1
|
Luo Y, Jiang Y, Zhong T, Li Z, He J, Li X, Cui K. LncRNA HCG18 affects diabetic cardiomyopathy and its association with miR-9-5p/IGF2R axis. Heliyon 2024; 10:e24604. [PMID: 38322876 PMCID: PMC10845250 DOI: 10.1016/j.heliyon.2024.e24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
This paper aimed to investigate the role of lncRNA HCG18 (HCG18) in the progression of diabetic cardiomyopathy (DCM) and potential mechanisms. Streptozocin (STZ) was used to induce DCM model in rats, which was confirmed by blood glucose concentration, body weight, and HE staining. Myocardial apoptosis was detected by TUNEL. H9c2 cardiomyocytes were used to construct cell models of DCM through treatment of high glucose. The results showed that HCG18 was overexpressed in STZ induced DCM rat model and high glucose induced H9c2 cardiomyocytes. Si-HCG18 significantly increased cell viability, reduced cell apoptosis, attenuated activities of myocardial enzymes and enhanced activities of antioxidant enzymes in STZ induced DM model and high glucose induced H9c2 cardiomyocytes, while the results of upregulation of HCG18, in high glucose induced H9c2 cardiomyocytes, were opposite with that of si-HCG18. MiR-9-5p was a target of HCG18, and which was down-regulated in cardiomyocytes of DCM. The overexpression of miR-9-5p could neutralize the high glucose induced cardiomyocyte injury, and the silence of miR-9-5p could reverse the effect of si-HCG18 on high glucose induced cardiomyocytes. MiR-9-5p could directly target to IGF2R, and IGF2R was overexpressed in cardiomyocytes of DCM. Up-regulation of IGF2R can reverse the protective effect of si-HCG18 on cardiomyocytes. Taken together, HCG18 is significantly increased in cardiomyocytes of DCM. Down-regulation of HCG18 can improve cardiomyocyte injury through miR-9-5p/IGF2R axis in DCM.
Collapse
Affiliation(s)
- Yuhui Luo
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Yi Jiang
- Department of Geriatrics, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 40013, China
| | - Tingting Zhong
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Zhenggong Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Jia He
- Department of Echocardiogram, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Xiaoli Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Kun Cui
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| |
Collapse
|
2
|
Palacios C, Wang P, Wang N, Brown MA, Capatosto L, Du J, Jiang J, Zhang Q, Dahal N, Lamichhaney S. Genomic Variation, Population History, and Long-Term Genetic Adaptation to High Altitudes in Tibetan Partridge (Perdix hodgsoniae). Mol Biol Evol 2023; 40:msad214. [PMID: 37768198 PMCID: PMC10583571 DOI: 10.1093/molbev/msad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Species residing across elevational gradients display adaptations in response to environmental changes such as oxygen availability, ultraviolet radiation, and temperature. Here, we study genomic variation, gene expression, and long-term adaptation in Tibetan Partridge (Perdix hodgsoniae) populations residing across the elevational gradient of the Tibetan Plateau. We generated a high-quality draft genome and used it to carry out downstream population genomic and transcriptomic analysis. The P. hodgsoniae populations residing across various elevations were genetically distinct, and their phylogenetic clustering was consistent with their geographic distribution. We identified possible evidence of gene flow between populations residing in <3,000 and >4,200 m elevation that is consistent with known habitat expansion of high-altitude populations of P. hodgsoniae to a lower elevation. We identified a 60 kb haplotype encompassing the Estrogen Receptor 1 (ESR1) gene, showing strong genetic divergence between populations of P. hodgsoniae. We identified six single nucleotide polymorphisms within the ESR1 gene fixed for derived alleles in high-altitude populations that are strongly conserved across vertebrates. We also compared blood transcriptome profiles and identified differentially expressed genes (such as GAPDH, LDHA, and ALDOC) that correlated with differences in altitude among populations of P. hodgsoniae. These candidate genes from population genomics and transcriptomics analysis were enriched for neutrophil degranulation and glycolysis pathways, which are known to respond to hypoxia and hence may contribute to long-term adaptation to high altitudes in P. hodgsoniae. Our results highlight Tibetan Partridges as a useful model to study molecular mechanisms underlying long-term adaptation to high altitudes.
