1
|
Oh HG, Jung M, Jeong SY, Kim J, Han SD, Kim H, Lee S, Lee Y, You H, Park S, Kim EA, Kim TM, Kim S. Improvement of androgenic alopecia by extracellular vesicles secreted from hyaluronic acid-stimulated induced mesenchymal stem cells. Stem Cell Res Ther 2024; 15:287. [PMID: 39256806 PMCID: PMC11389250 DOI: 10.1186/s13287-024-03906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common form of hair loss. Androgens, such as testosterone and dihydrotestosterone, are the main causes of AGA. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) can reduce AGA. However, preparing therapeutic doses of MSCs for clinical use is challenging. Induced pluripotent stem cell-derived MSCs (iMSCs) are homogenous and easily expandable, enabling scalable production of EVs. Hyaluronic acid (HA) can exert various functions including free radical scavenging, immune regulation, and cell migration. Herein, we examined whether hyaluronic acid (HA) stimulation of iMSCs could produce EVs with enhanced therapeutic outcomes for AGA. METHODS EVs were collected from iMSCs primed with HA (HA-iMSC-EVs) or without HA (iMSC-EVs). The characteristics of EVs were examined using dynamic light scattering, cryo-transmission electron microscopy, immunoblotting, flow cytometry, and proteomic analysis. In vitro, we compared the potential of EVs in stimulating the survival of hair follicle dermal papilla cells undergoing testosterone-mediated AGA. Additionally, the expression of androgen receptor (AR) and relevant growth factors as well as key proteins of Wnt/β-catenin signaling pathway (β-catenin and phosphorylated GSK3β) was analyzed. Subsequently, AGA was induced in male C57/BL6 mice by testosterone administration, followed by repeated injections of iMSC-EVs, HA-iMSC-EVs, finasteride, or vehicle. Several parameters including hair growth, anagen phase ratio, reactivation of Wnt/β-catenin pathway, and AR expression was examined using qPCR, immunoblotting, and immunofluorescence analysis. RESULTS Both types of EVs showed typical characteristics for EVs, such as size distribution, markers, and surface protein expression. In hair follicle dermal papilla cells, the mRNA levels of AR, TGF-β, and IL-6 increased by testosterone was blocked by HA-iMSC-EVs, which also contributed to the augmented expression of trophic genes related to hair regrowth. However, no notable changes were observed in the iMSC-EVs. Re-activation of Wnt/β-catenin was observed in HA-iMSC-EVs but not in iMSC-EVs, as shown by β-catenin stabilization and an increase in phosphorylated GSK3β. Restoration of hair growth was more significant in HA-iMSC-EVs than in iMSC-EVs, and was comparable to that in mice treated with finasteride. Consistently, the decreased anagen ratio induced by testosterone was reversed by HA-iMSC-EVs, but not by iMSC-EVs. An increased expression of hair follicular β-catenin protein, as well as the reduction of AR was observed in the skin tissue of AGA mice receiving HA-iMSC-EVs, but not in those treated with iMSC-EVs. CONCLUSIONS Our results suggest that HA-iMSC-EVs have potential to improve AGA by regulating growth factors/cytokines and stimulating AR-related Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hyun Geun Oh
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Minyoung Jung
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Seon-Yeong Jeong
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Jimin Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Sang-Deok Han
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Hongduk Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea
| | - Seulki Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Yejin Lee
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Haedeun You
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Somi Park
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Eun A Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea
| | - Tae Min Kim
- Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang Daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
| | - Soo Kim
- R&D Center, Brexogen Inc., 3F, 9, Beobwon-ro 8-gil, Songpa-gu, Seoul, 05855, Republic of Korea.
| |
Collapse
|
2
|
Suh SB, Suh JY, Lee H, Cho SB. Human dermal fibroblast-derived secretory proteins for regulating nerve restoration: A bioinformatic approach. Skin Res Technol 2024; 30:e13810. [PMID: 38887125 PMCID: PMC11182777 DOI: 10.1111/srt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Human dermal fibroblasts secrete diverse proteins that regulate wound repair and tissue regeneration. METHODS In this study, dermal fibroblast-conditioned medium (DFCM) proteins potentially regulating nerve restoration were bioinformatically selected among the 337 protein lists identified by quantitative liquid chromatography-tandem mass spectrometry. Using these proteins, protein-protein interaction network analysis was conducted. In addition, the roles of DFCM proteins were reviewed according to their protein classifications. RESULTS Gene Ontology protein classification categorized these 57 DFCM proteins into various classes, including protein-binding activity modulator (N = 11), cytoskeletal protein (N = 8), extracellular matrix protein (N = 6), metabolite interconversion enzyme (N = 5), chaperone (N = 4), scaffold/adapter protein (N = 4), calcium-binding protein (N = 3), cell adhesion molecule (N = 2), intercellular signal molecule (N = 2), protein modifying enzyme (N = 2), transfer/carrier protein (N = 2), membrane traffic protein (N = 1), translational protein (N = 1), and unclassified proteins (N = 6). Further protein-protein interaction network analysis of 57 proteins revealed significant interactions among the proteins that varied according to the settings of confidence score. CONCLUSIONS Our bioinformatic analysis demonstrated that DFCM contains many secretory proteins that form significant protein-protein interaction networks crucial for regulating nerve restoration. These findings underscore DFCM proteins' critical roles in various nerve restoration stages during the wound repair process.
Collapse
Affiliation(s)
| | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
3
|
Roig‐Rosello E, Dayan G, Bovio S, Manissier P, Errazuriz E, Rousselle P. Dermal stiffness governs the topography of the epidermis and the underlying basement membrane in young and old human skin. Aging Cell 2024; 23:e14096. [PMID: 38475908 PMCID: PMC11019137 DOI: 10.1111/acel.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
The epidermis is a stratified epithelium that forms the outer layer of the skin. It is composed primarily of keratinocytes and is constantly renewed by the proliferation of stem cells and their progeny that undergo terminal differentiation as they leave the basal layer and migrate to the skin surface. Basal keratinocytes rest on a basement membrane composed of an extracellular matrix that controls their fate via integrin-mediated focal adhesions and hemidesmosomes which are critical elements of the epidermal barrier and promote its regenerative capabilities. The distribution of basal cells with optimal activity provides the basement membrane with its characteristic undulating shape; this configuration disappears with age, leading to epidermal weakness. In this study, we present an in-depth imaging analysis of basal keratinocyte anchorage in samples of human skin from participants across the age spectrum. Our findings reveal that skin aging is associated with the depletion of hemidesmosomes that provide crucial support for stem cell maintenance; their depletion correlates with the loss of the characteristic basement membrane structure. Atomic force microscopy studies of skin and in vitro experiments revealed that the increase in tissue stiffness observed with aging triggers mechanical signals that alter the basement membrane structure and reduce the extent of basal keratinocyte anchorage, forcing them to differentiate. Genomic analysis revealed that epidermal aging was associated with mechanical induction of the transcription factor Krüppel-like factor 4. The altered mechanical properties of tissue being a new hallmark of aging, our work opens new avenues for the development of skin rejuvenation strategies.
