1
|
Yousef A. Alnakeeb E, Abdull Razis AF, Wei Chan K, Ling Tham C, Han Chan Y, Kalifa Kafo AS, Jambari NN, Rollin P, Djedaini-Pilard F. Antiallergic Effect of the Alpha-Cyclodextrin Moringin Complex in Rat Basophilic Leukaemia (RBL-2H3) Cell Line. Adv Pharmacol Pharm Sci 2024; 2024:8885068. [PMID: 39104427 PMCID: PMC11300081 DOI: 10.1155/2024/8885068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
Allergic diseases (ADs) are a major concern when it comes to public well-being. Moringa oleifera Lam is a tropical plant that is used in traditional medicine due to the presence of isothiocyanate. The present study investigated the antiallergic properties of 4-(α-L-rhamnopyranosyloxy)-benzyl isothiocyanate or moringin isolated from Moringa oleifera seeds in the form of alpha-cyclodextrin-moringin (α-CD/MG) complex on rat basophilic leukaemia (RBL-2H3) cell line at both the early and late stages of an allergic reaction. The α-CD/MG complex was initially elucidated using nuclear magnetic resonance (NMR) followed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt proliferation assay to evaluate the cytotoxicity and cell viability with respect to ketotifen fumarate (KF) and α-CD/MG. The release of beta-hexosaminidase (β-hexosaminidase) and histamine was used to determine the level of inhibition in the early stage while the suppression of the release of prostaglandin (PGD2), tumour necrosis factor-alpha (TNF-α), and interleukin (IL-4) was considered in the late stage. Higher concentrations of α-CD/MG (5 μM, p < 0.001) in mast cell degranulation significantly inhibited the expression of β-hexosaminidase, histamine, TNF-α, PGD2, and IL-4 in both the early and late stages. Thus, α-CD/MG can potentially be developed as an antiallergic drug as it has the ability to inhibit allergic responses in the late and early stages.
Collapse
Affiliation(s)
- Ebtisam Yousef A. Alnakeeb
- Natural Medicines and Products Research LaboratoryInstitute of BioscienceUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research LaboratoryInstitute of BioscienceUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Food ScienceFaculty of Food Science and TechnologyUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research LaboratoryInstitute of BioscienceUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical SciencesFaculty of Medicine and Health SciencesUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Yee Han Chan
- Department of Biomedical SciencesFaculty of Medicine and Health SciencesUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Anwar Salm Kalifa Kafo
- Department of PathologyFaculty of Medicine and Health SciencesUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nuzul Noorahya Jambari
- Laboratory of Food Safety and Food IntegrityInstitute of Tropical Agriculture and Food SecurityUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Food ScienceFaculty of Food Science and TechnologyUniversiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Patrick Rollin
- Université d'Orléans et CNRSICOA, UMR 7311, BP 6759, CEDEX 02, Orléans F-45067, France
| | - Florence Djedaini-Pilard
- LG2A UR 7378Université de Picardie Jules Verne33 rue Saint Leu—UFR des Sciences, Amiens F-80000, France
| |
Collapse
|
2
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Qin Z, Chen Y, Liu N, Wang Y, Su L, Liang B, Huang C. Mechanisms of Bushenyiqi decoction in the treatment of asthma: an investigation based on network pharmacology with experimental validation. Front Pharmacol 2024; 15:1361379. [PMID: 38590639 PMCID: PMC10999575 DOI: 10.3389/fphar.2024.1361379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background and purpose: The Bushenyiqi decoction (BYD), a contemporary prescription of traditional Chinese medicine (TCM), has been observed to significantly ameliorate asthma symptoms in patients based on clinical observations. Although multi-component and multi-target characteristics are important attributes of BYD treatment, its pharmacological effect on asthma and the underlying mechanism of action remain unclear. Method: Network pharmacology: the asthma-related genes were retrieved from the GeneCards and OMIM database. The active constituents of BYD and their corresponding target genes were collected from the TCMSP database. The underlying pathways associated with overlapping targets between BYD and asthma were identified through GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Experimental validation: pulmonary function tests, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson's trichrome stainings were conducted to validate the efficacy of BYD in ameliorating airway inflammation in allergic asthma mice. Western blot (WB) and molecular docking were performed to confirm the involvement of the underlying pathway in BYD treatment of asthma. Results: The results of animal experiments demonstrated that BYD may improve airway responsiveness and suppress airway inflammation in allergic asthma mice. The network pharmacological analysis revealed the involvement of 11 potentially key active components, 9 potential key targets, and the phosphatidylinositol3 kinase-RAC-α serine/threonine-protein kinase (PI3K/AKT) signaling pathway in the mechanism of action of BYD for asthma treatment. Our findings have confirmed that BYD effectively alleviated airway inflammation by targeting interleukin 6 (IL-6), epidermal growth factor receptor (EGFR), and hypoxia inducible factor 1 alpha (HIF1A), with quercetin, kaempferol, and luteolin performing as the pivotal active constituents. BYD may potentially reduce inflammatory cell infiltration in lung tissues by regulating the PI3K/AKT signaling pathway. Conclusion: In conclusion, the integration of network pharmacology and biological experiments has demonstrated that key constituents of BYD, such as quercetin, kaempferol, and luteolin, exhibit targeted effects on IL-6, EGFR, and HIF1A in combating asthma-related inflammation through inhibition of the PI3K/AKT signaling pathway. The findings of this investigation provide evidence supporting the effectiveness of TCM's "bushenyiqi" therapy in asthma management, as corroborated by contemporary medical technology.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Na Liu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Akinnusi PA, Olubode SO, Adebesin AO, Alade AA, Nwoke VC, Shodehinde SA. Optimal molecular binding data and pharmacokinetic profiles of novel potential triple-action inhibitors of chymase, spleen tyrosine kinase, and prostaglandin D2 receptor in the treatment of asthma. J Genet Eng Biotechnol 2023; 21:113. [PMID: 37947895 PMCID: PMC10638233 DOI: 10.1186/s43141-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.