Collapse
Affiliation(s)
- Catalina Palacios
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Pengcheng Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Nan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Megan A Brown
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lukas Capatosto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jiahu Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qingze Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, P. R. China
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Wu Z, Huang W, He X, Dutta S, Paul C, Fan GC, Kanisicak O, Xu M, Liang J, Wang Y. Myocardial IGF2R is a critical mediator of inflammation and fibrosis after ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537835. [PMID: 37131709 PMCID: PMC10153233 DOI: 10.1101/2023.04.21.537835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common occurrence in various surgical procedures used to treat heart diseases. However, the role of insulin-like growth factor 2 receptor (IGF2R) during the process of myocardial I/R remains unclear. Therefore, this study aims to investigate the expression, distribution, and functionality of IGF2R in various I/R-associated models (such as reoxygenation, revascularization, and heart transplant). Loss-of-function studies (including myocardial conditional knockout and CRISPR interference) were performed to clarify the role of IGF2R in I/R injuries. Following hypoxia, IGF2R expression increased, but this effect was reversed upon restoration of oxygen levels. Loss of myocardial IGF2R was found to enhance the cardiac contractile functions, and reduced cell infiltration or cardiac fibrosis of I/R mouse models compared to the genotype control. CRISPR-inhibition of IGF2R decreased cell apoptotic death under hypoxia. RNA sequencing analysis indicated that myocardial IGF2R played a critical role in regulating the inflammatory response, innate immune response, and apoptotic process following I/R. Integrated analysis of the mRNA profiling, pulldown assays, and mass spectrometry identified granulocyte-specific factors as potential targets of myocardial IGF2R in the injured heart. In conclusion, myocardial IGF2R emerges as a promising therapeutic target to ameliorate inflammation or fibrosis following I/R injuries.
Collapse
|
4
|
Mirchandani AS, Jenkins SJ, Bain CC, Sanchez-Garcia MA, Lawson H, Coelho P, Murphy F, Griffith DM, Zhang A, Morrison T, Ly T, Arienti S, Sadiku P, Watts ER, Dickinson RS, Reyes L, Cooper G, Clark S, Lewis D, Kelly V, Spanos C, Musgrave KM, Delaney L, Harper I, Scott J, Parkinson NJ, Rostron AJ, Baillie JK, Clohisey S, Pridans C, Campana L, Lewis PS, Simpson AJ, Dockrell DH, Schwarze J, Hirani N, Ratcliffe PJ, Pugh CW, Kranc K, Forbes SJ, Whyte MKB, Walmsley SR. Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nat Immunol 2022; 23:927-939. [PMID: 35624205 PMCID: PMC9174051 DOI: 10.1038/s41590-022-01216-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.
