1
|
Gau TP, Wen JH, Lu IW, Huang PY, Lee YC, Lee WP, Lee HC. Application of attenuated total reflection-Fourier transform infrared spectroscopy in semi-quantification of blood lipids and characterization of the metabolic syndrome. PLoS One 2025; 20:e0316522. [PMID: 39883744 PMCID: PMC11781649 DOI: 10.1371/journal.pone.0316522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND/PURPOSE Dyslipidemia, a hallmark of metabolic syndrome (MetS), contributes to atherosclerotic and cardiometabolic disorders. Due to days-long analysis, current clinical procedures for cardiotoxic blood lipid monitoring are unmet. This study used AI-assisted attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to identify MetS and precisely quantify multiple blood lipid levels with a blood sample of 0.5 µl and the assaying time is approximately 10 minutes. METHODS ATR-FTIR spectroscopy with 1738 data points in the spectral range of 4000-650 cm-1 was used to analyze the blood samples. An adaptive synthetic technique was used to establish a prevalence-balanced dataset. LDL-C, HDL-C, TG, VLDL-C, and cholesterol levels were defined as the predicted targets of lipid absorption profiles. Linear regression (LR), gradient boosting regression tree (GBT), and histogram-based gradient boosting regression tree (HGBTR) were used to train the models. Lipid profile value prediction was evaluated using R2 and MAE, whereas MetS prediction was evaluated using area under the ROC curve. RESULTS A total of 150 blood samples from 25 individuals without MetS and 25 with MetS yielded 491 spectral measurements. In the regression models, HGBT best predicted the targets of TG, CHOL, HDL-C, LDL-C, and VLDL-C with R2 values of 0.854 (0.12), 0.684 (0.08), 0.758 (0.10), and 0.419 (0.11), respectively. The classification model with the greatest AUC was RF (0.978), followed by HGBT (0.972) and GBT (0.967). CONCLUSION The results of this study revealed that predicting MetS and determining blood lipid levels with high R2 values and limited errors are feasible for monitoring during therapy and intervention.
Collapse
Affiliation(s)
- Tz-Ping Gau
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jen-Hung Wen
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Wei Lu
- Center for General Education, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Huang
- Group of Life Science, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yao-Chang Lee
- Group of Life Science, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Optics and Photonics, National Central University, Chung-Li, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Po Lee
- Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Tsai WC, Lin YH, Kuo CH, Jhuo SJ, Shih RY, Wu CC, Liu IH, Huang TC, Liu RM, Lin TH, Su HM, Lai WT, Lee CH, Wu BN, Lin SF, Lee HC. Up-regulated small-conductance calcium-activated potassium currents contribute to atrial arrhythmogenesis in high-fat feeding mice. Europace 2023; 26:euae004. [PMID: 38195705 PMCID: PMC10825893 DOI: 10.1093/europace/euae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
AIMS Metabolic syndrome (MetS) is associated with arrhythmias and cardiovascular mortality. Arrhythmogenesis in MetS results from atrial structural and electrical remodelling. The small-conductance Ca2+-activated K+ (SK) currents modulate atrial repolarization and may influence atrial arrhythmogenicity. This study investigated the regulation of SK current perturbed by a high-fat diet (HFD) to mimic MetS. METHODS AND RESULTS Thirty mice were divided into two groups that were fed with normal chow (CTL) and HFD for 4 months. Electrocardiography and echocardiography were used to detect cardiac electrical and structure remodelling. Atrial action potential duration (APD) and calcium transient duration (CaTD) were measured by optical mapping of Langendorff-perfused mice hearts. Atrial fibrillation (AF) inducibility and duration were assessed by burst pacing. Whole-cell patch clamp was performed in primarily isolated atrial myocytes for SK current density. The SK current density is higher in atrial myocytes from HFD than in CTL mice (P ≤ 0.037). The RNA and protein expression of SK channels are increased in HFD mice (P ≤ 0.041 and P ≤ 0.011, respectively). Action potential duration is shortened in HFD compared with CTL (P ≤ 0.015). The shortening of the atrial APD in HFD is reversed by the application of 100 nM apamin (P ≤ 0.043). Compared with CTL, CaTD is greater in HFD atria (P ≤ 0.029). Calcium transient decay (Tau) is significantly higher in HFD than in CTL (P = 0.001). Both APD and CaTD alternans thresholds were higher in HFD (P ≤ 0.043), along with higher inducibility and longer duration of AF in HFD (P ≤ 0.023). CONCLUSION Up-regulation of apamin-sensitive SK currents plays a partial role in the atrial arrhythmogenicity of HFD mice.