Collapse
Affiliation(s)
| | | | | | | | - Victor Chinedu Nwoke
- Department of Biochemistry, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
5
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
6
|
Tiwari A, Tiwari V, Sharma A, Singh D, Singh Rawat M, Virmani T, Virmani R, Kumar G, Kumar M, Alhalmi A, Noman OM, Mothana RA, Alali M. Tanshinone-I for the treatment of uterine fibroids: Molecular docking, simulation, and density functional theory investigations. Saudi Pharm J 2023; 31:1061-1076. [PMID: 37250358 PMCID: PMC10209546 DOI: 10.1016/j.jsps.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Uterine fibroids (UF), most prevalent gynecological disorder, require surgery when symptomatic. It is estimated that between 25 and 35 percent of women wait until the symptoms have worsened like extended heavy menstrual bleeding and severe pelvic pain. These UF may be reduced in size through various methods such as medical or surgical intervention. Progesterone (prog) is a crucial hormone that restores the endometrium and controls uterine function. In the current study, 28 plant-based molecules are identified from previous literature and docked onto the prog receptors with 1E3K and 2OVH. Tanshinone-I has shown the best docking score against both proteins. The synthetic prog inhibitor Norethindrone Acetate is used as a standard to evaluate the docking outcomes. The best compound, tanshinone-I, was analyzed using molecular modeling and DFT. The RMSD for the 1E3K protein-ligand complex ranged from 0.10 to 0.42 Å, with an average of 0.21 Å and a standard deviation (SD) of 0.06, while the RMSD for the 2OVH protein-ligand complex ranged from 0.08 to 0.42 Å, with an average of 0.20 Å and a SD of 0.06 showing stable interaction. In principal component analysis, the observed eigen values of HPR-Tanshinone-I fluctuate between -1.11 to 1.48 and -1.07 to 1.25 for PC1 and PC2, respectively (1E3K), and the prog-tanshinone-I complex shows eigen values of -38.88 to -31.32 and -31.32 to 35.87 for PC1 and PC2, respectively (2OVH), which shows Tanshinone-I forms a stable protein-ligand complex with 1E3K in comparison to 2OVH. The Free Energy Landscape (FEL) analysis shows the Gibbs free energy in the range of 0 to 8 kJ/mol for Tanshinone-I with 1E3K and 0 to 14 kJ/mol for Tanshinone-I with the 2OVH complex. The DFT calculation reveals ΔE value of 2.8070 eV shows tanshinone-I as a stable compound. 1E3K modulates the prog pathway, it may have either an agonistic or antagonistic effect on hPRs. Tanshinone-I can cause ROS, apoptosis, autophagy (p62 accumulation), up-regulation of inositol requiring protein-1, enhancer-binding protein homologous protein, p-c-Jun N-terminal kinase (p-JNK), and suppression of MMPs. Bcl-2 expression can change LC3I to LC3II and cause apoptosis through Beclin-1 expression.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Ajay Sharma
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Manju Singh Rawat
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Sciences, College of Pharmacy, Aden University, Aden, Yemen
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alali
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
7
|
Nagata K, Araumi S, Ando D, Ito N, Ando M, Ikeda Y, Takahashi M, Noguchi S, Yasuda Y, Nakano N, Ando T, Hara M, Yashiro T, Hachisu M, Nishiyama C. Kaempferol Suppresses the Activation of Mast Cells by Modulating the Expression of FcεRI and SHIP1. Int J Mol Sci 2023; 24:ijms24065997. [PMID: 36983066 PMCID: PMC10059252 DOI: 10.3390/ijms24065997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In the present study, we evaluated the effects of kaempferol on bone marrow-derived mast cells (BMMCs). Kaempferol treatment significantly and dose-dependently inhibited IgE-induced degranulation, and cytokine production of BMMCs under the condition that cell viability was maintained. Kaempferol downregulated the surface expression levels of FcεRI on BMMCs, but the mRNA levels of FcεRIα, β, and γ-chains were not changed by kaempferol treatment. Furthermore, the kaempferol-mediated downregulation of surface FcεRI on BMMCs was still observed when protein synthesis or protein transporter was inhibited. We also found that kaempferol inhibited both LPS- and IL-33-induced IL-6 production from BMMCs, without affecting the expression levels of their receptors, TLR4 and ST2. Although kaempferol treatment increased the protein amount of NF-E2-related factor 2 (NRF2)-a master transcription factor of antioxidant stress-in BMMCs, the inhibition of NRF2 did not alter the suppressive effect of kaempferol on degranulation. Finally, we found that kaempferol treatment increased the levels of mRNA and protein of a phosphatase SHIP1 in BMMCs. The kaempferol-induced upregulation of SHIP1 was also observed in peritoneal MCs. The knockdown of SHIP1 by siRNA significantly enhanced IgE-induced degranulation of BMMCs. A Western blotting analysis showed that IgE-induced phosphorylation of PLCγ was suppressed in kaempferol-treated BMMCs. These results indicate that kaempferol inhibited the IgE-induced activation of BMMCs by downregulating FcεRI and upregulating SHIP1, and the SHIP1 increase is involved in the suppression of various signaling-mediated stimulations of BMMCs, such as those associated with TLR4 and ST2.