Collapse
Affiliation(s)
- Ananda S Mirchandani
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Stephen J Jenkins
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Manuel A Sanchez-Garcia
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hannah Lawson
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Patricia Coelho
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Fiona Murphy
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David M Griffith
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ailiang Zhang
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Arienti
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emily R Watts
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rebecca S Dickinson
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Leila Reyes
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - George Cooper
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Clark
- Intensive Care Unit, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - David Lewis
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Van Kelly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Liam Delaney
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Isla Harper
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Anthony J Rostron
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J Kenneth Baillie
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lara Campana
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David H Dockrell
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jürgen Schwarze
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nikhil Hirani
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter J Ratcliffe
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
| | - Christopher W Pugh
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kamil Kranc
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Stuart J Forbes
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Moira K B Whyte
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah R Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Isoform-selective HDAC Inhibitor Mocetinostat (MGCD0103) Alleviates Myocardial Ischemia/Reperfusion Injury via Mitochondrial Protection through the HDACs/CREB/PGC-1α Signaling Pathway. J Cardiovasc Pharmacol 2021; 79:217-228. [PMID: 34983914 DOI: 10.1097/fjc.0000000000001174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Over the past decade, histone deacetylases (HDACs) has been proven to manipulate development and exacerbation of cardiovascular diseases, including myocardial ischemia/reperfusion injury (MIRI), cardiac hypertrophy, ventricular remodeling, myocardial fibrosis. Inhibition of histone deacetylases, especially class-I HDACs, is potent to protection of ischemic myocardium after ischemia/reperfusion. Herein, we examine whether mocetinostat (MGCD0103, MOCE), a class-I selective HDAC inhibitor in phase-II clinical trial, conducts cardioprotection under ischemia/reperfusion (I/R) in vivo and vitro, if so, reveal its potential pharmacological mechanism to provide an experimental and theoretical basis for mocetinostat usage in a clinical setting. HCMs were exposed to hypoxia and reoxygenation (H/R), with or without mocetinostat treatment. H/R reduced mitochondrial membrane potential (MMP) and induced HCMs apoptosis. Mocetinostat pre-treatment reversed these H/R-induced mitochondrial damage and cellular apoptosis and upregulated CREB, p-CREB and PGC-1α in HCMs during H/R. Transfection with siRNA against PGC-1α or CREB abolished the protective effects of mocetinostat on cardiomyocytes undergoing H/R. In vivo, mocetinostat was demonstrated to protect myocardial injury posed by myocardial ischemia/reperfusion (I/R) via activation of CREB and upregulation of PGC-1α. Mocetinostat (MGCD0103) can protect myocardium from ischemia/reperfusion injury through mitochondrial protection mediated by CREB/PGC-1α pathway. Therefore, activation of the CREB/PGC-1α signaling pathway via inhibition of Class-I HDACs may be a promising new therapeutic strategy for alleviating myocardial reperfusion injury.
Collapse
|
6
|
Merrett JE, Bo T, Psaltis PJ, Proud CG. Identification of DNA response elements regulating expression of CCAAT/enhancer-binding protein (C/EBP) β and δ and MAP kinase-interacting kinases during early adipogenesis. Adipocyte 2020; 9:427-442. [PMID: 32787498 PMCID: PMC7469549 DOI: 10.1080/21623945.2020.1796361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Given the high and increasing prevalence of obesity and associated disorders, such as type-2 diabetes, it is important to understand the mechanisms that regulate lipid storage and the differentiation of fat cells, a process termed adipogenesis. Using the well-established mouse 3T3-L1 in vitro model of adipogenesis, we refine how the induction of two key adipogenic transcription factors, CCAAT/enhancer-binding proteins (C/EBPs) β and δ are regulated during early adipogenesis. We identify, in the gene promoters of Cebpb and Cebpd, the DNA response elements responsible for binding transcription factors that are activated by cAMP or glucocorticoids. We also show that mitogen-activated protein kinase (MAPK)-interacting kinase 2 (MNK2; Mknk2), which plays a distinct role in diet-induced obesity, is induced during early adipogenesis and identify the functional DNA response elements responsible for regulating its expression. Mknk2 expression is maintained in differentiated 3T3-L1 adipocytes and is expressed at high levels across a range of mouse adipose tissue depots. Together, these new insights help to clarify the transcriptional programme of early adipogenesis and identify Mknk2 as one of potentially many genes up-regulated during adipogenesis.