Collapse
Affiliation(s)
- Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Shih-Jie Jhuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Ruo-Yun Shih
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I Hsin Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Tien-Chi Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Ren-Ming Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Ho-Ming Su
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao-Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu City 300093, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzi-You 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute/Center of Medical Science and Technology, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung 804201, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 912301, Taiwan
| |
Collapse
|
3
|
Lee HC, Cheng WC, Ma WL, Lin YH, Shin SJ, Lin YH. Association of lipid composition and unsaturated fatty acids of VLDL with atrial remodeling in metabolic syndrome. Sci Rep 2023; 13:6575. [PMID: 37085694 PMCID: PMC10121655 DOI: 10.1038/s41598-023-33757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Subjects with metabolic syndrome (MetS) commonly have atrial remodeling, which indicates a risk for atrial fibrillation. This study determined MetS-related changes in lipid components in very-low-density lipoprotein (VLDL), which has been shown to cause atrial remodeling, the effect of statins on these changes, and the correlation between atrial remodeling and VLDL lipid compositions. Blood samples were collected from 12 non-MetS and 27 sex- and age-matched MetS subjects. Fourteen patients with MetS (MetS-off statin) discontinued statin therapy 14 days before the study, while the remaining 13 remained on it (MetS-on statin). The VLDLs were isolated and processed for mass-based lipid profiling. Lipidomic analyses were performed and associated with atrial remodeling markers measured using standard echocardiography and electrocardiography. Compared with the VLDL components of the non-MetS group, glucosyl/galactosyl ceramide, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, and triglycerides were enriched in the MetS-off statin group. Statin therapy attenuated all abnormally abundant lipid classes in MetS, except for triglycerides. In addition, lyso-phosphatidylcholine, lyso-phosphatidylethanolamine, and triglycerides were significantly correlated with atrial dilatation, and the latter two were also correlated with the PR interval. Enrichment of double bonds, which indicate unsaturated fatty acids, was also significantly correlated with atrial remodeling and P-wave duration. This study suggests that the pathological lipid payload of MetS-VLDL may contribute to atrial remodeling in patients.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute/Center of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Wei-Chung Cheng
- PhD Program for Cancer Molecular Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, and Graduate Institution of Cancer Biology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Yu-Hsun Lin
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154086. [PMID: 35421806 DOI: 10.1016/j.phymed.2022.154086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Shensong Yangxin (SSYX) is a traditional Chinese medicine been widely used clinically to treat various arrhythmias including atrial fibrillation (AF). However, the role and precise mechanism of SSYX in MS-induced AF have not yet been elucidated. PURPOSE To elucidate the protective effects of SSYX on MS-induced AF and its possible mechanisms of action. METHODS Male Wistar rats (180-220 g) were fed a 16-week high-carbohydrate, high-fat (HCHF) diet together with 25% fructose in drinking water to produce a MS model. Low-concentration (SSYX-L, 0.4 g/kg) and high-concentration (SSYX-H, 0.8 g/kg) of SSYX were given by daily gavage 8-weeks following HCHF diet for 8-weeks. In vivo electrophysiological study, histological analysis, RNA-sequence (RNA-Seq) and gene ontology (GO) analysis, qRT-PCR and western blot were performed. RESULTS Both low-concentration and high-concentration of SSYX could inhibit MS-induced AF susceptibility, electrical remodeling and structural remodeling. Results from RNA-sequence analysis revealed intracellular iron homeostasis mediated the protective effect of SSYX against MS. In vivo and in vitro experiments both demonstrated that SSYX up-regulated ferroportin (Fpn) expression and ameliorated intracellular iron overload induced by MS. To verified whether Fpn is the target of SSYX and intracellular iron overload mediated the protective effect of SSYX against MS, adeno-associated virus type 9 (AAV9) delivery system was used. Knocking down Fpn (AAV9-shFpn) markedly aggravated the reactive oxygen species (ROS) production, electrical remodeling and atrial fibrosis induced by MS, leading to a further increase of AF susceptibility induced by MS. CONCLUSION Our study demonstrated for the first time that SSYX reduced AF susceptibility, inhibited electrical remodeling and structural remodeling via up-regulating Fpn, decreasing intracellular iron overload and reducing ROS production. These results suggest that SSYX might be a potential therapeutic agent for the treatment of MS-induced AF.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, No.238 Jiefang Road, Wuchang, Wuhan 430060, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, No.238 Jiefang Road, Wuchang, Wuhan 430060, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, No.238 Jiefang Road, Wuchang, Wuhan 430060, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, No.238 Jiefang Road, Wuchang, Wuhan 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, No.238 Jiefang Road, Wuchang, Wuhan 430060, China.