Collapse
Affiliation(s)
- Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Sanae Araumi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Daisuke Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Ikeda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Miki Takahashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Sakura Noguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yayoi Yasuda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
8
|
Xu J, Yu Z, Li W. Kaempferol inhibits airway inflammation induced by allergic asthma through NOX4-Mediated autophagy. Hum Exp Toxicol 2023; 42:9603271231154227. [PMID: 36803065 DOI: 10.1177/09603271231154227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Kaempferol has important medicinal value in the treatment of asthma. However, its mechanism of action has not been fully understood and needs to be explored and studied. METHODS A binding activity of kaempferol with nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) were treated with different concentrations (0, 1, 5, 10, 20, 40 μg/mL) of kaempferol to select its suitable concentration. In the transforming growth factor (TGF)-β1-induced BEAS-2B, cells were treated with 20 μg/mL kaempferol or 20 μM GLX35132 (a NOX4 inhibitor) to analyze its effects on NOX4-mediated autophagy. In the ovalbumin (OVA)-induced mice, 20 mg/kg kaempferol or 3.8 mg/kg GLX351322 administration was performed to analyze the therapeutic effects of kaempferol on NOX4-mediated autophagy. An autophagy activator, rapamycin, was used to confirm the mechanism of kaempferol in treatment of allergic asthma. RESULTS A good binding of kaempferol to NOX4 (score = -9.2 kcal/mol) was found. In the TGF-β1-induced BEAS-2B, the NOX4 expression was decreased with kaempferol dose increase. The secretions of IL-25 and IL-33, and the NOX4-mediated autophagy were significantly decreased by kaempferol treatment in the TGF-β1-induced BEAS-2B. In the OVA-challenged mice, kaempferol treatment improved airway inflammation and remodeling through suppressing NOX4-mediated autophagy. The rapamycin treatment clearly hampered the therapeutic effects of kaempferol in the TGF-β1-induced cells and OVA-induced mice. CONCLUSIONS This study identifies kaempferol binds NOX4 to perform its functions in the treatment of allergic asthma, providing an effective therapeutic strategy in the further treatment of asthma.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Pulmonary and Critical Care Medicine, 117747Yantai Yuhuangding Hospital, Yantai, China
| | - Zhenyu Yu
- Department of Anesthesiology, 117747Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, 117747Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
9
|
El-Hela AA, Hegazy MM, Abbass HS, Ahmed AH, Bakr MSA, Elkousy RH, Ibrahim AE, El Deeb S, Sayed OM, Gad ES. Dinebra retroflexa Herbal Phytotherapy: A Simulation Study Based on Bleomycin-Induced Pulmonary Fibrosis Retraction Potential in Swiss Albino Rats. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1719. [PMID: 36556921 PMCID: PMC9782064 DOI: 10.3390/medicina58121719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Fibrotic lung disease is one of the main complications of many medical conditions. Therefore, the use of anti-fibrotic agents may provide a chance to prevent, or at least modify, such complication. The aim of this study was to evaluate the protective pulmonary anti-fibrotic and anti-inflammatory effects of Dinebra retroflexa. Materials and methods: Dinebra retroflexa methanolic extract and its synthesized silver nanoparticles were tested on bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/5 mL/kg-Saline) as a supposed model for induced lung fibrosis. The weed evaluation was performed by intratracheal instillation of Dinebra retroflexa methanolic extract and its silver nanoparticles (35 mg/100 mL/kg-DMSO, single dose). Results: The results showed that both Dinebra retroflexa methanolic extract and its silver nanoparticles had a significant pulmonary fibrosis retraction potential, with Ashcroft scores of three and one, respectively, and degrees of collagen deposition reduction of 33.8 and 46.1%, respectively. High-resolution UHPLC/Q-TOF-MS/MS metabolic profiling and colorimetrically polyphenolic quantification were performed for further confirmation and explanation of the represented effects. Such activity was believed to be due to the tentative identification of twenty-seven flavonoids and one phenolic acid along with a phenolic content of 57.8 mg/gm (gallic acid equivalent) and flavonoid content of 22.5 mg/gm (quercetin equivalent). Conclusion: Dinebra retroflexa may be considered as a promising anti-fibrotic agent for people at high risk of complicated lung fibrosis. The results proved that further clinical trials would be recommended to confirm the proposed findings.
Collapse
Affiliation(s)
- Atef A. El-Hela
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
| | - Mostafa M. Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
| | - Hatem S. Abbass
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo 11884, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Amal H. Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Marwa S. Abu Bakr
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Rawah H. Elkousy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo 11884, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38092 Braunschweig, Germany
| | - Ossama M. Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| | - Enas S. Gad
- Department of Pharmaceutical Sciences, King Faisal University, Al-Hofuf 13890, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia 41636, Egypt
| |
Collapse
|
10
|
Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7364126. [PMID: 36105239 PMCID: PMC9467798 DOI: 10.1155/2022/7364126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.
Collapse
|
11
|
Evaluation of the α-casein (CSN1S1) locus as a potential target for a site-specific transgene integration. Sci Rep 2022; 12:7983. [PMID: 35568783 PMCID: PMC9107462 DOI: 10.1038/s41598-022-12071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Transgenic animals are an important tool in biotechnology, including the production of recombinant proteins in the milk. Traditionally, expression constructs are based on hybrid vectors bearing mammary gland specific regulatory elements from the α-casein (Csn1s1), β-casein (Csn2), whey acidic protein (WAP), or β-lactoglobulin (BLG) genes. Overexpression from the randomly integrated vectors typically provides high levels of expression, but has drawbacks due to unpredictable genome localization. CRISPR-Cas9 targeted transgene integration into the endogenous casein locus could alleviate the need for extensive animal screening to achieve high and reproducible expression levels. We decided to evaluate such a “precise” integration approach, placing the human granulocyte–macrophage colony-stimulating factor (hGMCSF) gene under control of the mouse endogenous alpha-S1-casein (Csn1s1) promoter. We designed two types of transgene integrations: a knock-in in the second exon of the Csn1s1 (INS-GM) and a full-size Csn1s1 replacement with hGMCSF (REP-GM) which was never tested before. The INS-GM approach demonstrated low transgene expression and milk protein levels (0.4% of Csn2 transcripts; 2–11 µg/ml hGMCSF). This was probably caused by the absence of the 3’-polyadenylation signal in the hGMCSF transgene. REP-GM animals displayed high transgene expression, reaching and slightly exceeding the level of the endogenous Csn1s1 (30–40% of Csn2 transcripts), but yielded less hGMCSF protein than expected (0.2–0.5 mg/ml vs 25 mg/ml of Csn1s1), indicating that translation of the protein is not optimal. Homozygous inserts leading to the Csn1s1 knock-out did not have any long standing effects on the animals’ health. Thus, in our experimental design, site-specific transgene integration into the casein locus did not provide any significant advantage over the overexpression approach.
