1
|
Zhao Y, Wu Z, Zhou Y, Chen C, Lu Y, Wang H, Xu T, Yang C, Chen X. Cell Sheets Formation Enhances Therapeutic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Spinal Cord Injury. CNS Neurosci Ther 2024; 30:e70163. [PMID: 39670537 PMCID: PMC11638885 DOI: 10.1111/cns.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/04/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND In recent years, the utilization of stem cell therapy and cell sheet technology has emerged as a promising approach for addressing spinal cord injury (SCI). However, the most appropriate cell type and mechanism of action remain unclear at this time. This study sought to develop an SCI rat model and evaluate the therapeutic effects of human umbilical cord mesenchymal stem cell (hUC-MSC) sheets in this model. Furthermore, the mechanisms underlying the vascular repair effect of hUC-MSC sheets following SCI were investigated. METHODS A temperature-responsive cell culture method was employed for the preparation of hUC-MSC sheets. The extracellular matrix (ECM) produced by hUC-MSCs serves two distinct yet interrelated purposes. Firstly, it acts as a biologically active scaffold for transplanted cells, facilitating their attachment and proliferation. Secondly, it provides mechanical support and bridges spinal cord stumps, thereby facilitating the restoration of spinal cord function. The formation of the cavity within the spinal cord was evaluated using the Hematoxylin and Eosin (H&E) staining method. Subsequently, endothelial cells were cultivated with the conditioned medium (CM) obtained from hUC-MSCs or hUC-MSC sheets. The pro-angiogenic impact of the conditioned medium of hUC-MSCs (MSC-CM) and the conditioned medium of hUC-MSC sheets (CS-CM) was evaluated through the utilization of the CCK-8 assay, endothelial wound healing assay, and tube formation assay in an in vitro context. The development of glial scars, blood vessels, neurons, and axons in hUC-MSCs and hUC-MSC sheets was assessed through immunofluorescence staining. RESULTS In comparison to hUC-MSCs, hUC-MSC sheets demonstrated a more pronounced capacity to facilitate vascular formation and induce the regeneration of newborn neurons at the SCI site, while also reducing glial scar formation and significantly enhancing motor function in SCI rats. Notably, under identical conditions, the formation of cell sheets has been associated with a paracrine increase in the ability of the cells themselves to secrete pro-angiogenic growth factors. During the course of the experiment, it was observed that the secretion of uPAR was the most pronounced among the pro-angiogenic factors present in MSC-CM and CS-CM. This finding was subsequently corroborated in subsequent experiments, wherein uPAR was demonstrated to promote angiogenesis via the PI3K/Akt signaling pathway. CONCLUSION The creation of cell sheets not only significantly enhances the biological function of hUC-MSCs but also effectively retains the cells locally in spinal cord injury. Therefore, the transplantation of hUC-MSC sheets can maximize the function of hUC-MSCs, greatly reducing glial scar formation, enhancing vascular formation, and promoting the regeneration of neurons and axons. Additionally, the research findings prove that hUC-MSC sheets activate the PI3K/Akt signaling pathway through uPAR secretion to enhance angiogenesis. The transfer of the entire extracellular matrix by hUC-MSC sheets, in the absence of the introduction of additional exogenous or synthetic biomaterials, serves to further augment their potential for clinical application.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Zhengchao Wu
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Yuchen Zhou
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Cheng Chen
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yang Lu
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Heng Wang
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Tao Xu
- Medical School of Nantong UniversityNantongChina
| | - Changwei Yang
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Xiaoqing Chen
- Department of Spine SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
2
|
Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146:2672-2693. [PMID: 36848323 DOI: 10.1093/brain/awad047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.
Collapse
Affiliation(s)
- Beatriz F Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna C da Cruz
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia D Correia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno David
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Camila Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Ribeiro da Cunha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Spinal Cord Injury Rehabilitation Unit, Centro de Reabilitação do Norte (CRN), Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - António A Marques Baptista
- Department of Neurosurgery, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Tian Z, Yu T, Liu J, Wang T, Higuchi A. Introduction to stem cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:3-32. [PMID: 37678976 DOI: 10.1016/bs.pmbts.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Stem cells have self-renewal capability and can proliferate and differentiate into a variety of functionally active cells that can serve in various tissues and organs. This review discusses the history, definition, and classification of stem cells. Human pluripotent stem cells (hPSCs) mainly include embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Embryonic stem cells are derived from the inner cell mass of the embryo. Induced pluripotent stem cells are derived from reprogramming somatic cells. Pluripotent stem cells have the ability to differentiate into cells derived from all three germ layers (endoderm, mesoderm, and ectoderm). Adult stem cells can be multipotent or unipotent and can produce tissue-specific terminally differentiated cells. Stem cells can be used in cell therapy to replace and regenerate damaged tissues or organs.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 2023; 220:102375. [PMID: 36410665 DOI: 10.1016/j.pneurobio.2022.102375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.