Collapse
Affiliation(s)
- Eva Roig‐Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
- Native LaboratoireBezonsFrance
| | - Guila Dayan
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
| | - Simone Bovio
- RDPUniversité de Lyon, ENS de Lyon, UCBL1, INRAE, CNRSLyonFrance
- PLATIM‐LyMICUniversité de Lyon, ENS de Lyon, Inserm, CNRSLyonFrance
| | | | | | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie ThérapeutiqueCNRS UMR 5305, Université de LyonLyonFrance
| |
Collapse
|
4
|
Jiang Y, Perez-Moreno M. Translational frontiers: insight from lymphatics in skin regeneration. Front Physiol 2024; 15:1347558. [PMID: 38487264 PMCID: PMC10937408 DOI: 10.3389/fphys.2024.1347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The remarkable regenerative ability of the skin, governed by complex molecular mechanisms, offers profound insights into the skin repair processes and the pathogenesis of various dermatological conditions. This understanding, derived from studies in human skin and various model systems, has not only deepened our knowledge of skin regeneration but also facilitated the development of skin substitutes in clinical practice. Recent research highlights the crucial role of lymphatic vessels in skin regeneration. Traditionally associated with fluid dynamics and immune modulation, these vessels are now recognized for interacting with skin stem cells and coordinating regeneration. This Mini Review provides an overview of recent advancements in basic and translational research related to skin regeneration, focusing on the dynamic interplay between lymphatic vessels and skin biology. Key highlights include the critical role of stem cell-lymphatic vessel crosstalk in orchestrating skin regeneration, emerging translational approaches, and their implications for skin diseases. Additionally, the review identifies research gaps and proposes potential future directions, underscoring the significance of this rapidly evolving research arena.
Collapse
Affiliation(s)
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
董 佳, 李 雪, 路 瑞, 胡 文, 孟 焕. [Histopathological characteristics of peri-implant soft tissue in reconstructed jaws with vascularized bone flaps]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:25-31. [PMID: 38318892 PMCID: PMC10845171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To analyze the histopathological characteristics of peri-implant soft tissue in reconstructed jaws and the changes after keratinized mucosa augmentation (KMA) with free gingival graft (FGG). METHODS Twenty patients were enrolled in this study. Five patients of them, who were periodontal and systemic healthy and referred for crown lengthening before restoration with healthy keratinized gingiva collected were enrolled as healthy controls. 15 patients of them were with fibula or iliac bone flaps jaw reconstruction (10 with fibula flap and 5 with iliac flap), who were referred to FGG and implant exposures before restoration. Soft tissue was collected before FGG in reconstructed jaws, and in 5 patients (3 with fibula flap and 2 with iliac flap) 8 weeks after FGG if a second surgery was conducted. Histological analysis with hematoxylin-eosin stain and immunological analysis to interlukin-1 (IL-1), interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were performed. RESULTS Thickness from the bottom of stratum basale to the top of stratum granulosum and thickness of keratinized layer in reconstructed jaws were significantly lower compared with that of natural healthy keratinized gingiva [0.27 (0.20, 0.30) mm vs. 0.36 (0.35, 0.47) mm, P<0.05; 16.49 (14.90, 23.37) μm vs. 26.37 (24.12, 31.53) μm, P<0.05]. In the reconstructed area, thickness from the bottom of stratum basale to the top of stratum granulosum increased after KMA with FGG [0.19 (0.16, 0.25) mm vs. 0.38 (0.25, 0.39) mm, P=0.059] and the thickness of keratinized layer significantly increased after KMA with FGG [16.42 (14.16, 22.35) μm vs. 28.57 (27.16, 29.14) μm, P<0.05], which was similar to that in the control group. Furthermore, the number of positive cells of IL-1, IL-6 and TNF-α significantly increased after KMA [0.67 (0.17, 8.93) vs. 11.00 (9.16, 18.00); 13.00 (8.50, 14.14) vs. 21.89 (15.00, 28.12); 0.22 (0.04, 0.63) vs. 2.83 (1.68, 5.00), respectively, P<0.05] as well as the average optical density value [0.15 (0.14, 0.17) vs. 0.18 (0.17, 0.21); 0.28 (0.26, 0.33) vs. 0.36 (0.33, 0.37); 0.23 (0.22, 0.29) vs. 0.30 (0.28, 0.42), respectively, P<0.05], which was similar to that in the healthy keratinized gingiva. CONCLUSION The lack of rete pegs and inflammatory factors were common in soft tissue with jaw reconstruction. FGG can improve the quality of the epithelium and may improve the stability of the mucosa around implants.
Collapse
Affiliation(s)
- 佳芸 董
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
| | - 雪芬 李
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
| | - 瑞芳 路
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
| | - 文杰 胡
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
| | - 焕新 孟
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices, Beijing 100081, China
| |
Collapse
|
6
|
Suh SB, Suh JY, Cho SB. Analyzing secretory proteins in human dermal fibroblast-conditioned medium for angiogenesis: A bioinformatic approach. Skin Res Technol 2024; 30:e13568. [PMID: 38200622 PMCID: PMC10781896 DOI: 10.1111/srt.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The conditioned medium from human dermal fibroblasts (dermal fibroblast-conditioned medium; DFCM) contains a diverse array of secretory proteins, including growth factors and wound repair-promoting proteins. Angiogenesis, a crucial process that facilitates the infiltration of inflammatory cells during wound repair, is induced by a hypoxic environment and inflammatory cytokines. METHODS In this study, we conducted a comprehensive bioinformatic analysis of 337 proteins identified through proteomics analysis of DFCM. We specifically focused on 64 DFCM proteins with potential involvement in angiogenesis. These proteins were further classified based on their characteristics, and we conducted a detailed analysis of their protein-protein interactions. RESULTS Gene Ontology protein classification categorized these 64 DFCM proteins into various classes, including metabolite interconversion enzymes (N = 11), protein modifying enzymes (N = 10), protein-binding activity modulators (N = 9), cell adhesion molecules (N = 6), extracellular matrix proteins (N = 6), transfer/carrier proteins (N = 3), calcium-binding proteins (N = 2), chaperones (N = 2), cytoskeletal proteins (N = 2), RNA metabolism proteins (N = 1), intercellular signal molecules (N = 1), transporters (N = 1), scaffold/adaptor proteins (N = 1), and unclassified proteins (N = 9). Furthermore, our protein-protein interaction network analysis of DFCM proteins revealed two distinct networks: one with medium confidence level interaction scores, consisting of 60 proteins with significant connections, and another at a high confidence level, comprising 52 proteins with significant interactions. CONCLUSIONS Our bioinformatic analysis highlights the presence of a multitude of secretory proteins in DFCM that form significant protein-protein interaction networks crucial for regulating angiogenesis. These findings underscore the critical roles played by DFCM proteins in various stages of angiogenesis during the wound repair process.
Collapse
Affiliation(s)
| | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
7
|
Izumi K, Yortchan W, Aizawa Y, Kobayashi R, Hoshikawa E, Ling Y, Suzuki A. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:365-374. [PMID: 37954029 PMCID: PMC10632115 DOI: 10.1016/j.jdsr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Many conditions, including cancer, trauma, and congenital anomalies, can damage the oral mucosa. Multiple cultures of oral mucosal cells have been used for biocompatibility tests and oral biology studies. In recent decades, the clinical translation of tissue-engineered products has progressed significantly in developing tangible therapies and inspiring advancements in medical science. However, the reconstruction of an intraoral mucosa defect remains a significant challenge. Despite the drawbacks of donor-site morbidity and limited tissue supply, the use of autologous oral mucosa remains the gold standard for oral mucosa reconstruction and repair. Tissue engineering offers a promising solution for repairing and reconstructing oral mucosa tissues. Cell- and scaffold-based tissue engineering approaches have been employed to treat various soft tissue defects, suggesting the potential clinical use of tissue-engineered oral mucosa (TEOMs). In this review, we first cover the recent trends in the reconstruction and regeneration of extra-/intra-oral wounds using TEOMs. Next, we describe the current status and challenges of TEOMs. Finally, future strategic approaches and potential technologies to support the advancement of TEOMs for clinical use are discussed.