Collapse
Affiliation(s)
- James E. Merrett
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Tao Bo
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, Australia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Peter J. Psaltis
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G. Proud
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Yang J, Liu S, Wang H, Liu Y, Liu Y. miR-134-5p inhibition reduces infarct-induced cardiomyocyte apoptosis via Creb1 upregulation. J Stroke Cerebrovasc Dis 2020; 29:104850. [PMID: 32689640 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Following the recent discovery that microRNA-134-5p (miR-134-5p) is elevated in the early stages of acute myocardial infarction (AMI), we examined the specific role of miR-134-5p in cardiomyocytes during AMI. METHODS To study miR-134-5p's role in the context of AMI, we used a combination of in vitro experiments in H2O2-treated or hypoxic cardiomyocyte cell cultures as well as in vivo experiments in a murine model of AMI. RESULTS H2O2- and hypoxia-induced cardiomyocyte injury upregulated miR-134-5p expression. miR-134-5p overexpression increased cardiomyocyte apoptosis, whereas miR-134-5p inhibition reduced cardiomyocyte apoptosis. We discovered that the transcription factor cAMP-responsive element binding protein 1 (Creb1) is a functional target of miR-134-5p responsible for regulating cardiomyocyte apoptosis. In vivo AMI resulted in the upregulation and downregulation of miR-134-5p and Creb1 in the infarct area, respectively. Circulating miR-134-5p levels were also increased at days 1 and 2 post-AMI. Modulation of myocardial miR-124-5p expression by intramyocardial injection of antagomiR-134-5p or agomiR-134-5p significantly affected cardiomyocyte apoptosis, infarct size, and cardiac function in vivo. CONCLUSIONS miR-134-5p/Creb1 axis dysregulation plays a role in hypoxia- or oxidative stress-induced cardiomyocyte apoptosis as well as AMI. Circulating miR-134-5p may show promise as a biomarker for AMI or post-AMI cardiac dysfunction. Manipulating the miR-134-5p/Creb1 axis through either inhibition of miR-134-5p or overexpression of Creb1 may show promise as a novel therapeutic strategy to attenuate cardiac dysfunction following AMI.
Collapse
Affiliation(s)
- Jibin Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Shiwen Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Hao Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Ying Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| | - Yong Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Street, Nanchang, China.
| |
Collapse
|
8
|
Turk C, Turk S, Temirci ES, Malkan UY, Haznedaroglu İC. In vitro analysis of the renin-angiotensin system and inflammatory gene transcripts in human bronchial epithelial cells after infection with severe acute respiratory syndrome coronavirus. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320928872. [PMID: 32490715 PMCID: PMC7271679 DOI: 10.1177/1470320320928872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus family member that triggers a respiratory disease similar to severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV and SARS-CoV-2 are very similar to each other in many respects, such as structure, genetics, and pathobiology. We hypothesized that coronaviruses could affect pulmonary tissues via integration with the critical immune genes after their interaction with renin-angiotensin system (RAS) elements. The aim of the present bioinformatics study was to assess expression changes of the RAS and non-RAS genes, particularly immune response genes, in the lung epithelial cells after infection with SARS-CoV. METHODS Linear regression, hierarchical clustering, pathway analysis, and network analysis were performed using the E-GEOD-17400 data set. RESULTS The whole-genome expression data of the lung epithelial cells infected with SARS-CoV for 12, 24, and 48 hours were analyzed, and a total of 15 RAS family and 29 immune genes were found to be highly correlated with the exposure time to the virus in the studied groups. CONCLUSION RAS genes are important at the initiation of the infections caused by coronavirus family members and may have a strong relationship with the exchange of immune genes in due course following the infection.
Collapse
Affiliation(s)
- Can Turk
- Department of Medical Microbiology,
Lokman Hekim University, Faculty of Medicine, Turkey
| | - Seyhan Turk
- Department of Biochemistry, Hacettepe
University, Faculty of Pharmacy, Turkey
| | - Elif Sena Temirci
- Department of Molecular Biology and
Genetics, Bilkent University, Faculty of Science, Turkey
| | - Umit Yavuz Malkan
- Department of Haematology, Dışkapı
Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences,
Turkey
| | | |
Collapse
|
9
|
Lin KH, Chang RL, Tamilselvi S, Paul CR, Pai PY, Day CH, Wu HC, PadmaViswanadha V, Kuo WW, Huang CY. Reperfusion using lactate Ringer's mixture partially eliminates IGF II receptor involved cardiac damage caused by hemorrhagic shock in diabetic rats. Biotech Histochem 2020; 95:163-170. [PMID: 32053010 DOI: 10.1080/10520295.2019.1651397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Diabetes is a metabolic disorder that damages many organs. We investigated the effects of reperfusion using lactate Ringer's solution (LR) in a diabetic animal model. Eight-week-old rats were divided into groups: control, hemorrhagic shock induced (HS), diabetes mellitus (DM), DM plus HS (DM + HS) and DM rats that received LR after HS (DM + HS + LR). HS was induced by withdrawing blood from the femoral artery and arterial pressure was maintained at 40 mm Hg for 1 h. Animals were perfused with either withdrawn blood or LR. Rats were sacrificed and hearts were collected from all groups. Histopathological studies were performed using left ventricles and western blotting analysis was performed using protein extracted from the left ventricle. Using the TUNEL assay, we found more apoptotic cells in the DM + HS group compared to the control group, whereas in animals resuscitated with LR, the number of apoptotic cells was reduced. Western blotting showed a significant reduction in apoptotic markers, cyt c, cas 9 and cas 3, and increased survival markers, pPI3K and pAKT, in the DM + HS + LR group. Reperfusion with LR may have therapeutic effects on trauma induced HS by blocking the IGF II R facilitated apoptosis pathway in diabetic rats.