Collapse
Affiliation(s)
- Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiming Gu
- Physical Education Department, Capital University of Economics and Business, Beijing 100070, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
6
|
Yuan H, Fang CL, Deng YP, Huang J, Niu RZ, Chen JL, Chen TB, Zhu ZQ, Chen L, Xiong LL, Wang TH. A2B5-positive oligodendrocyte precursor cell transplantation improves neurological deficits in rats following spinal cord contusion associated with changes in expression of factors involved in the Notch signaling pathway. Neurochirurgie 2022; 68:188-195. [PMID: 34543615 DOI: 10.1016/j.neuchi.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Oligodendrocyte precursor cells (OPCs) are myelinated glial cells of the central nervous system (CNS), able to regenerate oligodendrocytes and myelin. This study aimed to elucidate the effect of A2B5-positive (A2B5+) OPC transplantation in rats with spinal cord contusion (SCC) and to investigate changes in expression of various factors involved in the Notch signaling pathway after OPC transplantation. METHODS OPCs were obtained from induced pluripotent stem cells (iPSCs) originating from mouse embryo fibroblasts (MEFs). After identification of iPSCs and iPSC-derived OPCs, A2B5+ OPCs were transplanted into the injured site of rats with SCC one week after SCC insult. Behavioral tests evaluated motor and sensory function 7 days after OPC transplantation. Real-time quantitative polymerase chain reaction (RT-qPCR) determined the expression of various cytokines related to the Notch signaling pathway after OPC transplantation. RESULTS IPSC-derived OPCs were successfully generated from MEFs, as indicated by positive immunostaining of A2B5, PDGFα and NG2. Further differentiation of OPCs was identified by immunostaining of Olig2, Sox10, Nkx2.2, O4, MBP and GFAP. Importantly, myelin formation was significantly enhanced in the SCC+ OPC group and SCI-induced motor and sensory dysfunction was largely alleviated by A2B5+ OPC transplantation. Expression of factors involved in the Notch signaling pathway (Notch-1, Numb, SHARP1 and NEDD4) was significantly increased after OPC transplantation. CONCLUSIONS A2B5+ OPC transplantation attenuates motor and sensory dysfunction in SCC rats by promoting myelin formation, which may be associated with change in expression of factors involved in the Notch signaling pathway.
Collapse
Affiliation(s)
- H Yuan
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, Yunnan, China; Department of Spine Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - C-L Fang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Y-P Deng
- Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - J Huang
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, Yunnan, China
| | - R-Z Niu
- Laboratory Animal Department, Kunming Medical University, Kunming 650031, Yunnan, China
| | - J-L Chen
- Laboratory Animal Department, Kunming Medical University, Kunming 650031, Yunnan, China
| | - T-B Chen
- Laboratory Animal Department, Kunming Medical University, Kunming 650031, Yunnan, China
| | - Z-Q Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - L Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - L-L Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - T-H Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, Yunnan, China; Laboratory Animal Department, Kunming Medical University, Kunming 650031, Yunnan, China; Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
8
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
9
|
Zhang P, Yang X, Yin Y, Zhang Z, Yao Y. Effects of multidisciplinary model of damage control on acute cervical spinal cord injury in winter Olympic sports. Am J Transl Res 2021; 13:5051-5058. [PMID: 34150091 PMCID: PMC8205732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE To investigate the feasibility of multidisciplinary model of damage control (MMDC) in patients with acute cervical spinal cord injury (ACSCI) in winter Olympic sports. METHODS A total of 110 patients with ACSCI who participated in winter Olympic sports were selected as the study subjects, and were divided into the study group (SG, n=60, MMDC) and the control group (CG, n=50, conventional intervention) according to the intervention mode. The clinical effects of intervention, changes in neurological function and muscle tone before and after intervention, the changes in motor function and activity of daily living during intervention, and patient satisfaction towards intervention were compared between the two groups. RESULTS The effective rate of intervention in the SG was 98.33%, higher than 88.00% in the CG (P < 0.05), and the percentage of patients with Grade E injuries in the SG after intervention was 30.00%, significantly higher than 12.00% in the CG (P < 0.05). The scores of all dimensions of Ashworth scale in the SG were lower than those in the CG (P < 0.05). The patients in the SG exhibited higher FMA scale and modified Barthel index (MBI) scores than the CG from 1 to 6 months of intervention (P < 0.05). CONCLUSION MMDC showed better efficacy, the patients' neurological function, muscle tone and motor function could be better restored, and patients' abilities of daily activities were improved after intervention.