Collapse
Affiliation(s)
- Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Ryota Kobayashi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Suzuki
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
8
|
Nagarajan MB, Ainscough AJ, Reynolds DS, Uzel SGM, Bjork JW, Baker BA, McNulty AK, Woulfe SL, Lewis JA. Biomimetic human skin model patterned with rete ridges. Biofabrication 2023; 16:015006. [PMID: 37734324 DOI: 10.1088/1758-5090/acfc29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Rete ridges consist of undulations between the epidermis and dermis that enhance the mechanical properties and biological function of human skin. However, most human skin models are fabricated with a flat interface between the epidermal and dermal layers. Here, we report a micro-stamping method for producing human skin models patterned with rete ridges of controlled geometry. To mitigate keratinocyte-induced matrix degradation, telocollagen-fibrin matrices with and without crosslinks enable these micropatterned features to persist during longitudinal culture. Our human skin model exhibits an epidermis that includes the following markers: cytokeratin 14, p63, and Ki67 in the basal layer, cytokeratin 10 in the suprabasal layer, and laminin and collagen IV in the basement membrane. We demonstrated that two keratinocyte cell lines, one from a neonatal donor and another from an adult diabetic donor, are compatible with this model. We tested this model using an irritation test and showed that the epidermis prevents rapid penetration of sodium dodecyl sulfate. Gene expression analysis revealed differences in keratinocytes obtained from the two donors as well as between 2D (control) and 3D culture conditions. Our human skin model may find potential application for drug and cosmetic testing, disease and wound healing modeling, and aging studies.
Collapse
Affiliation(s)
- Maxwell B Nagarajan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Jason W Bjork
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Bryan A Baker
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Amy K McNulty
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Susan L Woulfe
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Shen Z, Liu Z, Sun L, Li M, Han L, Wang J, Wu X, Sang S. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Acta Biomater 2023; 169:273-288. [PMID: 37516415 DOI: 10.1016/j.actbio.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The undulating microstructure rete ridge (RR) located at the junction between the dermis and epidermis plays a crucial role in improving skin mechanical properties and maintaining skin homeostasis. However, the investigation of RR microstructures is usually neglected in current tissue engineering for skin regeneration. Here, to create an epidermal model with RR microstructures, keratinocytes were cultured on a patterned GelMA-PEGDA hydrogel constructed using molding technology. Furthermore, grafting acryloylated Arg-Gly-Asp (RGD) peptides on the hydrogel surface significantly improved cell adhesion, fusion, and development. RT-PCR, Western blot, and immunofluorescence staining confirmed that cells on RR microstructures exhibited higher gene and protein expression associated with epidermal stem cells. RNA sequencing analysis of cells on RR microstructure showed higher gene expression profiles related to stem cell maintenance, basement membrane formation, and epidermal development. Furthermore, RT-PCR analysis of epidermal models of various dimensions demonstrated that smaller microstructures were more conducive to epidermal stem cell marker gene expression, which is analogous to human skin. Overall, we have successfully developed a method for integrating RR microstructures into an epidermal model that mimics natural skin to maintain epidermal stem cell niche, providing a valuable reference for researching skin regeneration within the fields of tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This study presents a method for precisely fabricating microstructures of skin rete ridges using composite hydrogels, thereby creating a skin model that mimics natural human skin. The findings reveal that this microstructure provides a stem cell niche that regulates the pathways and promotes the expression of proteins related to epidermal stem cells. This work advances the functional properties of tissue engineered skin and holds promise for improving the therapeutic efficacy of artificial skin grafts for the skin wounds.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
10
|
Suh SB, Ahn KJ, Kim EJ, Suh JY, Cho SB. Proteomic Identification and Quantification of Secretory Proteins in Human Dermal Fibroblast-Conditioned Medium for Wound Repair and Hair Regeneration. Clin Cosmet Investig Dermatol 2023; 16:1145-1157. [PMID: 37153723 PMCID: PMC10162110 DOI: 10.2147/ccid.s407078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Background Human dermal fibroblasts secrete numerous growth factors and proteins that have been suggested to promote wound repair and hair regeneration. Methods Human dermal fibroblast-conditioned medium (DFCM) was prepared, and proteomic analysis was performed. Secretory proteins in DFCM were identified using 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis, in-gel trypsin protein digestion, and quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS). Identified proteins were analyzed using bioinformatic methods for the classification and evaluation of protein-protein interactions. Results Using LC-MS/MS, 337 proteins were identified in DFCM. Among them, 160 proteins were associated with wound repair, and 57 proteins were associated with hair regeneration. Protein-protein interaction network analysis of 160 DFCM proteins for wound repair at the highest confidence score (0.9) revealed that 110 proteins were grouped into seven distinctive interaction networks. Additionally, protein-protein interaction network analysis of 57 proteins for hair regeneration at the highest confidence score revealed that 29 proteins were grouped into five distinctive interaction networks. The identified DFCM proteins were associated with several pathways for wound repair and hair regeneration, including epidermal growth factor receptor, fibroblast growth factor, integrin, Wnt, cadherin, and transforming growth factor-β signaling pathways. Conclusion DFCM contains numerous secretory proteins that comprise groups of protein-protein interaction networks that regulate wound repair and hair regeneration.
