9, vimentin, E-cadherin, ERK1/2, and p-ERK1/2 were detected via qPCR and Western blot. IGF-1, VEGF, and Estradiol (E2) levels were measured through Enzyme linked immunosorbent assay (ELISA). RESULTS This study verified that Glabrene was capable of suppressing tumor growth in NSCLC mice, reversing tumor tissue's pathological morphology, attenuating the capacities of cancerous cells' proliferation, migration, and invasion, and leading to apoptosis. Besides, Glabrene could reduce the FGFR3 expression in HCC827 cells. Over-expression of FGFR3 promotes the proliferation of HCC827 cells, increase both contents of IGF-1, VEGF, and E2, and expressions of MMP1, MMP9, vimentin, and p-ERK1/2, while Glabrene inhibited FGFR3. Glabrene, and inhibition of FGFR3 expression were capable of decreasing FGFR3, MMP1, MMP9, vimentin, and p-ERK1/2 expression, as well as contents of IGF-1, VEGF, and E2 in model mice and HCC827 cells, and promoting the expression of E-cadherin. CONCLUSION Glabrene has the potential as a therapeutic agent for NSCLC by reducing cancer invasion and migration through the inhibition of ERK1/2 phosphorylation and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Miao He
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Huiling Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Bone and joint rehabilitation department, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjing Hu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Nan Liu
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guoduo Zhang
- Department of Hematology and Oncology, Chongqing Oncology Hematology Department, Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shumei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Soltani F, Kamali H, Akhgari A, Afrasiabi Garekani H, Nokhodchi A, Sadeghi F. Formulation and optimization of a single-layer coat for targeting budesonide pellets to the descending Colon. Pharm Dev Technol 2024; 29:212-220. [PMID: 38392961 DOI: 10.1080/10837450.2024.2321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Pharmaceutical Research Inc, Coral Springs, Florida, USA
| | - Fatemeh Sadeghi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Bádon ES, Beke L, Mokánszki A, András C, Méhes G. Carbonic Anhydrase IX Expression and Treatment Response Measured in Rectal Adenocarcinoma Following Neoadjuvant Chemo-Radiotherapy. Int J Mol Sci 2023; 24:ijms24032581. [PMID: 36768903 PMCID: PMC9916425 DOI: 10.3390/ijms24032581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The overexpression of the pH regulator carbonic anhydrase IX (CAIX) due to hypoxic/metabolic stress was reported in various tumors as an adverse prognostic feature. Our retrospective study aimed to investigate the general pattern and dynamics of CAIX expression in rectal adenocarcinoma following preoperative neoadjuvant therapy (NAT) in matched initial biopsy and surgical resection samples. A total of 40/55 (72.72%) of the post-treatment samples showed partial CAIX expression, frequently in the proximity of hypoxic tumor areas. CAIX expression showed a significant increase in post-treatment tumors (mean% 21.8 ± 24.9 SD vs. 39.4 ± 29.4 SD, p < 0.0001), that was not obvious in untreated tumors (mean% 15.0 ± 21.3 SD vs. 20 ± 23.02, p = 0.073). CAIXhigh phenotype was associated with mutant KRAS status and lack of pathological regression (WHO Tumor Regression Grade 4 and 5). However, the adverse effect of CAIX on overall or progression-free survival could not be statistically confirmed. In conclusion, the dynamic upregulation of CAIX expression is a general feature of rectal adenocarcinoma following neoadjuvant chemo-radiotherapy indicating therapy-induced metabolic reprogramming and cellular adaptation. A synergism of the CAIX-associated regulatory pathways and the mutant KRAS oncogenic signaling most likely contributes to therapy resistance and survival of residual cancer.