Collapse
Affiliation(s)
- Peinan Zhang
- The First Department of Orthopedics, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei Province, China
| | - Xinming Yang
- The First Department of Orthopedics, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei Province, China
| | - Yanlin Yin
- The First Department of Orthopedics, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei Province, China
| | - Zhenliang Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei Province, China
| | - Yao Yao
- The First Department of Orthopedics, The First Affiliated Hospital of Hebei North UniversityZhangjiakou 075000, Hebei Province, China
| |
Collapse
|
10
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
11
|
Gong Z, Lei D, Wang C, Yu C, Xia K, Shu J, Ying L, Du J, Wang J, Huang X, Ni L, Wang C, Lin J, Li F, You Z, Liang C. Bioactive Elastic Scaffolds Loaded with Neural Stem Cells Promote Rapid Spinal Cord Regeneration. ACS Biomater Sci Eng 2020; 6:6331-6343. [PMID: 33449647 DOI: 10.1021/acsbiomaterials.0c01057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite decades of research, spinal cord injury (SCI) still causes irreparable damage to the human body. Key challenges that hinder the regeneration and extension of neurons following SCI must be overcome, including the overexpressed glial scar formation and strong inflammatory responses in lesion tissue. Transplantation of neural stem cells (NSCs) represents a promising therapeutic method due to its beneficial roles like growth factor secretion and anti-inflammation. However, NSCs usually differentiate into astrocytes, which is considered as one potential limitation of current NSC therapy. Herein, we fabricate an elastic poly(sebacoyl diglyceride) (PSeD) scaffold to mimic the mechanical properties of the natural spinal cord. The PSeD scaffold is coated with poly(sebacoyl diglyceride)-isoleucine-lysine-valine-alanine-valine-serine (PSeD-IKVAVS) to create a bioactive interface. The core point of this topic is divided into two parts. First, PSeD is a bioelastomer and its mechanical properties are similar to those of the natural spinal cord. This feature reduces the direct stimulation to the spinal cord tissue by the elastomer and then reduces the immune response or resistance caused by the host spinal cord tissue. Second, the IKVAVS peptide modifies PSeD to create a bioactive interface to support NSC growth and differentiation. In the in vivo study, the number of CD68-positive macrophages decreased in the PSeD-IKVAVS/NSC group compared to that in the SCI group (20% vs 60%). The low inflammation induced by the scaffold was beneficial to NSCs, resulting in increased locomotor recovery, as indicated by the increased Basso-Beattie-Bresnahan score (5, the average score in the PSeD-IKVAVS/NSC group, vs 2, the average score in the SCI group). Based on the above two characteristics, a PSeD-IKVAVS bioelastomer is fabricated, which provides a beneficial and bioactive microenvironment for NSCs after transplantation.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiangnan Du
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jingkai Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Licheng Ni
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Cong Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jingquan Lin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, 310009 Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
12
|
Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, Sun Z, Chen B, Xue W, Shi Y, Xiao Z, Gu R, Dai J. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater Sci 2020; 8:5145-5156. [PMID: 32832944 DOI: 10.1039/d0bm00431f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cell (NSPC)-based spinal cord injury (SCI) therapy is expected to bridge the lesion site by transplanting exogenous NSPCs for replacement of lost cells. The transplanted NSPCs produce a microenvironment conducive to neuronal regeneration, and ultimately, functional recovery. Although both human fetal brain- and spinal cord- derived NSPCs (hbNSPCs and hscNSPCs, respectively) have been used for SCI repair, it remains unclear whether hscNSPCs are a more appropriate stem cell source for transplantation than hbNSPCs. Therefore, in this study, we transplanted hbNSPCs or hscNSPCs into rats with complete transection SCI to monitor their differences in SCI treatment. An aligned collagen sponge scaffold (ACSS) was used here for cell retention. Aligned biomaterial scaffolds provide a support platform and favorable morphology for cell growth and differentiation, and guide axial axonal extension. The ACSS fabricated by our group has been previously reported to improve spinal cord repair by promoting neuronal regeneration and remyelination. Compared with the hbNSPC-ACSS, the hscNSPC-ACSS effectively promoted long-term cell survival and neuronal differentiation and improved the SCI microenvironment by reducing inflammation and glial scar formation. Furthermore, the transplanted hscNSPC-ACSS improved recovery of locomotor functions. Therefore, hscNSPCs appear to be a superior cell source to hbNSPCs for SCI cell therapy with greater potential clinical applications.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
14