Collapse
Affiliation(s)
| | - Keun Jae Ahn
- Department of Science Education, Jeju National University, Jeju, Korea
| | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
- Correspondence: Sung Bin Cho, Yonsei Seran Dermatology and Laser Clinic, 224 Siheung-daero, Seoul, 08628, Korea, Tel +82 2-2135-1375, Fax +82 70-8250-1375, Email
| |
Collapse
|
11
|
Shen Z, Sun L, Liu Z, Li M, Cao Y, Han L, Wang J, Wu X, Sang S. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Acta Biomater 2023; 155:19-34. [PMID: 36427683 DOI: 10.1016/j.actbio.2022.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Rete ridges (RRs) are distinct undulating microstructures at the junction of the dermis and epidermis in the skin of humans and certain animals. This structure is essential for enhancing the mechanical characteristics of skin and preserving homeostasis. With the development of tissue engineering and regenerative medicine, artificial skin grafts have made great progress in the field of skin healing. However, the restoration of RRs has been often disregarded or absent in artificial skin grafts, which potentially compromise the efficacy of tissue repair and regeneration. Therefore, this review collates recent research advances in understanding the structural features, function, morphogenesis, influencing factors, and reconstruction strategies pertaining to RRs. In addition, the preparation methods and limitations of tissue-engineered skin with RRs are discussed. STATEMENT OF SIGNIFICANCE: The technology for the development of tissue-engineered skin (TES) is widely studied and reported; however, the preparation of TES containing rete ridges (RRs) is often ignored, with no literature reviews on the structural reconstruction of RRs. This review focuses on the progress pertaining to RRs and focuses on the reconstruction methods for RRs. In addition, it discusses the limitations of existing reconstruction methods. Therefore, this review could be a valuable reference for transferring TES with RR structure from the laboratory to clinical applications in skin repair.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030809, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
12
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
13
|
Lee SY, Kim DY, Suh SB, Suh JY, Cho SB. Effects of Human Fibroblast-Derived Multi-Peptide Factors on the Proliferation and Migration of Nitrogen Plasma-Treated Human Dermal Fibroblasts. Clin Cosmet Investig Dermatol 2022; 15:2465-2475. [PMID: 36411843 PMCID: PMC9675427 DOI: 10.2147/ccid.s383483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Background Human fibroblast-derived multi-peptide factors (MPFs) promote wound repair by playing crucial roles in cell recruitment, adhesion, attachment, migration, and proliferation. Methods Cultured human dermal fibroblasts (HDFs) were directly treated with non-contact low- and high-energy nitrogen plasma and further cultured in various conditioned media. Cell proliferation and wound-healing properties were evaluated. Results In Opti-modified Eagle’s medium + GlutaMAX culture, reduced HDF viability was observed 24 h after 2-J/pulse plasma treatment and 12 and 24 h after 3-J/pulse treatment. Meanwhile, in dermal fibroblast-conditioned medium (DFCM) containing MPF culture, reduced HDF viability was observed only 24 h after 3-J/pulse treatment. Under DFCM-MPF culture, the wound area percentage was significantly decreased after 12 and 24 h in untreated HDFs; at 9, 12, and 24 h after 1-J/pulse plasma treatment; at 3, 6, 9, 12, and 24 h after 2-J/pulse plasma treatment; and at 9, 12, and 24 h after 3-J/pulse plasma treatment. Greater migration of HDFs with or without plasma treatment was found in DFCM-MPFs than in other conditioned media. Conclusion Low-energy nitrogen plasma treatment promotes HDF proliferation and wound repair. DFCM-MPFs enhanced cell proliferation and improved the wound healing properties of HDFs treated with low- and high-energy plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, Korea
- Correspondence: Sung Bin Cho, Yonsei Seran Dermatology and Laser Clinic, 224 Siheung-daero, Seoul, 08628, Korea, Tel +82 2-2135-1375, Fax +82 70-8250-1375, Email
| |
Collapse
|
14
|
In-process monitoring of a tissue-engineered oral mucosa fabricated on a micropatterned collagen scaffold: use of optical coherence tomography for quality control. Heliyon 2022; 8:e11468. [DOI: 10.1016/j.heliyon.2022.e11468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
|
15
|
Shin JM, Lee YY, Kim KM, Won KS, Suh SB, Hong D, Jung KE, Kim CD, Seo YJ, Cho SB, Lee Y. The potential role of fibroblast-derived multi-peptide factors in activation of growth factors and β-Catenin in hair follicle cells. J Cosmet Dermatol 2022; 21:6184-6190. [PMID: 35765799 DOI: 10.1111/jocd.15188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dermal fibroblasts play a pivotal role in hair follicle regeneration during wound repair. Recently, dermal fibroblast-conditioned medium (DFCM), which contains multi-peptide factors (MPFs), has been used to promote wound repair. AIM This study aimed to investigate the stimulatory effects of MPF-containing DFCM on hair growth. METHODS MPF-containing DFCM was prepared using human neonatal dermal fibroblasts. Outer root sheath (ORS) and dermal papilla (DP) cells were cultured in MPF-containing DFCM. We examined the expression and secretion of growth factors and cytokines using quantitative polymerase chain reaction and a growth factor array. In addition, the effect of MPFs on β-catenin activity was determined using the TOPflash assay. All experiments were repeated at least three times with separate batches of cells. RESULTS MPF-containing DFCM increased keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) mRNA expression in ORS cells and KGF and VEGF mRNA expression in DP cells. When ORS cells were treated with MPF-containing DFCM, the secretion of several growth factors, including EGF, VEGF, insulin-like growth factor-binding protein (IGFBP)-4, IGFBP-6, and fibroblast growth factor-7, was increased in the cell-cultured medium compared with that in control. Additionally, MPF-containing DFCM increased the transcriptional activation of β-catenin in DP cells. CONCLUSIONS These results suggest that MPF-containing DFCM might stimulate hair growth by inducing growth factors in ORS and DP cells and regulating β-catenin in DP cells.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Yoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Min Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser Clinic, Seoul, South Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
16
|
Ghuwalewala S, Lee SA, Jiang K, Baidya J, Chovatiya G, Kaur P, Shalloway D, Tumbar T. Binary organization of epidermal basal domains highlights robustness to environmental exposure. EMBO J 2022; 41:e110488. [PMID: 35949182 PMCID: PMC9475544 DOI: 10.15252/embj.2021110488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Adulte interfollicular epidermis (IFE) renewal is likely orchestrated by physiological demands of its complex tissue architecture comprising spatial and cellular heterogeneity. Mouse tail and back skin display two kinds of basal IFE spatial domains that regenerate at different rates. Here, we elucidate the molecular and cellular states of basal IFE domains by marker expression and single-cell transcriptomics in mouse and human skin. We uncover two paths of basal cell differentiation that in part reflect the IFE spatial domain organization. We unravel previously unrecognized similarities between mouse tail IFE basal domains defined as scales and interscales versus human rete ridges and inter-ridges, respectively. Furthermore, our basal IFE transcriptomics and gene targeting in mice provide evidence supporting a physiological role of IFE domains in adaptation to differential UV exposure. We identify Sox6 as a novel UV-induced and interscale/inter-ridge preferred basal IFE-domain transcription factor, important for IFE proliferation and survival. The spatial, cellular, and molecular organization of IFE basal domains underscores skin adaptation to environmental exposure and its unusual robustness in adult homeostasis.
Collapse
Affiliation(s)
| | - Seon A Lee
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Kevin Jiang
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Joydeep Baidya
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Gopal Chovatiya
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Pritinder Kaur
- Curtin Medical School/Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - David Shalloway
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Tudorita Tumbar
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
17
|
Sundaram S, Kim EN, Jones GM, Sivagnanam S, Tripathi M, Miremadi A, Di Pietro M, Coussens LM, Fitzgerald RC, Chang YH, Zhuang L. Deciphering the Immune Complexity in Esophageal Adenocarcinoma and Pre-Cancerous Lesions With Sequential Multiplex Immunohistochemistry and Sparse Subspace Clustering Approach. Front Immunol 2022; 13:874255. [PMID: 35663986 PMCID: PMC9161782 DOI: 10.3389/fimmu.2022.874255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) develops from a chronic inflammatory environment across four stages: intestinal metaplasia, known as Barrett's esophagus, low- and high-grade dysplasia, and adenocarcinoma. Although the genomic characteristics of this progression have been well defined via large-scale DNA sequencing, the dynamics of various immune cell subsets and their spatial interactions in their tumor microenvironment remain unclear. Here, we applied a sequential multiplex immunohistochemistry (mIHC) platform with computational image analysis pipelines that allow for the detection of 10 biomarkers in one formalin-fixed paraffin-embedded (FFPE) tissue section. Using this platform and quantitative image analytics, we studied changes in the immune landscape during disease progression based on 40 normal and diseased areas from endoscopic mucosal resection specimens of chemotherapy treatment- naïve patients, including normal esophagus, metaplasia, low- and high-grade dysplasia, and adenocarcinoma. The results revealed a steady increase of FOXP3+ T regulatory cells and a CD163+ myelomonocytic cell subset. In parallel to the manual gating strategy applied for cell phenotyping, we also adopted a sparse subspace clustering (SSC) algorithm allowing the automated cell phenotyping of mIHC-based single-cell data. The algorithm successfully identified comparable cell types, along with significantly enriched FOXP3 T regulatory cells and CD163+ myelomonocytic cells as found in manual gating. In addition, SCC identified a new CSF1R+CD1C+ myeloid lineage, which not only was previously unknown in this disease but also increases with advancing disease stages. This study revealed immune dynamics in EAC progression and highlighted the potential application of a new multiplex imaging platform, combined with computational image analysis on routine clinical FFPE sections, to investigate complex immune populations in tumor ecosystems.