Collapse
Affiliation(s)
- Emese Sarolta Bádon
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-5-2411-600
| |
Collapse
|
5
|
Singh P, Waghambare P, Khan T, Omri A. Colorectal cancer management: Strategies in drug delivery. Expert Opin Drug Deliv 2022; 19:653-670. [PMID: 35656670 DOI: 10.1080/17425247.2022.2084531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common cancer leading to death worldwide following breast and lung cancer with the incidence rate of 10%. The treatment comprises of surgery, radiation, and ablation therapy depending upon the stage of cancer. AREAS COVERED The review focuses on various drug delivery strategies explored to circumvent the major constraints associated with the conventional drug delivery systems- poor bioavailability, intra- and inter individual variability, exposure of normal cells to antineoplastic agents, and presence of efflux pump. All these attributes impact the effective delivery of chemotherapeutic agents at the tumor site. The various target specific drug delivery systems developed for colorectal cancer include pH dependent, microbiologically triggered, time dependent, magnetically driven, pressure dependent, prodrug/polysaccharide based, osmotic and ligand mediated systems. This review enumerates novel target specific approaches developed and investigated for potential utility in CRC therapeutics. EXPERT OPINION The limitations of conventional delivery systems can be overcome by development of colon-specific targeted drug delivery systems that overcome the obstacles of nonspecific biodistribution, drug resistance and unwanted adverse effects of conventional drug delivery systems. In addition, nanotechnology approaches help to increase drug solubility, bioavailability, reduce side effects and provide superior drug response in CRC.
Collapse
Affiliation(s)
- Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Pramita Waghambare
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
6
|
Yuan Q, Zhang W, Shang W. Identification and validation of a prognostic risk-scoring model based on sphingolipid metabolism-associated cluster in colon adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:1045167. [PMID: 36518255 PMCID: PMC9742378 DOI: 10.3389/fendo.2022.1045167] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Colon adenocarcinoma (COAD) is the primary factor responsible for cancer-related mortalities in western countries, and its development and progression are affected by altered sphingolipid metabolism. The current study aimed at investigating the effects of sphingolipid metabolism-related (SLP) genes on multiple human cancers, especially on COAD. We obtained 1287 SLP genes from the GeneCard and MsigDb databases along with the public transcriptome data and the related clinical information. The univariate Cox regression analysis suggested that 26 SLP genes were substantially related to the prognosis of COAD, and a majority of SLP genes served as the risk genes for the tumor, insinuating a potential pathogenic effect of SLP in COAD development. Pan-cancer characterization of SLP genes summarized their expression traits, mutation traits, and methylation levels. Subsequently, we focused on the thorough research of COAD. With the help of unsupervised clustering, 1008 COAD patients were successfully divided into two distinct subtypes (C1 and C2). C1 subtype is characterized by a poor prognosis, activation of SLP pathways, high expression of SLP genes, disordered carcinogenic pathways, and immune microenvironment. Based on the clusters of SLP, we developed and validated a novel prognostic model, consisting of ANO1, C2CD4A, EEF1A2, GRP, HEYL, IGF1, LAMA2, LSAMP, RBP1, and TCEAL2, to quantitatively evaluate the clinical outcomes of COAD. The Kaplain-Meier survival curves and ROC curves highlighted the accuracy of our SLP model in both internal and external cohorts. Compared to normal colon tissues, expression of C2CD4A was detected to be significantly higher in COAD; whereas, expression levels of EEF1A2, IGF1, and TCEAL2 were detected to be significantly lower in COAD. Overall, our research emphasized the pathogenic role of SLP in COAD and found that targeting SLP might help improve the clinical outcomes of COAD. The risk model based on SLP metabolism provided a new horizon for prognosis assessment and customized patient intervention.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Qihang Yuan,
| | - Weizhi Zhang
- Dalian No.24 High School, Dalian, Liaoning, China
| | - Weijia Shang
- Dalian No.24 High School, Dalian, Liaoning, China
| |
Collapse
|
7
|
Ni K, Zhan Y, Liu Z, Zhao XZ, Wang W, Wang G, Zhang Z, Li G, Zhang X, Zhang C. Mismatch repair system deficiency is associated with chemoradiotherapy resistance in locally advanced rectal adenocarcinoma patients. J Surg Oncol 2021; 125:692-702. [PMID: 34918842 DOI: 10.1002/jso.26771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have concluded that colorectal cancer patients with deficient mismatch repair (dMMR) usually have a good prognosis. However, some studies have suggested that the prognosis of rectal cancer patients with dMMR appears to be worse. Our aim was to investigate chemoradiotherapy resistance in dMMR rectal tumors. METHODS A retrospective study of 217 patients with locally advanced rectal adenocarcinoma treated with chemoradiotherapy and total mesorectal excision surgery was conducted using immunohistochemistry to determine MMR status and propensity score matching models to reduce potential confounders. Kaplan-Meier analysis, log-rank test, and Cox regression models were used to assess overall survival (OS) and disease-free survival (DFS) in patient subgroups. RESULTS The 3-year DFS rates were 77.1% and 56.7% in the pMMR and dMMR groups, respectively. The pMMR group had significantly better DFS than the dMMR group (hazard ratio [HR], 2.07; 95% confidence interval [CI], 1.10-3.91; p = 0.019). However, there was no significant difference in OS between the two groups (45.7 [interquartile range, IQR], 39.3-72.1] vs. 47.5 [IQR, 29.5-72.1]) (HR, 1.39; 95% CI, 0.70-2.77; p = 0.35). Neither OS nor DFS was significantly different between the neoadjuvant chemoradiotherapy and postoperative chemoradiotherapy groups. CONCLUSION Locally advanced dMMR rectal adenocarcinoma exhibits greater chemoradiotherapy resistance than pMMR.