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Adedigba JA, Oremakinde AA, Huang B, Maulucci CM, Malomo AO, Shokunbi TM, Adeolu AA. Preliminary Findings After Nonoperative Management of Traumatic Cervical Spinal Cord Injury on a Background of Degenerative Disc Disease: Providing Optimum Patient Care and Costs Saving in a Nigerian Setting. World Neurosurg 2020; 142:246-254. [PMID: 32668334 DOI: 10.1016/j.wneu.2020.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We assessed the hypothesis that nonoperative management would be a viable treatment option for patients with underlying degenerative disease who have traumatic cervical spinal cord injury (TCSI) without neurological deterioration and/or spinal instability during hospitalization. METHODS Data were collected prospectively from 2011 to 2016. All the patients had been treated nonoperatively with hard cervical collar immobilization. The clinical parameters assessed included the Frankel grade at presentation and discharge, the occurrence of deep vein thrombosis, urinary tract infection, sphincter dysfunction, and pressure sores. The radiographic data collected included magnetic resonance imaging signal cord changes. P ≤ 0.05 represented a significant association between the Frankel grade at presentation and the outcome parameters. RESULTS A total of 28 patients were included in the present study. Of the patients who had presented with Frankel grade B, 85.71% had improved to a higher grade, 90.91% of the patients with Frankel grade C had improved to a higher grade, and 14.29% of the patients with Frankel grade D had improved to Frankel grade E. All the patients had satisfactory spinal stability, as evidenced by dynamic radiographs, after treatment. CONCLUSION The findings from the present study have shown that nonoperative management can result in improved neurological outcomes for patients with underlying degenerative disease who have experienced TCSI without evidence of neurological deterioration and spinal instability. The Frankel grade at presentation was significantly associated with outcome parameters such as the neurological outcome on discharge and the occurrence of urinary tract infection. The results from the present study could be helpful to neurological surgeons in rural and other low-resource settings because the cost savings realized by nonoperative treatment will not sacrifice the provision of adequate care to their patients.
Collapse
Affiliation(s)
- Joseph A Adedigba
- Deparment of Neurological Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| | | | - Brendan Huang
- Deparment of Neurological Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Christopher M Maulucci
- Deparment of Neurological Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Adefolahan O Malomo
- Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria; Department of Neurological Surgery, University of Ibadan, Ibadan, Nigeria
| | - Temitayo M Shokunbi
- Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria; Department of Neurological Surgery, University of Ibadan, Ibadan, Nigeria
| | - Augustine A Adeolu
- Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria; Department of Neurological Surgery, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Gong Z, Wang C, Ni L, Ying L, Shu J, Wang J, Yu C, Xia K, Cheng F, Shi K, Xu G, Yu Q, Shen J, Chen Q, Li F, Liang C. An injectable recombinant human milk fat globule-epidermal growth factor 8-loaded copolymer system for spinal cord injury reduces inflammation through NF-κB and neuronal cell death. Cytotherapy 2020; 22:193-203. [PMID: 32173261 DOI: 10.1016/j.jcyt.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 01/17/2023]
Abstract
Spinal cord injury (SCI) is a common disease and a major cause of paralysis, carrying much burden around the world. Despite the progress made with growth factors therapy, the response rate of acute SCI treatment still remains unsatisfactory, due largely to complex and severe inflammatory reactions. Herein, we prepare a MFG-E8-loaded copolymer system-based anti-inflammation therapy for SCI treatment. It is shown that the MFG-E8-loaded copolymer system can decrease pro-inflammatory cytokine expression and neuron death. In a rat model of crush-caused SCI, the copolymer system shows significant therapeutic efficacy by ameliorating inflammation, decreasing fibrotic scar, promoting myelin regeneration and suppressing overall SCI severity.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Licheng Ni
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Liwei Ying
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jiawei Shu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jingkai Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Guoping Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Qunfei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | | | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Zou Y, Zhao Y, Xiao Z, Chen B, Ma D, Shen H, Gu R, Dai J. Comparison of Regenerative Effects of Transplanting Three-Dimensional Longitudinal Scaffold Loaded-Human Mesenchymal Stem Cells and Human Neural Stem Cells on Spinal Cord Completely Transected Rats. ACS Biomater Sci Eng 2020; 6:1671-1680. [DOI: 10.1021/acsbiomaterials.9b01790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yunlong Zou
- China−Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
| | - Dezun Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
| | - He Shen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rui Gu
- China−Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100101, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
19
|
Ling YT, Alam M, Zheng YP. Spinal Cord Injury: Lessons about Neuroplasticity from Paired Associative Stimulation. Neuroscientist 2019; 26:266-277. [DOI: 10.1177/1073858419895461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paired associative stimulation (PAS) is a noninvasive neuromodulation method with rare cases of adverse effects for the patients with neurological injuries such as spinal cord injury (SCI). PAS is based on the principles of associative long-term potentiation and depression where the activation of presynaptic and postsynaptic neurons correlated in time is artificially induced. Statistically significant improvement in motor functions after applying PAS has been reported by several research groups. With further standardization of the technique, PAS could be an effective treatment for functional rehabilitation of SCI patients. In this review, we have summarized the methods and findings of PAS on SCI rehabilitation to facilitate the readers to understand the potentials and limitations of PAS for its future clinical use.