Collapse
Affiliation(s)
- Srinand Sundaram
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Eun Na Kim
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| | - Georgina M. Jones
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Shamilene Sivagnanam
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Monika Tripathi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ahmad Miremadi
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Massimiliano Di Pietro
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rebecca C. Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Lizhe Zhuang
- Medical Research Council (MRC) Cancer Unit, Hutchison-Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Ma X, Pan Y, Zhao W, Sun P, Zhao J, Yan S, Wang R, Han Y, Liu WH, Tan S, Hung WL. Bifidobacterium infantis strain YLGB-1496 possesses excellent antioxidant and skin barrier-enhancing efficacy in vitro. Exp Dermatol 2022; 31:1089-1094. [PMID: 35483970 DOI: 10.1111/exd.14583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Atopic dermatitis (AD) is a recurring allergic skin disease that has a high incidence. Orally applied Bifidobacteria ameliorate signs of irritated skin and enhance the skin barrier. The present study investigated the safety and efficacy of a topically used cell-free culture supernatant (CFS) from a Bifidobacterium infantis strain using in vitro evaluation methods. The results showed that CFS had strong free radical scavenging activity on DPPH, ABTS, ·OH and O2 -radicals. CFS treatment fundamentally reduced the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) contents and improved the activities of antioxidant enzymes (CAT, SOD and GSH-Px) in H2 O2 -treated HaCaT cells. Notably, the upregulation of skin physical barrier gene (FLG, LOR, IVL, AQP3 and TGM1) expression and skin antimicrobial peptide gene (CAMP, hBD-2 and hBD-3) expression by CFS might contribute to skin barrier resistance. CFS was non-irritating to the skin and eyes. CFS from the Bifidobacterium infantis strain had strong antioxidant properties on the skin and strengthened skin barrier function, and it was safe for topical use.
Collapse
Affiliation(s)
- Xue Ma
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yao Pan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Peiwen Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinfeng Zhao
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Shiyu Yan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Rui Wang
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yuqing Han
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Shengjie Tan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| |
Collapse
|
19
|
Pontiggia L, Van Hengel IAJ, Klar A, Rütsche D, Nanni M, Scheidegger A, Figi S, Reichmann E, Moehrlen U, Biedermann T. Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J Tissue Eng 2022; 13:20417314221088513. [PMID: 35495096 PMCID: PMC9044789 DOI: 10.1177/20417314221088513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Extensive availability of engineered autologous dermo-epidermal skin substitutes (DESS) with functional and structural properties of normal human skin represents a goal for the treatment of large skin defects such as severe burns. Recently, a clinical phase I trial with this type of DESS was successfully completed, which included patients own keratinocytes and fibroblasts. Yet, two important features of natural skin were missing: pigmentation and vascularization. The first has important physiological and psychological implications for the patient, the second impacts survival and quality of the graft. Additionally, accurate reproduction of large amounts of patient’s skin in an automated way is essential for upscaling DESS production. Therefore, in the present study, we implemented a new robotic unit (called SkinFactory) for 3D bioprinting of pigmented and pre-vascularized DESS using normal human skin derived fibroblasts, blood- and lymphatic endothelial cells, keratinocytes, and melanocytes. We show the feasibility of our approach by demonstrating the viability of all the cells after printing in vitro, the integrity of the reconstituted capillary network in vivo after transplantation to immunodeficient rats and the anastomosis to the vascular plexus of the host. Our work has to be considered as a proof of concept in view of the implementation of an extended platform, which fully automatize the process of skin substitution: this would be a considerable improvement of the treatment of burn victims and patients with severe skin lesions based on patients own skin derived cells.
Collapse
Affiliation(s)
- Luca Pontiggia
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ingmar AJ Van Hengel
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Agnes Klar
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic Rütsche
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Monica Nanni
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Treatment, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Pediatric Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Tan PC, Zhou SB, Ou MY, He JZ, Zhang PQ, Zhang XJ, Xie Y, Gao YM, Zhang TY, Li QF. Mechanical stretching can modify the papillary dermis pattern and papillary fibroblast characteristics during skin regeneration. J Invest Dermatol 2022; 142:2384-2394.e8. [PMID: 35181299 DOI: 10.1016/j.jid.2021.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Clinical application of mechanical stretching is a reconstructive method for skin repair. Although studies have reported dermal fibroblast heterogeneity, whether stretching affects individual fibroblast subpopulations equally remains unclear. Here, we show the changes in dermal structure and papillary fibroblast (Fp) in regenerated human skin. Exhausted skin regeneration caused dermal-epidermal junction (DEJ) flattening, papillary dermis thinning, and an increase in the type III collagen (COL3)/type I collagen (COL1) ratio with upregulated hallmarks of aging. Well-regenerated skin displayed a notable increase in the Fp population. Consistent changes were observed in the rat expansion model. Moreover, we found that TGFβ1 expression was especially increased in skin showing good regeneration. Activation of the TGFβ1/Smad2/3 pathway improved exhausted skin regeneration and resulted in increased collagen content and Fp proliferation, while pharmacological inhibition of TGFβ1 action impacted well-regenerated skin. Short-term mechanical stretching that promoted skin regeneration enhanced Fp proliferation, extracellular matrix (ECM) synthesis, and increased TGFβ1 expression, leading to good regeneration. Conversely, long-term stretching induced premature Fp senescence, leading to poor regeneration. This work shows the mechanism of mechanical stretching in well skin regeneration that enhances Fp proliferation and ECM synthesis via the TGFβ1/Smad2/3 pathway, and highlights a crucial role of Fps in stretching-induced skin regeneration.
Collapse
Affiliation(s)
- Poh-Ching Tan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Zhou He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Qi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cell Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ming Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Cell Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater Sci Eng 2021; 7:2803-2813. [PMID: 33905240 DOI: 10.1021/acsbiomaterials.0c01775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of microfabrication techniques for the development of innovative constructs for tissue regeneration is a growing area of research. This area comprises both manufacturing and biological approaches for the development of smart materials aiming to control and direct cell behavior to enhance tissue healing. Many groups have focused their efforts on introducing complexity within these innovative constructs via the inclusion of nano- and microtopographical cues mimicking physical and biological aspects of the native stem cell niche. Specifically, in the area of skin tissue engineering, seminal work has reported replicating the microenvironments located in the dermal-epithelial junction, which are known as rete ridges. The rete ridges are key for both stem cell control and the physiological performance of the skin. In this work, we have introduced complexity within electrospun membranes to mimic the morphology of the rete ridges in the skin. We designed and tested three different patterns, characterized them, and explored their performance in vitro, using 3D skin models. One of the studied patterns (pattern B) was shown to aid in the development of an in vitro rite-ridgelike skin model that resulted in the expression of relevant epithelial markers such as collagen IV and integrin β1. In summary, we have developed a new skin model including synthetic rete-ridgelike structures that replicate both morphology and function of the native dermal-epidermal junction and that offer new insights for the development of smart skin tissue engineering constructs.