Collapse
|
12
|
Yang CC, Hsiao LD, Wang CY, Lin WN, Shih YF, Chen YW, Cho RL, Tseng HC, Yang CM. HO-1 Upregulation by Kaempferol via ROS-Dependent Nrf2-ARE Cascade Attenuates Lipopolysaccharide-Mediated Intercellular Cell Adhesion Molecule-1 Expression in Human Pulmonary Alveolar Epithelial Cells. Antioxidants (Basel) 2022; 11:antiox11040782. [PMID: 35453467 PMCID: PMC9028455 DOI: 10.3390/antiox11040782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lung inflammation is a pivotal event in the pathogenesis of acute lung injury. Heme oxygenase-1 (HO-1) is a key antioxidant enzyme that could be induced by kaempferol (KPR) and exerts anti-inflammatory effects. However, the molecular mechanisms of KPR-mediated HO-1 expression and its effects on inflammatory responses remain unknown in human pulmonary alveolar epithelial cells (HPAEpiCs). This study aimed to verify the relationship between HO-1 expression and KPR treatment in both in vitro and in vivo models. HO-1 expression was determined by real time-PCR, Western blotting, and promoter reporter analyses. The signaling components were investigated by using pharmacological inhibitors or specific siRNAs. Chromatin immunoprecipitation (ChIP) assay was performed to investigate the interaction between nuclear factor erythroid-2-related factor (Nrf2) and antioxidant response elements (ARE) binding site of HO-1 promoter. The effect of KPR on monocytes (THP-1) binding to HPAEpiCs challenged with lipopolysaccharides (LPS) was determined by adhesion assay. We found that KPR-induced HO-1 level attenuated the LPS-induced intercellular cell adhesion protein 1 (ICAM-1) expression in HPAEpiCs. KPR-induced HO-1 mRNA and protein expression also attenuated ICAM-1 expression in mice. Tin protoporphyrin (SnPP)IX reversed the inhibitory effects of KPR in HPAEpiCs. In addition, in HPAEpiCs, KPR-induced HO-1 expression was abolished by both pretreating with the inhibitor of NADPH oxidase (NOX, apocynin (APO)), reactive oxygen species (ROS) (N-acetyl-L-cysteine (NAC)), Src (Src kinase inhibitor II (Srci II)), Pyk2 (PF431396), protein kinase C (PKC)α (Gö6976), p38 mitogen-activated protein kinase (MAPK) inhibitor (p38i) VIII, or c-Jun N-terminal kinases (JNK)1/2 (SP600125) and transfection with their respective siRNAs. The transcription of the homx1 gene was enhanced by Nrf2 activated by JNK1/2 and p38α MAPK. The binding activity between Nrf2 and HO-1 promoter was attenuated by APO, NAC, Srci II, PF431396, or Gö6983. KPR-mediated NOX/ROS/c-Src/Pyk2/PKCα/p38α MAPK and JNK1/2 activate Nrf2 to bind with ARE on the HO-1 promoter and induce HO-1 expression, which further suppresses the LPS-mediated inflammation in HPAEpiCs. Thus, KPR exerts a potential strategy to protect against pulmonary inflammation via upregulation of the HO-1.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chen-Yu Wang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Yi-Wen Chen
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Rou-Ling Cho
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan; (L.-D.H.); (C.-Y.W.); (Y.-F.S.); (Y.-W.C.); (R.-L.C.); (H.-C.T.)
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-220-53366 (ext. 2229)
| |
Collapse
|
13
|
Yin N, Yang X, Wang L, Zhang C, Guan J, Tao Y, Guo X, Zhao Y, Song W, Wang B, Tang Y. Kaempferol inhibits the expression of α-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog 2021; 162:105336. [PMID: 34856361 DOI: 10.1016/j.micpath.2021.105336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium that induces a variety of diseases in humans and animals. The significant pathogenicity of S. aureus is due to its expression of several virulence factors. Alpha-hemolysin (Hla) has attracted attention as a virulence factor in staphylococcal pathogenesis and has been the predominant focus of intense research. In this study, we found that kaempferol, a flavonoid compound, inhibited hemolysis at a low concentration (32 μg/mL) and exerted no effect on bacterial growth. Western blot and RT-qPCR assays further demonstrated that kaempferol downregulated the expression of Hla in S. aureus. We observed that kaempferol alleviated the damage from S. aureus Hla in A549 cells. More importantly, kaempferol showed a potent protective effect on mice pneumonia induced by MRSA, as evidenced by a significant improvement in the survival of mice, a reduction in the number of colonized colonies in lung tissue and a decrease in the pathological damage to lung tissues. In summary, the results demonstrate the protective effect of kaempferol on MRSA-induced lethal pneumonia in mice and indicate that kaempferol could be developed as a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Ning Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 271016, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chi Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xuerui Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China; School of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
14
|
Ju PC, Ho YC, Chen PN, Lee HL, Lai SY, Yang SF, Yeh CB. Kaempferol inhibits the cell migration of human hepatocellular carcinoma cells by suppressing MMP-9 and Akt signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1981-1989. [PMID: 34156145 DOI: 10.1002/tox.23316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Metastasis is the most prevalent cause of cancer-related deaths and treatment failure in patients with hepatocellular carcinoma (HCC). Kaempferol is a natural flavonol belonging to the subgroup of flavonoids and exhibits potent anticancer activities. This study provides molecular evidence on the anti-invasive and anti-migratory effects of kaempferol on human HCC cells. The anti-invasive effect was investigated by applying kaempferol on two human HCC cell lines (Huh-7 and SK-Hep-1). Kaempferol reduced the invasion and migration of Huh-7 and SK-Hep-1 cells by Boyden chamber invasion assay and wound healing assay, respectively. A protease array analysis showed that Matrix Metalloproteinase-9 (MMP-9) was dramatically downregulated in HCC cells after kaempferol treatment. Gelatin zymography and Western blot assay showed that kaempferol reduced the activities and protein expression of MMP-9, respectively. Kaempferol also sufficiently suppressed the phosphorylation of the Akt expression. Overall, kaempferol inhibited the invasive properties of human HCC cells by targeting MMP-9 and Akt pathways. Hence, kaempferol could be used as an adjuvant therapeutic agent for the treatment of human HCC cells.
Collapse
Affiliation(s)
- Po-Chung Ju
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Yu Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
15
|
Network Pharmacology Analysis of the Identification of Phytochemicals and Therapeutic Mechanisms of Paeoniae Radix Alba for the Treatment of Asthma. J Immunol Res 2021; 2021:9659304. [PMID: 34557554 PMCID: PMC8455205 DOI: 10.1155/2021/9659304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background Paeoniae Radix Alba (PRA), the root of the plant Paeonia lactiflora Pall., has been suggested to play an important role for the treatment of asthma. A biochemical understanding of the clinical effects of Paeoniae Radix Alba is needed. Here, we explore the phytochemicals and therapeutic mechanisms via a systematic and comprehensive network pharmacology analysis. Methods Through TCMSP, PubChem, GeneCards database, and SwissTargetPrediction online tools, potential targets of active ingredients from PRA for the treatment of asthma were obtained. Cytoscape 3.7.2 was used to determine the target of active ingredients of PRA. Target protein interaction (PPI) network was constructed through the STRING database. The Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genes (KEGG) pathway enrichment analysis were analyzed through the biological information annotation database (DAVID). Results Our results indicate that PRA contains 21 candidate active ingredients with the potential to treat asthma. The enrichment analysis of GO and KEGG pathways found that the treatment of asthma by PRA may be related to the process of TNF (tumor necrosis factor) release, which can regulate and inhibit multiple signaling pathways such as ceramide signaling. Conclusions Our work provides a phytochemical basis and therapeutic mechanisms of PRA for the treatment of asthma, which provides new insights on further research on PRA.