Collapse
Affiliation(s)
- Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhaoce Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xuan-Zhu Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanting Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhang
- Department of General Surgery, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Guoxun Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,Tianjin Institute of Coloproctology, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,Tianjin Institute of Coloproctology, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,Tianjin Institute of Coloproctology, Tianjin, China
| |
Collapse
|
8
|
Suárez-Cruz A, Molina-Pinilla I, Hakkou K, Rangel-Núñez C, Bueno-Martínez M. Novel poly(azoamide triazole)s containing twin azobenzene units in the backbone. Synthesis, characterization, and in vitro degradation studies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Abd Kadir E, Lim V. Redox‐Responsive Disulphide Bioadhesive Polymeric Nanoparticles for Colon‐Targeted Drug Delivery. BIOADHESIVES IN DRUG DELIVERY 2020:123-145. [DOI: 10.1002/9781119640240.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, Gesquiere I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci 2020; 147:105280. [PMID: 32109493 DOI: 10.1016/j.ejps.2020.105280] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
11
|
Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020; 12:pharmaceutics12010068. [PMID: 31952340 PMCID: PMC7022598 DOI: 10.3390/pharmaceutics12010068] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Colon targeted drug delivery systems have gained a great deal of attention as potential carriers for the local treatment of colonic diseases with reduced systemic side effects and also for the enhanced oral delivery of various therapeutics vulnerable to acidic and enzymatic degradation in the upper gastrointestinal tract. In recent years, the global pharmaceutical market for biologics has grown, and increasing demand for a more patient-friendly drug administration system highlights the importance of colonic drug delivery as a noninvasive delivery approach for macromolecules. Colon-targeted drug delivery systems for macromolecules can provide therapeutic benefits including better patient compliance (because they are pain-free and can be self-administered) and lower costs. Therefore, to achieve more efficient colonic drug delivery for local or systemic drug effects, various strategies have been explored including pH-dependent systems, enzyme-triggered systems, receptor-mediated systems, and magnetically-driven systems. In this review, recent advancements in various approaches for designing colon targeted drug delivery systems and their pharmaceutical applications are covered with a particular emphasis on formulation technologies.
Collapse
|
12
|
Antibody-Targeted Nanoparticles for Cancer Treatment. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Akhter DT, Simpson JD, Fletcher NL, Houston ZH, Fuchs AV, Bell CA, Thurecht KJ. Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Loco‐Regional Delivery with Cell‐Target Specificity. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dewan T. Akhter
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Joshua D. Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H. Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Adrian V. Fuchs
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Craig A. Bell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
14
|
Sun W, Ren S, Li R, Zhang Q, Song H. LncRNA, a novel target biomolecule, is involved in the progression of colorectal cancer. Am J Cancer Res 2019; 9:2515-2530. [PMID: 31815050 PMCID: PMC6895445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed malignancies among males and females worldwide. Although China is a country with a low incidence of colorectal cancer, with the improvement of China's economy and lifestyle changes, the incidence rate in China has generally increased in recent years, and the morbidity and mortality of colorectal cancer rank fifth among those of all malignant tumours. Furthermore, despite recent improvements in screening strategies and treatments for colorectal cancer, the prognosis of advanced colorectal cancer is still poor, mainly due to the recurrence or distant metastasis of this disease. Thus, colorectal cancer still seriously threatens the health and life of people and is a major public health problem worthy of further study. Recently, accumulating evidence has revealed that colorectal carcinogenesis might be a multistep process driven by progressive genetic abnormalities, including changes in lncRNA expression. Moreover, a large number of studies have discovered and studied the abnormal expression of lncRNAs in colorectal cancer, providing a promising target for the diagnosis and treatment of colorectal cancer, which will promote human understanding of the pathogenesis of colorectal cancer and improve diagnosis and treatment. Therefore, in the present review, we mainly summarize the present status of colorectal cancer, the characteristics, functions and clinical perspectives of lncRNAs, and the current therapeutic methods used for colorectal cancer, especially the application of lncRNAs in the treatment of colorectal cancer. It is hoped that this review will give readers a new understanding of the roles of lncRNAs in colorectal cancer.