| |
Collapse
|
5
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
6
|
Tajik B, Tuomainen TP, Jarroch R, Kauhanen J, Lip GY, Isanejad M. Lipid levels, apolipoproteins, and risk of incident atrial fibrillation in men: A report from the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD). J Clin Lipidol 2022; 16:447-454. [DOI: 10.1016/j.jacl.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
|
7
|
Lin YS, Liu CK, Lee HC, Chou MC, Ke LY, Chen CH, Chen SL. Electronegative very-low-density lipoprotein induces brain inflammation and cognitive dysfunction in mice. Sci Rep 2021; 11:6013. [PMID: 33727609 PMCID: PMC7966811 DOI: 10.1038/s41598-021-85502-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
Epidemiologic studies have indicated that dyslipidemia may facilitate the progression of cognitive dysfunction. We previously showed that patients with metabolic syndrome (MetS) had significantly higher plasma levels of electronegative very-low-density lipoprotein (VLDL) than did healthy controls. However, the effects of electronegative-VLDL on the brain and cognitive function remain unclear. In this study, VLDL isolated from healthy volunteers (nVLDL) or patients with MetS (metVLDL) was administered to mice by means of tail vein injection. Cognitive function was assessed by using the Y maze test, and plasma and brain tissues were analyzed. We found that mice injected with metVLDL but not nVLDL exhibited significant hippocampus CA3 neuronal cell loss and cognitive dysfunction. In mice injected with nVLDL, we observed mild glial cell activation in the medial prefrontal cortex (mPFC) and hippocampus CA3. However, in mice injected with metVLDL, plasma and brain TNF-α and Aβ-42 levels and glial cell activation in the mPFC and whole hippocampus were higher than those in control mice. In conclusion, long-term exposure to metVLDL induced levels of TNF-α, Aβ-42, and glial cells in the brain, contributing to the progression of cognitive dysfunction. Our findings suggest that electronegative-VLDL levels may represent a new therapeutic target for cognitive dysfunction.
Collapse
Affiliation(s)
- Ying-Shao Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan
| | - Ching-Kuan Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan.,Department of Neurology, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, KMU Hospital and Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan.,Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan
| | - Mei-Chuan Chou
- Department of Neurology, KMU Hospital, KMU, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, KMU, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, KMU, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, KMU, Kaohsiung, Taiwan
| | - Chu-Huang Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan.,Lipid Science and Aging Research Center, College of Medicine, KMU, Kaohsiung, Taiwan.,Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan. .,Department of Medical Research, KMU Hospital, Drug Development and Value Creation Research Center and MSc Program in Tropical Medicine, KMU, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Lee HC, Shin SJ, Huang JK, Lin MY, Lin YH, Ke LY, Jiang HJ, Tsai WC, Chao MF, Lin YH. The role of postprandial very-low-density lipoprotein in the development of atrial remodeling in metabolic syndrome. Lipids Health Dis 2020; 19:210. [PMID: 32962696 PMCID: PMC7507670 DOI: 10.1186/s12944-020-01386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background Negatively charged very-low-density lipoprotein (VLDL-χ) in metabolic syndrome (MetS) patients exerts cytotoxic effects on endothelial cells and atrial myocytes. Atrial cardiomyopathy, manifested by atrial remodeling with a dilated diameter, contributes to atrial fibrillation pathogenesis and predicts atrial fibrillation development. The correlation of VLDL-χ with atrial remodeling is unknown. This study investigated the association between VLDL-χ and remodeling of left atrium. Methods Consecutively, 87 MetS and 80 non-MetS individuals between 23 and 74 years old (50.6% men) without overt cardiovascular diseases were included in the prospective cohort study. Blood samples were collected while fasting and postprandially (at 0.5, 1, 2, and 4 h after a unified meal). VLDL was isolated by ultracentrifugation; the percentile concentration of VLDL-χ (%) was determined by ultra-performance liquid chromatography. The correlations of left atrium diameter (LAD) with variables including VLDL-χ, LDL-C, HDL-C, triglycerides, glucose, and blood pressure, were analyzed by multiple linear regression models. A hierarchical linear model was conducted to test the independencies of each variable’s correlation with LAD. Results The mean LAD was 3.4 ± 0.5 cm in non-MetS subjects and 3.9 ± 0.5 cm in MetS patients (P < 0.01). None of the fasting lipid profiles were associated with LAD. VLDL-χ, BMI, waist circumference, hip circumference, and blood pressure were positively correlated with LAD (all P < 0.05) after adjustment for age and sex. Significant interactions between VLDL-χ and blood pressure, waist circumference, and hip circumference were observed. When adjusted for obesity- and blood pressure-related variables, 2-h postprandial VLDL-χ (mean 1.30 ± 0.61%) showed a positive correlation with LAD in MetS patients. Each 1% VLDL-χ increase was estimated to increase LAD by 0.23 cm. Conclusions Postprandial VLDL-χ is associated with atrial remodeling particularly in the MetS group. VLDL-χ is a novel biomarker and may be a therapeutic target for atrial cardiomyopathy in MetS patients. Trial registration ISRCTN 69295295. Retrospectively registered 9 June 2020.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Shyi-Jang Shin