Collapse
|
16
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
18
|
Perilla Leaf Extract Attenuates Asthma Airway Inflammation by Blocking the Syk Pathway. Mediators Inflamm 2021; 2021:6611219. [PMID: 34045925 PMCID: PMC8128618 DOI: 10.1155/2021/6611219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
Perilla frutescens (L.) Britton is a classic herbal plant used widely against asthma in China. But its mechanism of beneficial effect remains undermined. In the study, the antiallergic asthma effects of Perilla leaf extract (PLE) were investigated, and the underlying mechanism was also explored. Results showed that PLE treatment significantly attenuated airway inflammation in OVA-induced asthma mice, by ameliorating lung pathological changes, inhibiting recruitment of inflammatory cells in lung tissues and bronchoalveolar lavage fluid (BALF), decreasing the production of inflammatory cytokines in the BALF, and reducing the level of immunoglobulin in serum. PLE treatment suppressed inflammatory response in antigen-induced rat basophilic leukemia 2H3 (RBL-2H3) cells as well as in OVA-induced human peripheral blood mononuclear cells (PBMCs). Furthermore, PLE markedly inhibited the expression and phosphorylation of Syk, NF-κB, PKC, and cPLA2 both in vivo and in vitro. By cotreating with inhibitors (BAY61-3606, Rottlerin, BAY11-7082, and arachidonyl trifluoromethyl ketone) in vitro, results revealed that PLE's antiallergic inflammatory effects were associated with the inhibition of Syk and its downstream signals NF-κB, PKC, and cPLA2. Collectively, the present results suggested that PLE could attenuate allergic inflammation, and its mechanism might be partly mediated through inhibiting the Syk pathway.
Collapse
|
19
|
Jantrapirom S, Hirunsatitpron P, Potikanond S, Nimlamool W, Hanprasertpong N. Pharmacological Benefits of Triphala: A Perspective for Allergic Rhinitis. Front Pharmacol 2021; 12:628198. [PMID: 33995026 PMCID: PMC8120106 DOI: 10.3389/fphar.2021.628198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis (AR) is considered a major nasal condition impacting a large number of people around the world, and it is now becoming a global health problem. Because the underlying mechanisms of AR are complex, the development of single-drug treatment might not be enough to treat a wide spectrum of the disease. Although the standard guidelines classify and provide suitable diagnosis and treatment, the vast majority of people with AR are still without any means of controlling it. Moreover, the benefits of AR drugs are sometimes accompanied by undesirable side effects. Thus, it is becoming a significant challenge to find effective therapies with limited undesirable side effects for a majority of patients suffering from uncontrolled AR. Aller-7/NR-A2, a polyherbal formulation, has revealed promising results in patients by reducing nasal symptoms and eosinophil counts without serious adverse effects. Interestingly, three out of seven of the herbals in the Aller-7/NR-A2 formulation are also found in an Ayurvedic polyherbal formulation known as “Triphala,” which is a potential candidate for the treatment of AR. However, there are no current studies that have examined the effects of Triphala on the disease. This review aims to describe the complexity of AR pathophysiology, currently available treatments, and the effects of Triphala on AR in order to help develop it as a promising alternative treatment in the future.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Drosophila Center for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai, University, Chiang Mai, Thailand
| | - Pannaphak Hirunsatitpron
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutthiya Hanprasertpong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Kianmehr M, Khazdair MR. Possible therapeutic effects of Crocus sativus stigma and its petal flavonoid, kaempferol, on respiratory disorders. PHARMACEUTICAL BIOLOGY 2020; 58:1140-1149. [PMID: 33295229 PMCID: PMC7746242 DOI: 10.1080/13880209.2020.1844762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
CONTEXT Crocus sativus L. (Iridaceae), or saffron, has been used as food additives and spices. In the traditional medicine of Iran, C. sativus has been used for the treatment of liver disorders, coughs, and as an anti-inflammatory agent for eyes. OBJECTIVE The current study reviewed the possible therapeutic effects of C. sativus stigma and its petal flavonoid (kaempferol) on respiratory disorders with several mechanisms such as anti-inflammatory, and smooth muscle relaxant effects. MATERIALS AND METHODS This review article searched databases including PubMed, Google Scholar, and ScienceDirect, up to November 2019. The keywords including; 'Crocus sativus', 'saffron', 'kaempferol', 'airway inflammation', and 'smooth muscle relaxant' were searched. RESULTS C. sativus reduced nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels and inflammatory cytokines in the lung tissue. Saffron and kaempferol reduced white blood cells (WBCs) and the percentage of neutrophils and eosinophils in bronchoalveolar lavage fluid. Moreover, saffron reduced tracheal responsiveness to methacholine and ovalbumin on tracheal smooth muscles. In addition, kaempferol reduced the total leukocyte and eosinophil counts similar to the effect of dexamethasone and also showed relaxant effects on smooth muscle. DISCUSSION AND CONCLUSION Crocus sativus and its petal flavonoid, kaempferol, showed relatively potent therapeutic effects on respiratory disorders by relaxation of tracheal smooth muscles via stimulatory or blocking effects on β-adrenoceptor and muscarinic receptors, respectively. Saffron and kaempferol also decreased production of NO, inflammatory cytokines and chemokines in respiratory systems.
Collapse
Affiliation(s)
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- CONTACT Mohammad Reza Khazdair , Pharmaceutical Science and Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
21
|
Li QS, Wang YQ, Liang YR, Lu JL. The anti-allergic potential of tea: a review of its components, mechanisms and risks. Food Funct 2020; 12:57-69. [PMID: 33241826 DOI: 10.1039/d0fo02091e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergy is an immune-mediated disease with increasing prevalence worldwide. Regular treatment with glucocorticoids and antihistamine drugs for allergy patients is palliative rather than permanent. Daily use of dietary anti-allergic natural products is a superior way to prevent allergy and alleviate the threat. Tea, as a health-promoting beverage, has multiple compounds with immunomodulatory ability. Persuasive evidence has shown the anti-allergic ability of tea against asthma, food allergy, atopic dermatitis and anaphylaxis. Recent advances in potential anti-allergic ability of tea and anti-allergic compounds in tea have been reviewed in this paper. Tea exerts its anti-allergic effect mainly by reducing IgE and histamine levels, decreasing FcεRI expression, regulating the balance of Th1/Th2/Th17/Treg cells and inhibiting related transcription factors. Further research perspectives are also discussed.