Collapse
Affiliation(s)
- Weihong Sun
- Biotherapy Center, Department of Oncology, Qingdao Tumor Hospital, Second Affiliated Hospital of Medical College of Qingdao University No. 127 Siliu South Road, Qingdao 266042, Shandong, China
| | - Shaoshao Ren
- Biotherapy Center, Department of Oncology, Qingdao Tumor Hospital, Second Affiliated Hospital of Medical College of Qingdao University No. 127 Siliu South Road, Qingdao 266042, Shandong, China
| | - Ran Li
- Biotherapy Center, Department of Oncology, Qingdao Tumor Hospital, Second Affiliated Hospital of Medical College of Qingdao University No. 127 Siliu South Road, Qingdao 266042, Shandong, China
| | - Qingshan Zhang
- Biotherapy Center, Department of Oncology, Qingdao Tumor Hospital, Second Affiliated Hospital of Medical College of Qingdao University No. 127 Siliu South Road, Qingdao 266042, Shandong, China
| | - Haiping Song
- Biotherapy Center, Department of Oncology, Qingdao Tumor Hospital, Second Affiliated Hospital of Medical College of Qingdao University No. 127 Siliu South Road, Qingdao 266042, Shandong, China
| |
Collapse
|
15
|
Ma Z, Ma R, Wang X, Gao J, Zheng Y, Sun Z. Enzyme and PH responsive 5-flurouracil (5-FU) loaded hydrogels based on olsalazine derivatives for colon-specific drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Jiedu Sangen Decoction Inhibits the Invasion and Metastasis of Colorectal Cancer Cells by Regulating EMT through the Hippo Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1431726. [PMID: 31341488 PMCID: PMC6614995 DOI: 10.1155/2019/1431726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/13/2019] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors affecting the digestive tract. Moreover, the invasion and metastasis of CRC are the main reason therapy is usually inefficient. Decreased intercellular adhesion and enhanced cell motility induced by epithelial-mesenchymal transition (EMT) provide the basic conditions for the invasion and metastasis of the epithelial tumor cells of CRC. The Jiedu Sangen Decoction (JSD) is a prescription that has been used for more than 50 years in the treatment of CRC in the Zhejiang Hospital of Traditional Chinese Medicine. The aim of this study was to investigate the mechanism of JSD-triggered inhibition of invasion and metastasis in colon cancer. In vitro, the EMT model of the SW480 cells was induced by using epithelial growth factor (50 ng/mL). In vivo, the murine model of liver metastasis was constructed by inoculating mice with the SW480 cells. The effects of JSD on cell migration, invasion, and proliferation were determined using the transwell assay and CCK-8 assay. Moreover, the proteins related to the EMT process and the Hippo signaling pathway in the cancerous tissues and cell lines were determined by western blotting and immunostaining. JSD could significantly inhibit the proliferation, migration, and invasion of CRC cells and reverse their EMT status (all, P < 0.05). Moreover, after intervention with JSD, the levels of E-Cadherin (E-cad) increased, whereas the expression levels of N-Cadherin (N-cad), Yes-associated protein (YAP), and the transcriptional coactivator with the PDZ-binding motif (TAZ) decreased in both the SW480 cells and the tumor tissues. In summary, JSD reversed EMT and inhibited the invasion and metastasis of CRC cells through the Hippo signaling pathway.