Collapse
Affiliation(s)
- David H Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
| |
Collapse
|
22
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
23
|
Kalabusheva EP, Rippa AL, Tsitrina AA, Pinto A, Terskikh AV, Chermnykh ES, Vorotelyak EA. Xenotransplantation of a Full-Layer Human Skin Strip as a Model for Studying Skin Regeneration and the Hair Follicle Cycle. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhang L, Cen Y, Huang Q, Li H, Mo X, Meng W, Chen J. Computational flow cytometric analysis to detect epidermal subpopulations in human skin. Biomed Eng Online 2021; 20:22. [PMID: 33596908 PMCID: PMC7891025 DOI: 10.1186/s12938-021-00858-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background The detection and dissection of epidermal subgroups could lead to an improved understanding of skin homeostasis and wound healing. Flow cytometric analysis provides an effective method to detect the surface markers of epidermal cells while producing high-dimensional data files. Methods A 9-color flow cytometric panel was optimized to reveal the heterogeneous subgroups in the epidermis of human skin. The subsets of epidermal cells were characterized using automated methods based on dimensional reduction approaches (viSNE) and clustering with Spanning-tree Progression Analysis of Density-normalized Events (SPADE). Results The manual analysis revealed differences in epidermal distribution between body sites based on a series biaxial gating starting with the expression of CD49f and CD29. The computational analysis divided the whole epidermal cell population into 25 clusters according to the surface marker phenotype with SPADE. This automatic analysis delineated the differences between body sites. The consistency of the results was confirmed with PhenoGraph. Conclusion A multicolor flow cytometry panel with a streamlined computational analysis pipeline is a feasible approach to delineate the heterogeneity of the epidermis in human skin.
Collapse
Affiliation(s)
- Lidan Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huifang Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Kaczmarek P, Rupik W. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). J Morphol 2020; 282:378-407. [PMID: 33340145 DOI: 10.1002/jmor.21311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia-like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
26
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
27
|
Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020; 10:E1607. [PMID: 33260936 PMCID: PMC7760980 DOI: 10.3390/biom10121607] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.
Collapse
Affiliation(s)
- Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
- Roger Gallet SAS, 4 rue Euler, 75008 Paris, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
| |
Collapse
|
28
|
Malara MM, Blackstone BN, Baumann ME, Bailey JK, Supp DM, Powell HM. Cultured Epithelial Autograft Combined with Micropatterned Dermal Template Forms Rete Ridges In Vivo. Tissue Eng Part A 2020; 26:1138-1146. [DOI: 10.1089/ten.tea.2020.0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Megan M. Malara
- Department of Materials Science and Engineering and The Ohio State University, Columbus, Ohio, USA
| | - Britani N. Blackstone
- Department of Materials Science and Engineering and The Ohio State University, Columbus, Ohio, USA
| | - Molly E. Baumann
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - J. Kevin Bailey
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Heather M. Powell
- Department of Materials Science and Engineering and The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Tolg C, Liu M, Cousteils K, Telmer P, Alam K, Ma J, Mendina L, McCarthy JB, Morris VL, Turley EA. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem 2020; 295:5427-5448. [PMID: 32165498 PMCID: PMC7170511 DOI: 10.1074/jbc.ra119.010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context-dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor-regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Muhan Liu
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Katelyn Cousteils
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick Telmer
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Khandakar Alam
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Jenny Ma
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Leslie Mendina
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Vincent L Morris
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 3K7, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada; Departments of Oncology, Biochemistry, and Surgery, Schulich School of Medicine, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
30
|
|
31
|
Suzuki A, Kato H, Kawakami T, Kodama Y, Shiozawa M, Kuwae H, Miwa K, Hoshikawa E, Haga K, Shiomi A, Uenoyama A, Saitoh I, Hayasaki H, Mizuno J, Izumi K. Development of microstructured fish scale collagen scaffolds to manufacture a tissue-engineered oral mucosa equivalent. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:578-600. [DOI: 10.1080/09205063.2019.1706147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayako Suzuki
- Division of Biomimetics, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroko Kato
- Division of Biomimetics, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | | | | | - Mayuko Shiozawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Hiroyuki Kuwae
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Keito Miwa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Kenta Haga
- Division of Biomimetics, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Aki Shiomi
- Division of Dental Education Research Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Uenoyama
- Division of Oral and Maxillofacial Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Mizuno
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Kenji Izumi
- Division of Biomimetics, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| |
Collapse
|
32
|
Tamgadge S, Tamgadge A. Histopathology of Oral Submucous Fibrosis in Third Dimension with an Additional note on Hypothesis of Epithelial Atrophy. J Microsc Ultrastruct 2020; 8:31-34. [PMID: 32166063 PMCID: PMC7045625 DOI: 10.4103/jmau.jmau_23_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/03/2022] Open
Abstract
Oral submucous fibrosis (OSMF) is a potentially malignant disorder, characterized by progressive fibrosis of the lamina propria and underlying connective tissue. It has high chances of malignant transformation. It is caused by betel nut which is very common habit among Indians. Thus, regular monitoring of histopathological changes is mandatory by physicians, private practitioners, and oral pathologists. Therefore, histopathological changes should be understood by everyone who is into health care. This article is a preliminary report on three-dimensional (3D) images and 3D-animation video of histopathological aspect of OSMF designed by author herself, for better understanding of histopathological aspect, which has never been reported so far. Additional hypothesis on epithelial atrophy have also been proposed.