Collapse
Affiliation(s)
- Qing-Sheng Li
- Tea Research Institute, Zhejiang University, China. and Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, China
| | - Ying-Qi Wang
- Tea Research Institute, Zhejiang University, China.
| | | | | |
Collapse
|
22
|
Yang H, Sun W, Ma P, Yao C, Fan Y, Li S, Yuan J, Zhang Z, Li X, Lin M, Hou Q. Multiple Components Rapidly Screened from Perilla Leaves Attenuate Asthma Airway Inflammation by Synergistic Targeting on Syk. J Inflamm Res 2020; 13:897-911. [PMID: 33223845 PMCID: PMC7671475 DOI: 10.2147/jir.s281393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Perilla frutescens (L.) Britt., a classic medicinal plant, has been demonstrated to have anti-inflammatory and anti-allergic effects in asthma. Perilla leaves extract (PLE) exerted significant therapeutic effect against allergic asthma inflammation through Syk inhibition. But the active chemical ingredients from PLE are complex and unclear, it is difficult to fully elucidate its pharmacological mechanisms. Methods A method was established for rapid screening and characterization of active ingredients from PLE that targeted Syk, with which three potential active ingredients were identified. By using OVA-induced allergic asthma mouse model in vivo, OVA-induced human PBMCs inflammation model and DNP-IgE/BSA-induced RBL-2H3 cells model in vitro, the effects and mechanisms of PLE and its active components were evaluated. Results Using Syk-affinity screening method, roseoside (RosS), vicenin-2 (Vic-2) and rosmarinic acid (RosA) were identified from PLE. In vitro, PLE and its ingredients showed significant inhibitory activities against Syk, with their mixture (Mix, prepared by RosS, Vic-2 and RosA in accordance with their ratio in Syk-conjugated beads bound fraction) showing a stronger inhibitory activity. RosS, Vic-2 and RosA also showed significant effects on allergic asthma, and a synergistic effect of Mix was observed. Moreover, treatment with PLE, RosS, Vic-2, RosA, and Mix significantly inhibited the expression and phosphorylation of Syk, PKC, NF-κB p65, and cPLA2 in allergic mice lung tissue and in RBL-2H3 cells. Conclusion PLE may alleviate allergic airway inflammation partly through the multiple components synergistic targeting on Syk and its downstream inflammatory pathway.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yannan Fan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Shuyi Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jiqiao Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xuyu Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
23
|
Network Pharmacology Strategy to Investigate the Pharmacological Mechanism of HuangQiXiXin Decoction on Cough Variant Asthma and Evidence-Based Medicine Approach Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3829092. [PMID: 33178315 PMCID: PMC7647767 DOI: 10.1155/2020/3829092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022]
Abstract
Objective To investigate the pharmacological mechanism of HuangQiXiXin decoction (HQXXD) on cough variant asthma (CVA) and validate the clinical curative effect. Methods The active compounds and target genes of HQXXD were searched using TCMSP. CVA-related target genes were obtained using the GeneCards database. The active target genes of HQXXD were compared with the CVA-related target genes to identify candidate target genes of HQXXD acting on CVA. A medicine-compound-target network was constructed using Cytoscape 3.6.0 software, and a protein-protein interaction (PPI) network was constructed using the STRING database. Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using RGUI3.6.1 and Cytoscape 3.6.0. We searched the main database for randomized controlled trials of HQXXD for CVA. We assessed the quality of the included studies using the Cochrane Reviewers' Handbook. A meta-analysis of the clinical curative effect of HQXXD for CVA was conducted using the Cochrane Collaboration's RevMan 5.3 software. Results We screened out 48 active compounds and 217 active target genes of HQXXD from TCMSP. The 217 active target genes of HQXXD were compared with the 1481 CVA-related target genes, and 132 candidate target genes for HQXXD acting on CVA were identified. The medicine-compound-target network and PPI network were constructed, and the key compounds and key targets were selected. GO function enrichment and KEGG pathway enrichment analysis were performed. Meta-analysis showed that the total effective rate of the clinical curative effect was significantly higher in the experimental group than the control group. Conclusion The pharmacological mechanism of HQXXD acting on CVA has been further determined, and the clinical curative effect of HQXXD on CVA is remarkable.
Collapse
|
24
|
The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. Eur J Pharmacol 2020; 891:173698. [PMID: 33129789 DOI: 10.1016/j.ejphar.2020.173698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022]
Abstract
Flavonol kaempferol possesses a broad spectrum of potent pharmacological activities that seem to be effective in the modulation of allergic respiratory diseases. In our study, an experimental animal model of ovalbumin (OVA)-induced allergic airway inflammation in guinea pigs was used to determine the anti-asthmatic potential of kaempferol. The parameters of specific airway resistance (sRaw) and cough reflex response were evaluated in vivo. In vitro, an assessment of tracheal smooth muscle (TSM) contractility and analyses of inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, IFN-γ), transforming growth factor (TGF-β1), immune cells count and ciliary beating frequency (CBF) were performed. Both single (6, 20 mg/kg b. w. p. o.) and long-term administered doses of kaempferol (20 mg/kg b. w. p. o., 21 days) suppressed sRaw provoked by histamine in conscious animals. The administration of kaempferol for 21 days attenuated histamine-induced TSM contractility in vitro and ameliorated the progression of chronic airway inflammation by decreasing the levels of IL-5, IL-13, GM-CSF, eosinophil count in bronchoalveolar lavage (BAL) fluid and TGF-β1 protein level in lung tissue. Kaempferol also eliminated the alterations in cough reflex sensitivity invoked by OVA-sensitization, but it did not affect CBF. The results demonstrate that flavonol kaempferol can modulate allergic airway inflammation and associated asthma features (AHR, aberrant stimulation of cough reflex).