Collapse
|
17
|
Kiss K, Biri-Kovács B, Szabó R, Ranđelović I, Enyedi KN, Schlosser G, Orosz Á, Kapuvári B, Tóvári J, Mező G. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. Eur J Med Chem 2019; 176:105-116. [PMID: 31100648 DOI: 10.1016/j.ejmech.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Development of peptide-based conjugates for targeted tumour therapy is a current research topic providing new possibilities in cancer treatment. In this study, VHLGYAT heptapeptide selected by phage display technique for HT-29 human colon cancer was investigated as homing peptide for drug delivery. Daunomycin was conjugated to the N-terminus of the peptide directly or through Cathepsin B cleavable spacers. Conjugates showed moderate in vitro cytostatic effect. Therefore, sequence modifications were performed by Ala-scan and positional scanning resulting in conjugates with much higher bioactivity. Conjugates in which Gly was replaced by amino acids with bulky apolaric side chains provided the best efficacy. The influence of the cellular uptake, stability and drug release on the anti-tumour activity was investigated. It was found that mainly the difference in the cellular uptake of the conjugates generated the distinct effect on cell viability. One of the most efficient conjugate Dau = Aoa-LRRY-VHLFYAT-NH2 showed tumour growth inhibition on orthotopically developed HT-29 colon cancer in mice with negligible toxic side effect compared to the free drug. We also indicate that this sequence is not specific to HT-29 cells, but it has a remarkable effect on many other cancer cells. Nevertheless, the Phe-containing conjugate was more active in all cases compared to the conjugate with the parent sequence. The literature data suggested that this sequence is highly overlapped with peptides that recognize Hsp70 membrane bound protein overexpressed in many types of tumours.
Collapse
Affiliation(s)
- Krisztina Kiss
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Rita Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ádám Orosz
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1444, Budapest, Hungary
| | - Bence Kapuvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary.
| |
Collapse
|
18
|
Tupá V, Drahošová S, Grendár M, Adamkov M. Expression and association of carbonic anhydrase IX and cyclooxygenase-2 in colorectal cancer. Pathol Res Pract 2019; 215:705-711. [DOI: 10.1016/j.prp.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
|
19
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
20
|
Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation. Saudi Pharm J 2018; 27:71-81. [PMID: 30662309 PMCID: PMC6323150 DOI: 10.1016/j.jsps.2018.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Background Pterostilbene has a proven chemopreventive effect for colon carcinogenesis but suffers low bioavailability limitations and therefore unable to reach the colonic tissue. Objective and methodology To overcome the issue of low bioavailability, pterostilbene was formulated into an oral colon targeted beads by ionic gelation method using pectin and zinc acetate. Optimization was carried out by 23 factorial design whereby the effect of pectin concentration (X1), zinc acetate concentration (X2) and pterostilbene:pectin ratio (X3) were studied on entrapment efficiency (Y1) and in vitro drug release till 24 h (Y2). The optimized beads were characterized for shape and size, swelling and surface morphology. The optimized beads were uniformly coated with Eudragit S-100 using fluidized bed coater. Optimized coated beads were characterized for in vitro drug release till 24 h and surface morphology. Pharmacokinetic and organ distribution study were performed in rats to ascertain the release of pterostilbene in colon. Results The optimized formulation comprised of 2% w/v of pectin concentration (X1), 2% w/v of zinc acetate concentration (X2) and 1:4 of pterostilbene:pectin ratio (X3), which showed a satisfactory entrapment efficiency (64.80%) and in vitro release (37.88%) till 24 h. The zinc pectinate beads exhibited sphericity, uniform size distribution, adequate swelling and rough surface. The optimized coated beads achieved 15% weight gain, displayed smooth surface and optimum drug release. Pterostilbene from optimized coated beads appeared in the plasma at 14 h and reached the Cmax at 22 h (Tmax), whereas plain pterostilbene exhibited Tmax of 3 h. Discussion and conclusion Thus, larger distribution of pterostilbene was obtained in the colonic tissue compared to stomach and small intestinal tissues. Thus, delayed Tmax and larger distribution of pterostilbene in colonic tissue confirmed the targeting of beads to colon.