Collapse
Affiliation(s)
- K-H Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - R-L Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - S Tamilselvi
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - C R Paul
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - P-Y Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - C H Day
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - H-C Wu
- School of medicine, China Medical University, Taichung, Taiwan
| | - V PadmaViswanadha
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - W-W Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - C-Y Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Cong L, Su Y, Wei D, Qian L, Xing D, Pan J, Chen Y, Huang M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J Cell Mol Med 2020; 24:2356-2368. [PMID: 31955523 PMCID: PMC7011153 DOI: 10.1111/jcmm.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background Catechin protects heart from myocardial ischaemia/reperfusion (MI/R) injury. However, whether catechin inhibits H/R‐induced myocardial cell apoptosis is largely unknown. Objective This study aims to investigate the underlying mechanism of catechin in inhibiting the apoptosis of H/R‐induced myocardial cells. Methods LncRNA MIAT expression was detected by qRT‐PCR. Cell viability of H9C2 cells was detected using CCK‐8 assay. The apoptosis of H9C2 cells was detected by flow cytometry. The interaction between CREB and MIAT promoter regions was confirmed by dual‐luciferase reporter gene assay and ChIP assay. Results In MI/R rats, catechin improved heart function and down‐regulated lncRNA MIAT expression in myocardial tissue. In H/R‐induced H9C2 cells, catechin protected against cell apoptosis, and lncRNA MIAT overexpression attenuated this protective effect of catechin. We confirmed that transcription factor CREB could bind to MIAT promoter region, and catechin suppressed lncRNA MIAT expression through up‐regulating CREB. Catechin improved mitochondrial function and relieved apoptosis through promoting Akt/Gsk‐3β activation. In addition, MIAT inhibited Akt/Gsk‐3β activation and promoted cell apoptosis in H/R‐induced H9C2 cells. Finally, we found catechin promoted Akt/Gsk‐3β activation through inhibiting MIAT expression in H/R‐induced H9C2 cells. Conclusion Catechin relieved H/R‐induced myocardial cell apoptosis through regulating CREB/lncRNA MIAT/Akt/Gsk‐3β pathway.
Collapse
Affiliation(s)
- Lin Cong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisheng Su
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dazhen Wei
- Department of Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Qian
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dawei Xing
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialin Pan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyuan Huang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Pardo M, Cheng Y, Sitbon YH, Lowell JA, Grieco SF, Worthen RJ, Desse S, Barreda-Diaz A. Insulin growth factor 2 (IGF2) as an emergent target in psychiatric and neurological disorders. Review. Neurosci Res 2018; 149:1-13. [PMID: 30389571 DOI: 10.1016/j.neures.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is abundantly expressed in the central nervous system (CNS). Recent evidence highlights the role of IGF2 in the brain, sustained by data showing its alterations as a common feature across a variety of psychiatric and neurological disorders. Previous studies emphasize the potential role of IGF2 in psychiatric and neurological conditions as well as in memory impairments, targeting IGF2 as a pro-cognitive agent. New research on animal models supports that upcoming investigations should explore IGF2's strong promising role as a memory enhancer. The lack of effective treatments for cognitive disturbances as a result of psychiatric diseases lead to further explore IGF2 as a promising target for the development of new pharmacology for the treatment of memory dysfunctions. In this review, we aim at gathering all recent relevant studies and findings on the role of IGF2 in the development of psychiatric diseases that occur with cognitive problems.