Collapse
|
25
|
Zaccai M, Yarmolinsky L, Khalfin B, Budovsky A, Gorelick J, Dahan A, Ben-Shabat S. Medicinal Properties of Lilium candidum L. and Its Phytochemicals. PLANTS 2020; 9:plants9080959. [PMID: 32751398 PMCID: PMC7465089 DOI: 10.3390/plants9080959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/07/2023]
Abstract
Lilium candidum L., known as Madonna, meadow, or white lily, is a bulbous plant from the Liliaceae family, originating in the Middle East. L. candidum has been abundantly used in folk medicine since ancient times to relieve a variety of ailments, including age-related diseases, burns, ulcers, and coughs. The aim of this article is to investigate the anti-inflammatory and anti-diabetic activities of L. candidum extracts and its active phytochemicals. Some active volatile phytochemicals were identified using gas chromatography–mass spectrometry (GC-MS) analysis. Significant (p < 0.001) anti-diabetic properties of the extracts kaempferol, linalool, citronellal, and humulene were demonstrated by an elevation in glucose uptake by adipocytes. The significant (p < 0.01) effect of the plant extracts kaempferol, citronellal, and humulene on the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8) was demonstrated using enzyme-linked immunosorbent assay. Altogether, L. candidum and its rich collection of phytochemicals hold promising medicinal potential, and further investigations of its therapeutic prospects are encouraged.
Collapse
Affiliation(s)
- Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | | | - Boris Khalfin
- Eastern R&D Center, Kiryat Arba 9010000, Israel; (L.Y.); (B.K.); (J.G.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Arie Budovsky
- Research & Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Jonathan Gorelick
- Eastern R&D Center, Kiryat Arba 9010000, Israel; (L.Y.); (B.K.); (J.G.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Correspondence: ; Tel.: +972-54-599-1056
| |
Collapse
|
26
|
Chen Y, Pan W, Jin S, Lin S. Combined metabolomic and transcriptomic analysis reveals key candidate genes involved in the regulation of flavonoid accumulation in Anoectochilus roxburghii. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Sun JH, Sun F, Yan B, Li JY, Xin DL. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in Mycoplasma pneumoniae pneumonia treatment. Biomed Pharmacother 2020; 125:109900. [PMID: 32028237 DOI: 10.1016/j.biopha.2020.109900] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is widely used in the treatment of Mycoplasma pneumoniae Pneumonia (MPP) in East Asia. However, our current understanding of the underlying molecular mechanism remains dispersive and promiscuous. In this study, a systematic pharmacological approach combined with literature data mining was applied for drug similarity evaluation, drug half-life evaluation, oral bioavailability prediction, drug target exploration, Gene Ontology (GO) analysis, KEGG pathway enrichment and network construction, thus providing the rationale for its clinical performance. Five mostly studied herbs, including Ephedra Herba, Amygdalus communis Vas, Platycodon grandiforus, Licorice and Scutellariae Radix, were selected from the literature. Total ninety-three active ingredients, which are expected to be the effective components for MPP treatment, were screened out. Interrelationship between active compounds, drug targets and signaling pathways were analyzed to reveal the therapeutic effect of TCM in detail. Of importance, we found that TNF, β2AR and PTGS2 play pivotal role in TCM mediated MPP inhibition. And mechanistically, epithelial apoptosis (defensive barrier function), GPCR signaling (symptom amelioration) and immune pathways (innate signaling and adaptive Th17 response) are critically involved. Our work, achieved through systematic pharmacology and data mining, enlarges the knowledge of TCM in MPP therapy, and could provide valuable insights for further drug discovery studies.
Collapse
Affiliation(s)
- Jian Hong Sun
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050,China.
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bin Yan
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jun Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - De Li Xin
- Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050,China.
| |
Collapse
|
28
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
29
|
Wang W, Liu QB, Jing W. Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells. Chin J Nat Med 2019; 17:252-263. [PMID: 31076129 DOI: 10.1016/s1875-5364(19)30029-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China.
| | - Qing-Bin Liu
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Wei Jing
- Department of Pediatric, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| |
Collapse
|
30
|
Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats. Inflammopharmacology 2019; 27:1179-1192. [PMID: 31069605 DOI: 10.1007/s10787-019-00597-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Oleanolic acid (OA) is a hydroxyl pentacyclic triterpene acid (HTAs) used in various ailments. Inflammatory diseases may be profoundly influenced by iron (Fe) and zinc (Zn) status. We studied the anti-asthmatic effects of two metal complexes (Fe and Zn) of OA in the ovalbumin (OVA)-induced rat model. Delayed type hypersensitivity (DTH) was measured. Total and differential leucocyte count was done in blood as well as bronchoalveolar lavage fluid (BALF). The mRNA expression levels of pro-inflammatory cytokines were measured in lung tissue by reverse transcription polymerase chain reaction. The levels of cyclooxygenase-2 (COX-2), immunoglobulin E (IgE) and 5-lipoxygenase (5-LOX) were estimated by enzyme linked immunosorbent assay. Splenocyte proliferation was performed through BrdU uptake method and nitric oxide levels were measured by colorimetric assay kit. The acute toxicity study was also done for the complexes. The asthmatic group developed allergic airway inflammation shown by increased DTH and inflammatory markers in blood and BALF. OA + Fe and OA + Zn displayed significant decrease in DTH, NO, expression of IL-4, 5, 13, 17, toll-like receptor-2, nuclear factor-kappa B and tumor necrosis factor-α; serum IgE, COX-2, and 5-LOX. The metal complexes also attenuated OVA-stimulated splenocyte proliferation. While no hepatotoxic or nephrotoxic potential was shown by OA + Fe and OA + Zn. Our findings indicate that both OA + Fe and OA + Zn possess significant anti-asthmatic effect which may be ascribed to its immunomodulatory and anti-inflammatory features.