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Kai Huang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsun Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - He-Jiun Jiang
- Department of Metabolism, Affiliated Hospital of Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Fang Chao
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Lin YH, Kang L, Feng WH, Cheng TL, Tsai WC, Huang HT, Lee HC, Chen CH. Effects of Lipids and Lipoproteins on Mesenchymal Stem Cells Used in Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21134770. [PMID: 32635662 PMCID: PMC7369828 DOI: 10.3390/ijms21134770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have two characteristics of interest for this paper: the ability to self-renew, and the potential for multiple-lineage differentiation into various cells. MSCs have been used in cardiac tissue regeneration for over a decade. Adult cardiac tissue regeneration ability is quite low; it cannot repair itself after injury, as the heart cells are replaced by fibroblasts and lose function. It is therefore important to search for a feasible way to repair and restore heart function through stem cell therapy. Stem cells can differentiate and provide a source of progenitor cells for cardiomyocytes, endothelial cells, and supporting cells. Studies have shown that the concentrations of blood lipids and lipoproteins affect cardiovascular diseases, such as atherosclerosis, hypertension, and obesity. Furthermore, the MSC lipid profiles, such as the triglyceride and cholesterol content, have been revealed by lipidomics, as well as their correlation with MSC differentiation. Abnormal blood lipids can cause serious damage to internal organs, especially heart tissue. In the past decade, the accumulated literature has indicated that lipids/lipoproteins affect stem cell behavior and biological functions, including their multiple lineage capability, and in turn affect the outcome of regenerative medicine. This review will focus on the effect of lipids/lipoproteins on MSC cardiac regenerative medicine, as well as the effect of lipid-lowering drugs in promoting cardiomyogenesis-associated MSC differentiation.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Han Feng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.L.); (W.-H.F.); (W.-C.T.)
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (H.-C.L.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-L.C.); (H.-T.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: (H.-C.L.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| |
Collapse
|
11
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
12
|
Shiou YL, Lin HT, Ke LY, Wu BN, Shin SJ, Chen CH, Tsai WC, Chu CS, Lee HC. Very Low-Density Lipoproteins of Metabolic Syndrome Modulates STIM1, Suppresses Store-Operated Calcium Entry, and Deranges Myofilament Proteins in Atrial Myocytes. J Clin Med 2019; 8:jcm8060881. [PMID: 31226824 PMCID: PMC6617489 DOI: 10.3390/jcm8060881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/16/2023] Open
Abstract
Individuals with metabolic syndrome (MetS) are at high risk for atrial myopathy and atrial fibrillation. Very low-density lipoproteins (VLDLs) of MetS (MetS-VLDLs) are cytotoxic to atrial myocytes in vivo and in vitro. The calcineurin-nuclear factor of activated T-cells (NFAT) pathway, which is regulated by stromal interaction molecule 1 (STIM1)/ calcium release-activated calcium channel protein 1 (Orai1)-mediated store-operated Ca2+ entry (SOCE), is a pivotal mediator of adaptive cardiac hypertrophy. We hypothesized that MetS-VLDLs could affect SOCE and the calcineurin-NFAT pathway. Normal-VLDL and MetS-VLDL samples were isolated from the peripheral blood of healthy volunteers and individuals with MetS. VLDLs were applied to HL-1 atrial myocytes for 18 h and were also injected into wild-type C57BL/6 male mouse tails three times per week for six weeks. After the sarcoplasmic reticulum (SR) Ca2+ store was depleted, SOCE was triggered upon reperfusion with 1.8 mM of Ca2+. SOCE was attenuated by MetS-VLDLs, along with reduced transcriptional and membranous expression of STIM1 (P = 0.025), and enhanced modification of O-GlcNAcylation on STIM1 protein, while Orai1 was unaltered. The nuclear translocation and activity of calcineurin were both reduced (P < 0.05), along with the alteration of myofilament proteins in atrial tissues. These changes were absent in normal-VLDL-treated cells. Our results demonstrated that MetS-VLDLs suppressed SOCE by modulating STIM1 at the transcriptional, translational, and post-translational levels, resulting in the inhibition of the calcineurin-NFAT pathway, which resulted in the alteration of myofilament protein expression and sarcomere derangement in atrial tissues. These findings may help explain atrial myopathy in MetS. We suggest a therapeutic target on VLDLs to prevent atrial fibrillation, especially for individuals with MetS.