Collapse
|
21
|
Lozoya-Agullo I, González-Álvarez I, Merino-Sanjuán M, Bermejo M, González-Álvarez M. Preclinical models for colonic absorption, application to controlled release formulation development. Eur J Pharm Biopharm 2018; 130:247-259. [PMID: 30064699 DOI: 10.1016/j.ejpb.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oral controlled release (CR) formulations have many benefits and have become a valuable resource for the local and systemic administration of drugs. The most important characteristic of these pharmaceutical products is that drug absorption occurs mainly in the colon. Therefore, this review analyses the physiological and physicochemical features that may affect an orally administered CR product, as well as the different strategies to develop a CR dosage form and the methods used to evaluate the formulation efficacy. The models available to study the intestinal permeability and their applicability to colonic permeability determinations are also discussed.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain; Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain
| | | | - Matilde Merino-Sanjuán
- Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University-University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain
| | | |
Collapse
|
22
|
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19:E195. [PMID: 29315231 PMCID: PMC5796144 DOI: 10.3390/ijms19010195] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.
Collapse
Affiliation(s)
- Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Hodgkinson N, Kruger CA, Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol 2017; 39:1010428317734691. [PMID: 28990490 DOI: 10.1177/1010428317734691] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer is commonly treated by tumour resection, as chemotherapy and radiation have proven to be less effective, especially if the tumour has metastasized. Resistance to therapies occurs in almost all patients with colorectal cancer, especially in those with metastatic tumours. Cancer stem cells have the ability to self-renew, and their slow rate of cycling enhances resistance to treatment and increases the likelihood of tumour recurrence. Most metastatic tumours are unable to be surgically removed, thus creating a need for treatment modalities that target cancers directly and destroy cancer stem cells. Photodynamic therapy involves a photosensitizer that when exposed to a light source of a particular wavelength becomes excited and produces a form of oxygen that kills cancer cells. Photodynamic therapy is currently being investigated as a treatment modality for colorectal cancer, and new studies are exploring enhancing photodynamic therapy efficacy with the aid of drug carriers and immune conjugates. These modifications could prove effective in targeting cancer stem cells that are thought to be resistant to photodynamic therapy. In order for photodynamic therapy to be an effective treatment in colorectal cancer, it requires treatment of both primary tumours and the metastatic secondary disease that is caused by colon cancer stem cells. This review focuses on current photodynamic therapy treatments available for colorectal cancer and highlights proposed actively targeted photosynthetic drug uptake mechanisms specifically mediated towards colon cancer stem cells, as well as identify the gaps in research which need to be investigated in order to develop a combinative targeted photodynamic therapy regime that can effectively control colorectal cancer primary and metastatic tumour growth by eliminating colon cancer stem cells.
Collapse
Affiliation(s)
- Natasha Hodgkinson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Cherie A Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
24
|
Sakurai Y, Mizumura W, Murata M, Hada T, Yamamoto S, Ito K, Iwasaki K, Katoh T, Goto Y, Takagi A, Kohara M, Suga H, Harashima H. Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting. Mol Pharm 2017; 14:3290-3298. [DOI: 10.1021/acs.molpharmaceut.7b00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Sakurai
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Wataru Mizumura
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Manami Murata
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Tomoya Hada
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Shoshiro Yamamoto
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Kenichiro Ito
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kazuhiro Iwasaki
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Asako Takagi
- Department of Microbiology
and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Michinori Kohara
- Department of Microbiology
and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hideyoshi Harashima
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| |
Collapse
|
25
|
Uysal N, Kutlutürkan S, Uğur I. Effects of foot massage applied in two different methods on symptom control in colorectal cancer patients: Randomised control trial. Int J Nurs Pract 2017; 23. [PMID: 28176423 DOI: 10.1111/ijn.12532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 11/29/2022]
Abstract
This randomized controlled clinical study aimed to determine the effect of 2 foot massage methods on symptom control in people with colorectal cancer who received chemoradiotherapy. Data were collected between June 16, 2015, and February 10, 2016, in the Department of Radiation Oncology of an oncology training and research hospital. The sample comprised 60 participants. Data were collected using an introductory information form, common terminology criteria for adverse events and European Organization for Research and Treatment of Cancer Quality of Life Questionnaires C30 and CR29. Participants were randomly allocated to 3 groups: classical foot massage, reflexology, and standard care control. The classical massage group received foot massage using classical massage techniques, and the reflexology group received foot reflexology focusing on symptom-oriented reflexes twice a week during a 5-week chemoradiotherapy treatment schedule. The control group received neither classical massage nor reflexology. All patients were provided with the same clinic routine care. The classical massage was effective in reducing pain level and distension incidence while foot reflexology was effective in reducing pain and fatigue level, lowering incidence of distension and urinary frequency and improving life quality.