Collapse
Affiliation(s)
- M Pardo
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| | - Y Cheng
- University of California Los Angeles, Neurology Department, Los Angeles, CA, USA.
| | - Y H Sitbon
- University of Miami Miller School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA.
| | - J A Lowell
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S F Grieco
- University of California, Department of Anatomy and Neurobiology, Irvine, CA, USA.
| | - R J Worthen
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S Desse
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - A Barreda-Diaz
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| |
Collapse
|
12
|
Chen BC, Weng YJ, Shibu MA, Han CK, Chen YS, Shen CY, Lin YM, Viswanadha VP, Liang HY, Huang CY. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells. Int J Mol Sci 2018; 19:ijms19051298. [PMID: 29701696 PMCID: PMC5983791 DOI: 10.3390/ijms19051298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.
Collapse
Affiliation(s)
- Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yi-Jiun Weng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Chien-Kuo Han
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 404, Taiwan.
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung 912, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management College, Taipei 11260, Taiwan.
| | | | - Hsin-Yueh Liang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
- Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|
13
|
Bakshi A, Bretz CL, Cain TL, Kim J. Intergenic and intronic DNA hypomethylated regions as putative regulators of imprinted domains. Epigenomics 2018; 10:445-461. [PMID: 29569934 PMCID: PMC5925440 DOI: 10.2217/epi-2017-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the regulatory potential of intergenic/intronic hypomethylated regions (iHMRs) within imprinted domains. MATERIALS & METHODS Based on the preliminary results of the histone modification and conservation profiles, we conducted reporter assays on the Peg3 and H19 domain iHMRs. The in vitro results were confirmed by the in vivo deletion of Peg3-iHMR designed to test its function in the Peg3 imprinted domain. RESULTS & CONCLUSION Initial bioinformatic analyses suggested that some iHMRs may be noncanonical enhancers for imprinted genes. Consistent with this, Peg3- and H19-iHMRs showed context-dependent promoter and enhancer activity. Further, deletion of Peg3-iHMR resulted in allele- and sex-specific misregulation of several imprinted genes within the domain. Taken together, these results suggest that some iHMRs may function as domain-wide regulators for the associated imprinted domains.
Collapse
Affiliation(s)
- Arundhati Bakshi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Corey L Bretz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terri L Cain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Guida N, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death. Biochem Pharmacol 2017; 142:229-241. [DOI: 10.1016/j.bcp.2017.06.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
15
|
Huang C, Lee F, Peng S, Lin K, Chen R, Ho T, Tsai F, Padma VV, Kuo W, Huang C. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy. J Cell Physiol 2017; 233:979-989. [DOI: 10.1002/jcp.25945] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/03/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Chih‐Yang Huang
- Translation Research Core, China Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Fa‐Lun Lee
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichung
| | - Shu‐Fen Peng
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Kuan‐Ho Lin
- Emergency DepartmentChina Medical University HospitalTaichungTaiwan
| | - Ray‐Jade Chen
- Department of Surgery, School of Medicine, College of MedicineTaipei Medical UniversityTaipei
| | - Tsung‐Jung Ho
- School of Chinese MedicineChina Medical UniversityTaichungTaiwan
- Chinese Medicine DepartmentChina Medical University Beigang HospitalTaiwan
| | - Fu‐Jen Tsai
- School of Chinese MedicineChina Medical UniversityTaichungTaiwan
| | - Vijaya V. Padma
- Department of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichung
- School of Chinese MedicineChina Medical UniversityTaichungTaiwan
- Department of Health and Nutrition BiotechnologyAsia UniversityTaichung
| |
Collapse
|