Collapse
Affiliation(s)
- Sandhya Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. Patil Deemed to be University, School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| | - Avinash Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. Patil Deemed to be University, School of Dentistry, Nerul, Navi Mumbai, Maharashtra, India
| |
Collapse
|
33
|
López‐de la Rosa A, Alghamdi WM, Kunnen CME, Lazon de la Jara P, González‐García MJ, Markoulli M, Papas EB. Changes in the tarsal conjunctiva viewed by
in vivo
confocal microscopy are associated with ocular symptoms and contact lens wear. Ophthalmic Physiol Opt 2019; 39:328-336. [DOI: 10.1111/opo.12638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Alberto López‐de la Rosa
- Institute of Applied Ophthalmobiology (IOBA)University of Valladolid ValladolidSpain
- Department of Theoretical Physics, Atomic and Optics University of Valladolid Valladolid Spain
| | - Waleed M Alghamdi
- Department of Optometry College of Applied Medical Science Qassim University Qassim Saudi Arabia
- School of Optometry & Vision Science University of New South Wales SydneyAustralia
| | - Carolina ME Kunnen
- School of Optometry & Vision Science University of New South Wales SydneyAustralia
- Brien Holden Vision Institute SydneyAustralia
- Vision Cooperative Research Centre Sydney Australia
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Valladolid Spain
- Alcon Laboratories Fort Worth USA
| | - Percy Lazon de la Jara
- School of Optometry & Vision Science University of New South Wales SydneyAustralia
- Brien Holden Vision Institute SydneyAustralia
- Vision Cooperative Research Centre Sydney Australia
| | - María J González‐García
- Institute of Applied Ophthalmobiology (IOBA)University of Valladolid ValladolidSpain
- Department of Theoretical Physics, Atomic and Optics University of Valladolid Valladolid Spain
| | - Maria Markoulli
- School of Optometry & Vision Science University of New South Wales SydneyAustralia
| | - Eric B Papas
- School of Optometry & Vision Science University of New South Wales SydneyAustralia
| |
Collapse
|
34
|
Wild-type and SAMP8 mice show age-dependent changes in distinct stem cell compartments of the interfollicular epidermis. PLoS One 2019; 14:e0215908. [PMID: 31091266 PMCID: PMC6519801 DOI: 10.1371/journal.pone.0215908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/10/2019] [Indexed: 11/19/2022] Open
Abstract
Delayed wound healing and reduced barrier function with an increased risk of cancer are characteristics of aged skin and one possible mechanism is misregulation or dysfunction of epidermal stem cells during aging. Recent studies have identified heterogeneous stem cell populations within the mouse interfollicular epidermis that are defined by territorial distribution and cell division frequency; however, it is unknown whether the individual stem cell populations undergo distinct aging processes. Here we provide comprehensive characterization of age-related changes in the mouse epidermis within the specific territories of slow-cycling and fast-dividing stem cells using old wild-type, senescence-accelerated mouse prone 1 (SAMP1) and SAMP8 mice. During aging, the epidermis exhibits structural changes such as irregular micro-undulations and overall thinning of the tissue. We also find that, in the old epidermis, proliferation is preferentially decreased in the region where fast-dividing stem cells reside whereas the lineage differentiation marker appears to be more affected in the slow-cycling stem cell region. Furthermore, SAMP8, but not SAMP1, exhibits precocious aging similar to that of aged wild-type mice, suggesting a potential use of this model for aging study of the epidermis and its stem cells. Taken together, our study reveals distinct aging processes governing the two epidermal stem cell populations and suggests a potential mechanism in differential responses of compartmentalized stem cells and their niches to aging.
Collapse
|
35
|
Keratinocyte growth factor (KGF) induces podosome formation via integrin-Erk1/2 signaling in human immortalized oral epithelial cells. Cell Signal 2019; 61:39-47. [PMID: 31082464 DOI: 10.1016/j.cellsig.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
Recent study established the role of integrins in keratinocyte growth factor (KGF)-induced oral epithelial adhesion and rete peg elongation. However, how extracellular matrix (ECM) remodeling cooperates with the increased epithelial adhesion during rete peg elongation has yet to be determined. Podosomes are cell-matrix contact structures that combine several abilities, including adhesion and matrix degradation. In the present study, we identified podosome formation at the ventral side of human immortalized oral epithelial cells (HIOECs) upon KGF treatment. Moreover, podosomal components including integrin α6,β4,α3,β1 and MMP14 colocalized with the F-actin-cortactin complex and matrix degradation assays demonstrated the ability of the F-actin-cortactin complex to degrade matrix. Inhibition both of integrin subunits β4 and β1 with specific blocking antibodies and inhibition of Erk1/2 abrogated the KGF-induced podosome formation. Notably, knockdown of integrin subunits β4 and β1 with specific small interfering RNA (siRNA) downregulated the phosphorylation levels of Erk1/2. In contrast, inhibition of both Erk1/2 could upregulate the expression of integrin subunits β4 and β1. These results demonstrate that KGF induces podosome formation via integrin-Erk1/2 signaling in HIOECs, suggesting a novel mechanism by which integrins enhance oral epithelial adhesion and rete peg elongation.
Collapse
|
36
|
Fernandez E, Marull‐Tufeu S. 3D imaging of human epidermis micromorphology by combining fluorescent dye, optical clearing and confocal microscopy. Skin Res Technol 2019; 25:735-742. [DOI: 10.1111/srt.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Eric Fernandez
- Yves Rocher – Direction Innovation & Développement – Laboratoire Application Cutanée Issy les Moulineaux France
| | - Sylvie Marull‐Tufeu
- Yves Rocher – Direction Innovation & Développement – Laboratoire Application Cutanée Issy les Moulineaux France
| |
Collapse
|
37
|
Lin C, Chiu P, Hsueh Y, Shieh S, Wu C, Wong T, Chuong C, Hughes MW. Regeneration of rete ridges in Lanyu pig (
Sus scrofa
): Insights for human skin wound healing. Exp Dermatol 2019; 28:472-479. [DOI: 10.1111/exd.13875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Chein‐Hong Lin
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
| | - Po‐Yuan Chiu
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
| | - Yuan‐Yu Hsueh
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryNational Cheng Kung University Hospital Tainan Taiwan
| | - Shyh‐Jou Shieh
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryNational Cheng Kung University Hospital Tainan Taiwan
| | - Chia‐Ching Wu
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
| | - Tak‐Wah Wong
- Department of DermatologyNational Cheng Kung University Hospital Tainan Taiwan
| | - Cheng‐Ming Chuong
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Department of Basic MedicineCollege of MedicineNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
- Department of PathologyUniversity of Southern California Los Angeles California
| | - Michael W. Hughes
- International Center for Wound Repair and RegenerationNational Cheng Kung University Tainan Taiwan
- Institute of Clinical MedicineNational Cheng Kung University Hospital Tainan Taiwan
| |
Collapse
|
38
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
39
|
Wise LM, Bodaan CJ, Stuart GS, Real NC, Lateef Z, Mercer AA, Riley CB, Theoret CL. Treatment of limb wounds of horses with orf virus IL-10 and VEGF-E accelerates resolution of exuberant granulation tissue, but does not prevent its development. PLoS One 2018; 13:e0197223. [PMID: 29763436 PMCID: PMC5953458 DOI: 10.1371/journal.pone.0197223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Bandaging of limb wounds in horses leads to formation of exuberant granulation tissue (EGT) that retards healing due to protracted inflammation, aberrant vascularisation and delayed epithelialisation. EGT is not observed if wounds are left undressed or when wounds are on the body. A previous study showed that short-term administration of proteins derived from orf virus dampened inflammation and promoted epithelialisation of open wounds in horses. Here, we investigated the impact of orf virus interleukin-10 and vascular endothelial growth factor-E on the development and resolution of EGT. Excisional wounds were created on the forelimb of four horses, and bandages were maintained until full healing to induce EGT formation. Matching body wounds were created to ensure EGT was limited to the limb, and to differentiate the effects of the viral proteins on normal healing and on EGT formation. Viral proteins or the hydrogel vehicle control were administered topically to site-matched wounds at day 1, with repeat administration at day 8. Wound healing and EGT formation were monitored macroscopically. Wound margin samples were harvested at 2, 7 and 14 days, and at full healing, with histology used to observe epithelialisation, immunofluorescence used to detect inflammatory cells, angiogenesis and cell death, and qPCR to measure expression of genes regulating inflammation and angiogenesis. Limb wounds developed EGT, and exhibited slower healing than body wounds. Viral protein treatment did not accelerate healing at either location nor limit EGT formation in limb wounds. Treatment of limb wounds did however increase epithelialisation and angiogenesis, without dampening inflammatory cell infiltration or gene expression. The healed wounds also had less occlusion and death of blood vessels and fewer epidermal rete ridges following viral protein treatment. These findings indicate that the viral protein treatment does not suppress wound inflammation or EGT formation, but does promote vascular and epidermal repair and EGT resolution.