Collapse
|
31
|
Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, Ahmad B, Bawazeer S, Atif M, Peters DG, Mubarak MS. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res 2018; 33:263-275. [PMID: 30402931 DOI: 10.1002/ptr.6227] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Kaempferol, a natural flavonoid present in several plants, possesses a wide range of therapeutic properties such as antioxidant, anticancer, and anti-inflammatory. It has a significant role in reducing cancer and can act as a therapeutic agent in the treatment of diseases and ailments such as diabetes, obesity, cardiovascular diseases, oxidative stress, asthma, and microbial contamination disorders. Kaempferol acts through different mechanisms: It induces apoptosis (HeLa cervical cancer cells), decreases cell viability (G2/M phase), downregulates phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) and human T-cell leukemia/lymphoma virus-I (HTLV-I) signaling pathways, suppresses protein expression of epithelial-mesenchymal transition (EMT)-related markers including N-cadherin, E-cadherin, Slug, and Snail, and metastasis-related markers such as matrix metallopeptidase 2 (MMP-2). Accordingly, the aim of the present review is to collect information pertaining to the effective role of kaempferol against various degenerative disorders, summarize the antioxidant, anti-inflammatory, anticancer, antidiabetic, and antiaging effects of kaempferol and to review the progress of recent research and available data on kaempferol as a protective and chemotherapeutic agent against several ailments.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied and Health Sciences, The University of Lahore-Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Farhan Saeed
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sami Bawazeer
- Department of EMS. Paramedic, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Dennis G Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
32
|
Kim YH, Choi YJ, Lee EJ, Kang MK, Park SH, Kim DY, Oh H, Park SJ, Kang YH. Novel glutathione-containing dry-yeast extracts inhibit eosinophilia and mucus overproduction in a murine model of asthma. Nutr Res Pract 2017; 11:461-469. [PMID: 29209456 PMCID: PMC5712496 DOI: 10.4162/nrp.2017.11.6.461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/OBSECTIVE Airway inflammation by eosinophils, neutrophils and alveolar macrophages is a characteristic feature of asthma that leads to pathological subepithelial thickening and remodeling. Our previous study showed that oxidative stress in airways resulted in eosinophilia and epithelial apoptosis. The current study investigated whether glutathione-containing dry yeast extract (dry-YE) ameliorated eosinophilia, goblet cell hyperplasia and mucus overproduction. MATERIALS/METHOD This study employed 2 µg/mL lipopolysaccharide (LPS)- or 20 ng/mL eotaxin-1-exposed human bronchial epithelial cells and ovalbumin (OVA)-challenged mice. Dry-YE employed in this study contained a significant amount of glutathione (140 mg in 100 g dry yeast). RESULTS Human bronchial epithelial cell eotaxin-1 and mucin 5AC (MUC5AC) were markedly induced by the endotoxin LPS, which was dose-dependently attenuated by nontoxic dry-YE at 10-50 µg/mL. Moreover, dry-YE inhibited the MUC5AC induction enhanced by eotaxin-1, indicating that eotaxin-1-mediated eosinophilia may prompt the MUC5AC induction. Oral supplementation with 10-100 mg/kg dry-YE inhibited inflammatory cell accumulation in airway subepithelial regions with a reduction of lung tissue level of intracellular adhesion molecule-1. In addition, ≥ 50 mg/kg dry-YE diminished the lung tissue levels of eotaxin-1, eosinophil major basic protein and MUC5AC in OVA-exposed mice. Alcian blue/periodic acid schiff staining revealed that the dry-YE supplementation inhibited goblet cell hyperplasia and mucus overproduction in the trachea and bronchiolar airways of OVA-challenged mice. CONCLUSIONS Oxidative stress may be involved in the induction of eotaxin-1 and MUC5AC by endotoxin episode and OVA challenge. Dry-YE effectively ameliorated oxidative stress-responsive epithelial eosinophilia and mucus-secreting goblet cell hyperplasia in cellular and murine models of asthma.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Sang-Jae Park
- Mediense Co. Ltd., 32 Soyanggang-ro, Chuncheon, Gangwon 24232, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| |
Collapse
|
33
|
Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods 2017; 30:203-219. [PMID: 32288791 PMCID: PMC7104980 DOI: 10.1016/j.jff.2017.01.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/01/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
The consumption of diet-based naturally bioactive metabolites is preferred to synthetic material in order to avert health-associated disorders. Among the plant-derived polyphenols, kaempferol (KMF) is considered as a valuable functional food ingredient with a broad range of therapeutic applications such as anti-cancer, antioxidant and anti-inflammatory uses. KMF acts on a range of intracellular as well as extracellular targets involved in the cell signaling pathways that in turn are known to regulate the hallmarks of cancer growth progressions like apoptosis, cell cycle, invasion or metastasis, angiogenesis and inflammation. Importantly, the understanding of mechanisms of action of KMF-mediated therapeutic effects may help the scientific community to design novel strategies for the treatment of dreadful diseases. The current review summarizes the various types of molecular targets of KMF in cancer cells as well as other health-associated disorders. In addition, this review also highlights the absorption, metabolism and epidemiological findings.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | | | - Sandeep Punia
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | - Tapan K. Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| |
Collapse
|
34
|
Kim YH, Choi YJ, Kang MK, Park SH, Antika LD, Lee EJ, Kim DY, Kang YH. Astragalin Inhibits Allergic Inflammation and Airway Thickening in Ovalbumin-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:836-845. [PMID: 28064485 DOI: 10.1021/acs.jafc.6b05160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lung inflammation and oxidative stress are the major contributors to the development of obstructive pulmonary diseases. Macrophages are involved in pulmonary inflammation and alveolar damage in emphysema. Astragalin is an anti-inflammatory flavonoid present in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited inflammatory cell infiltration induced by 20 μM H2O2 and blocked airway thickening and alveolar emphysema induced by 20 μg of ovalbumin (OVA) in mice. OVA induced mouse pulmonary MCP-1, and H2O2 enhanced the expression of MCP-1/ICAM-1/αv integrin in bronchial airway epithelial BEAS-2B cells. Such induction was inhibited by supplying 10-20 mg/kg of astragalin to OVA-challenged mice and 1-20 μM astragalin to oxidant-stimulated cells. Oral administration of 20 mg/kg of astragalin reduced the induction of F4/80/CD68/CD11b in airways of mice challenged with OVA. Additionally, emphysema tissue damage was observed in OVA-exposed alveoli. Mast cell recruitment in the airway subepithelium was blocked by supplementing astragalin to OVA-challenged mice. Orally treating 20 mg/kg of astragalin reduced α-SMA induction in inflammation-occurring airways and appeared to reverse airway thickening and constriction induced by an OVA episode. These results revealed that astragalin may improve airway thickening and alveolar destruction with blockade of allergic inflammation in airways. Therefore, astragalin may be a therapeutic agent antagonizing asthma and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| |
Collapse
|
35
|
Larcombe AN, Kicic A, Mullins BJ. Comment on "Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model" by Kim et al. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:185-186. [PMID: 28102065 PMCID: PMC5266117 DOI: 10.4168/aair.2017.9.2.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Alexander N Larcombe
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia.
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|