Collapse
Affiliation(s)
- Yi-Lin Shiou
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsin-Ting Lin
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Liang-Yin Ke
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shyi-Jang Shin
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsiang-Chun Lee
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Rosenberg MA, Shores MM, Matsumoto AM, Bůžková P, Lange LA, Kronmal RA, Heckbert SR, Mukamal KJ. Serum androgens and risk of atrial fibrillation in older men: The Cardiovascular Health Study. Clin Cardiol 2018; 41:830-836. [PMID: 29671886 DOI: 10.1002/clc.22965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Decline in serum androgens is common among older men and has been associated with cardiovascular disease, although its role in risk of atrial fibrillation (AF) has not been well defined. HYPOTHESIS Low serum androgens are associated with an increased risk of AF. METHODS We examined the prospective associations between testosterone, its more active metabolite dihydrotestosterone (DHT), and sex hormone-binding globulin (SHBG) with risk of AF among 1019 otherwise healthy men with average age 76.3 ±4.9 years in the Cardiovascular Health Study. RESULTS After median follow-up of 9.5 years, 304 (30%) men developed AF. We detected a nonlinear association with risk of incident AF in both free and total DHT, in which subjects with the lowest levels had a higher risk of incident AF. After adjustment for demographics, clinical risk factors, left atrial diameter, and serum NT-proBNP levels, men with free DHT <0.16 ng/dL were at increased risk compared with men with higher levels (hazard ratio: 1.48, 95% confidence interval: 1.01-2.17, P <0.05). Sensitivity analyses confirmed that the increased risk was not cutpoint-specific, with a significant association noted up to cutpoints <~0.2 ng/dL. We also detected a complex nonlinear association between SHBG and incident AF, in which subjects in the middle quintile (52.9-65.3 nmol/L) had increased risk. CONCLUSIONS Among older men, low free DHT is associated with an increased risk of incident AF. Further studies are needed to explore mechanisms for this association.
Collapse
Affiliation(s)
- Michael A Rosenberg
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado.,Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Molly M Shores
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, VA Puget Sound Health Care System, Washington
| | - Alvin M Matsumoto
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Puget Sound Health Care System, Washington.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | - Kenneth J Mukamal
- Department of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
14
|
Lee HC, Chen CC, Tsai WC, Lin HT, Shiao YL, Sheu SH, Wu BN, Chen CH, Lai WT. Very-Low-Density Lipoprotein of Metabolic Syndrome Modulates Gap Junctions and Slows Cardiac Conduction. Sci Rep 2017; 7:12050. [PMID: 28935953 PMCID: PMC5608762 DOI: 10.1038/s41598-017-11416-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Very-low-density lipoproteins (VLDL) is a hallmark of metabolic syndrome (MetS) and each manifestation of MetS is related to atrial fibrillation (AF) risks. Slowed atrial conduction is a mechanism of AF in MetS. We hypothesized that VLDL can modulate and reduce atrial gap junctions. VLDLs were separated from normal (Normal-VLDL) and MetS (MetS-VLDL) individuals. VLDLs (15 µg/g) and equivalent volumes of saline (CTL) were injected respectively to C57BL/6 mice for 6 weeks. Electrocardiograms demonstrated that MetS-VLDL induced prolongation of P wave (P = 0.041), PR intervals (P = 0.014), QRS duration and QTc interval (both P = 0.003), but Normal-VLDL did not. Optical mapping of perfused hearts confirmed slowed conduction on atria and ventricles of MetS-VLDL mice. Slowed cardiac conduction was associated with significant atrial and ventricular remodeling, along with systolic dysfunction and comparable intra-cardiac fibrosis. MetS-VLDL induced downregulation of Cx40 and Cx43 at transcriptional, translational and tissue levels, and it also enhanced O-GlcNAcylation of Cx40 and Cx43. Protein structure analyses predicted O-GlcNAcylation at serine 18 of Cx40 and Cx43 which may impair stability of gap junctions. In conclusion, MetS-VLDL modulates gap junctions and delays both atrial and ventricular conduction. VLDL may contribute to the pathophysiology of atrial fibrillation and ventricular arrhythmias in MetS.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Chih-Chieh Chen
- Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Wei-Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsin-Ting Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Lin Shiao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hsiung Sheu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chu-Huang Chen
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|