Collapse
Affiliation(s)
- Lyn M. Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Christa J. Bodaan
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gabriella S. Stuart
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicola C. Real
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zabeen Lateef
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Christine L. Theoret
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Comparative Tissue Healing Laboratory, Département de Biomedecine Vétérinaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
40
|
Bordoni B, Marelli F, Morabito B, Castagna R, Sacconi B, Mazzucco P. New Proposal to Define the Fascial System. Complement Med Res 2018; 25:257-262. [PMID: 29550826 DOI: 10.1159/000486238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
At the beginning of the third millennium, we still do not have a definition of 'fascia' recognized as valid by every researcher. This article attempts to give a new definition of the fascial system, including the epidermis, by comparing the mechanical-metabolic characteristics of the connective tissue and the skin. In fact, according to the latest classification deriving from the Fascia Nomenclature Committee, the outer skin layer is not considered as part of the fascial continuum. This article highlights the reasons for taking the functional characteristics of the tissue into consideration, rather than its mere structure. A brief discussion will address the questions as to what is considered as fascial tissue and from which embryonic germ layer the epidermis is formed. The notion that all the layers intersect will be highlighted, demonstrating that quoting precise definitions of tissue stratification in the living organism probably does not correspond to what happens in vivo. What we propose as a definition is not to be regarded as a point of arrival but as another departure.
Collapse
|
41
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
42
|
Asencio IO, Mittar S, Sherborne C, Raza A, Claeyssens F, MacNeil S. A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models. J Tissue Eng 2018; 9:2041731418799851. [PMID: 30263105 PMCID: PMC6153546 DOI: 10.1177/2041731418799851] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
The continual renewal of the epidermis is thought to be related to the presence of populations of epidermal stem cells residing in physically protected microenvironments (rete ridges) directly influenced by the presence of mesenchymal fibroblasts. Current skin in vitro models do acknowledge the influence of stromal fibroblasts in skin reorganisation but the study of the effect of the rete ridge-microenvironment on epidermal renewal still remains a rich topic for exploration. We suggest there is a need for the development of new in vitro models in which to study epithelial stem cell behaviour prior to translating these models into the design of new cell-free biomaterial devices for skin reconstruction. In this study, we aimed to develop new prototype epidermal-like layers containing pseudo-rete ridge structures for studying the effect of topographical cues on epithelial cell behaviour. The models were designed using a range of three-dimensional electrospun microfabricated scaffolds. This was achieved via the utilisation of polyethylene glycol diacrylate to produce a reusable template over which poly(3-hydrroxybutyrate-co-3-hydroxyvalerate) was electrospun. Initial investigations studied the behaviour of keratinocytes cultured on models using plain scaffolds (without the presence of intricate topography) versus keratinocytes cultured on scaffolds containing microfeatures.
Collapse
Affiliation(s)
- Ilida Ortega Asencio
- Bioengineering and Health Technologies
Group, The School of Clinical Dentistry, The University of Sheffield, Sheffield,
UK
| | - Shweta Mittar
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Colin Sherborne
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Ahtasham Raza
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Manoukian MAC, Migdal CW, Tembhekar AR, Harris JA, DeMesa C. Topical Administration of Ibuprofen for Injured Athletes: Considerations, Formulations, and Comparison to Oral Delivery. SPORTS MEDICINE-OPEN 2017; 3:36. [PMID: 28983850 PMCID: PMC5629190 DOI: 10.1186/s40798-017-0103-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs commonly used to treat both the acute and chronic injuries sustained by athletes during training and competition. In many parts of the world, NSAIDs can be purchased over-the-counter and used without any physician oversight. However, the chronic nature of overuse injuries requires NSAIDs to be taken orally for an extended period of time. As a result, they can have significant adverse effects on athletes, namely gastrointestinal (GI), renal, and cardiovascular damage. Dyspepsia and upper GI ulceration and bleeding are of great concern in chronic NSAID use, and as such oral NSAIDs are generally contraindicated in those with a history of peptic ulcers or irritable bowel disease. In the setting of chronic overuse soft tissue or joint disease, topically administered NSAIDs offer an alternate route of administration that has the potential to deliver a similar level of pain and anti-inflammatory relief while bypassing the harmful side effects associated with oral intake. Topically applied NSAIDs are able to achieve high concentrations within the targeted site of action while simultaneously keeping plasma concentrations low, offering several advantages over oral administration. One commonly used generic NSAID is ibuprofen (2-(4-isobutylphenyl)propanoic acid). First synthesized in the 1960s, ibuprofen has since become widely available as an over-the-counter pharmaceutical. In this review, we outline new and different techniques that have been used to deliver ibuprofen into diseased tissues, including supersaturations, microemulsions, gels, nanosystems, and microneedles. We also review relevant clinical trials comparing transdermally delivered ibuprofen to placebo and orally administered ibuprofen.
Collapse
Affiliation(s)
| | | | | | | | - Charles DeMesa
- Department of Anesthesiology and Pain Medicine, University of California Davis School of Medicine, 4610 X Street, Sacramento, CA, USA
| |
Collapse
|
44
|
Sa G, Xiong X, Ren J, Wang J, Xia H, Liu Z, He S, Zhao Y. KGF Enhances Oral Epithelial Adhesion and Rete Peg Elongation via Integrins. J Dent Res 2017; 96:1546-1554. [PMID: 28732179 DOI: 10.1177/0022034517720360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- G.L. Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X.P. Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J.G. Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J.Y. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H.F. Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z.K. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - S.G. He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y.F. Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Isolating subpopulations of human epidermal basal cells based on polyclonal serum against trypsin-resistant CSPG4 epitopes. Exp Cell Res 2016; 350:368-379. [PMID: 28011196 DOI: 10.1016/j.yexcr.2016.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is highly expressed by human epidermal keratinocytes located at the tip of the dermal papilla where keratinocytes show characteristics of stem cells. However, since available antibodies to CSPG4 are directed against trypsin-sensitive epitopes we have been unable to study these keratinocytes isolated directly from skin samples by flow cytometry. By choosing epitopes of CSPG4 relatively close to the cell membrane we were able to generate a polyclonal antibody that successfully detects CSPG4 on keratinocytes after trypsinization. Although CSPG4-positive basal cells express higher levels of Itgβ1 the colony-forming efficiency is slightly lower than CSPG4-negative basal cells. Sorting the directly isolated keratinocytes based on Itgβ1 did not reveal differences in colony-forming efficiency between keratinocytes expressing high or low levels of Itgβ1. However, after the first passage Itgβ1 could be used to predict colony-forming efficiency whether the culture was established from CSPG4-positive or CSPG4-negative basal cell keratinocytes. Although we were unable to detect differences in the colony-forming assay, global gene expression profiling showed that CSPG4-positive basal cell keratinocytes are distinct from CSPG4-negative basal cell keratinocytes. Our study demonstrates that it is possible to generate antibodies against trypsin-resistant epitopes of CSPG4. Our study also documents a marked change in behaviour upon cell culturing and challenges the way we assess for stemness within the human epidermal basal layer.
Collapse
|
46
|
Palmer BC, DeLouise LA. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016; 21:molecules21121719. [PMID: 27983701 PMCID: PMC5639878 DOI: 10.3390/molecules21121719] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Collapse
Affiliation(s)
- Brian C Palmer
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Lisa A DeLouise
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA.
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|