Collapse
Affiliation(s)
- Neşe Uysal
- Faculty of Health Science, Department of Nursing, İnternal Medicine Nursing, Yıldrım Beyazıt University, Ankara, Turkey
| | - Sevinç Kutlutürkan
- Faculty of Health Science, Department of Nursing, İnternal Medicine Nursing, Gazi University, Ankara, Turkey
| | - Işıl Uğur
- Department of Radiation Oncology, Dr. Abdurrahman Yurtarslan Oncology Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
26
|
Knockdown of ELMO3 Suppresses Growth, Invasion and Metastasis of Colorectal Cancer. Int J Mol Sci 2016; 17:ijms17122119. [PMID: 27999268 PMCID: PMC5187919 DOI: 10.3390/ijms17122119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023] Open
Abstract
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the expression of ELMO3 in 45 cases of paired CRC tumor tissues and adjacent normal tissues. Furthermore, we assessed the effect of the knockdown of ELMO3 on cell proliferation, cell cycle, migration, invasion and F-actin polymerization in HCT116 cells. The result shows that the expression of ELMO3 in CRC tissues was significantly increased in comparison to the adjacent normal colorectal tissues. Moreover, this overexpression was associated with tumor size (p = 0.007), tumor differentiation (p = 0.001), depth of invasion (p = 0.009), lymph node metastasis (p = 0.003), distant metastasis (p = 0.013) and tumor, node, metastasis (TNM)-based classification (p = 0.000). In in vitro experiments, the silencing of ELMO3 inhibited cell proliferation, invasion, metastasis, and F-actin polymerization, and induced Gap 1 (G1) phase cell cycle arrest. Our study demonstrates that ELMO3 is involved in the processes of growth, invasion and metastasis of CRC, and could be used a potential molecular diagnostic tool or therapy target of CRC.
Collapse
|
27
|
Ma ZG, Ma R, Xiao XL, Zhang YH, Zhang XZ, Hu N, Gao JL, Zheng YF, Dong DL, Sun ZJ. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomater 2016; 44:323-31. [PMID: 27544813 DOI: 10.1016/j.actbio.2016.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 02/01/2023]
Abstract
UNLABELLED Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. STATEMENT OF SIGNIFICANCE Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activities on colon cancer cells (Br J Pharmacol. 2015 172(15):3929-43.). Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We found that the DMF-loaded sPCEG-azo polymeric micelles showed colon-targeted DMF release and anti-tumor activities, providing a novel approach potential for colon cancer therapy.
Collapse
Affiliation(s)
- Zhen-Gang Ma
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - Rui Ma
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - Xiao-Lin Xiao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yong-Hui Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xin-Zi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Nan Hu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Jin-Lai Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Yu-Feng Zheng
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Zhi-Jie Sun
- Institute of Materials Processing and Intelligent Manufacturing & Center for Biomedical Materials and Engineering, Harbin Engineering University, PR China.
| |
Collapse
|
28
|
Clausse V, Goloudina AR, Uyanik B, Kochetkova EY, Richaud S, Fedorova OA, Hammann A, Bardou M, Barlev NA, Garrido C, Demidov ON. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy. Cell Death Dis 2016; 7:e2195. [PMID: 27077811 PMCID: PMC4855675 DOI: 10.1038/cddis.2016.96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/16/2022]
Abstract
Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy.
Collapse
Affiliation(s)
- V Clausse
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - A R Goloudina
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - B Uyanik
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | | | - S Richaud
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - O A Fedorova
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - A Hammann
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - M Bardou
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France
| | - N A Barlev
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - C Garrido
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Anticancer Center Georges François Leclerc, Dijon, France
| | - O N Demidov
- INSERM UMR 866, Laboratoire d'excellence ARC, Dijon, France.,University of Burgundy, Dijon, France.,Institute of Cytology, RAS, St. Petersburg, Russia
| |
Collapse
|