Collapse
Affiliation(s)
- Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
20
|
Zhang C, Jing Y, Zhang W, Zhang J, Yang M, Du L, Jia Y, Chen L, Gong H, Li J, Gao F, Liu H, Qin C, Liu C, Wang Y, Shi W, Zhou H, Liu Z, Yang D, Li J. Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am J Transl Res 2019; 11:4817-4834. [PMID: 31497202 PMCID: PMC6731442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Neurogenic bowel dysfunction (NBD) and gut dysbiosis frequently occur in patients with traumatic cervical spinal cord injury (TCSCI). We evaluated neurogenic bowel management and changes in the gut microbiota in patients with TCSCI as well as associations between these changes and serum biomarkers. Fresh fecal and clinical data were collected from 20 male patients with TCSCI and 23 healthy males. Microbial diversity and composition were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Moderate NBD was observed in patients with TCSCI. The diversity of the gut microbiota was lower in patients with TCSCI than in healthy adults. Furthermore, patients with TCSCI showed altered levels of serum biomarkers related to lipid metabolism, indicating unfavorable lipid profiles. Interestingly, Firmicutes had a positive effect and Verrucomicrobia had a negative effect on lipid metabolism (P < 0.05). At the genus level, Bacteroides and Blautia were significantly more abundant in patients than in healthy subjects and could be associated with lipid metabolism (P < 0.05). Faecalibacterium, Megamonas, and Prevotella, which were correlated with lipid metabolism markers, may be suitable targets for the treatment of TCSCI. Lactobacillus was positively correlated with glucose levels. The dysbiosis of several key gut bacteria was associated with serum biomarkers of lipid metabolism in patients with TCSCI. The observed interdependency of the microbiota and lipid metabolism provides a basis for understanding the mechanisms underlying lipid disorders after cervical SCI.
Collapse
Affiliation(s)
- Chao Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yingli Jing
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Institute of Rehabilitation MedicineBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Wenhao Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yanmei Jia
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Hongwei Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Changbin Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Yi Wang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Spinal Cord Injury RehabilitationBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Wenli Shi
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Nutrition China Rehabilitation Research CenterBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Hongjun Zhou
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Laboratory MedicineBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Zhizhong Liu
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Spinal Cord Injury RehabilitationBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical UniversityBeijing 100068, China
- China Rehabilitation Science InstituteBeijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain DisordersBeijing 100068, China
- Department of Spinal and Neural Function ReconstructionBeijing 100068, China
- Beijing Key Laboratory of Neural Injury and RehabilitationBeijing 100068, China
| |
Collapse
|
21
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
22
|
Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377:125-151. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Axonal regeneration and formation of tripartite (axo-glial) junctions at damaged sites is a prerequisite for early repair of injured spinal cord. Transplantation of stem cells at such sites of damage which can generate both neuronal and glial population has gained impact in terms of recuperation upon infliction with spinal cord injury. In spite of the fact that a copious number of pre-clinical studies using different stem/progenitor cells have shown promising results at acute and subacute stages, at the chronic stages of injury their recovery rates have shown a drastic decline. Therefore, developing novel therapeutic strategies are the need of the hour in order to assuage secondary morbidity and effectuate improvement of the spinal cord injury (SCI)-afflicted patients' quality of life. The present review aims at providing an overview of the current treatment strategies and also gives an insight into the potential cell-based therapies for the treatment of SCI.
Collapse
|
23
|
Baklaushev VP, Bogush VG, Kalsin VA, Sovetnikov NN, Samoilova EM, Revkova VA, Sidoruk KV, Konoplyannikov MA, Timashev PS, Kotova SL, Yushkov KB, Averyanov AV, Troitskiy AV, Ahlfors JE. Tissue Engineered Neural Constructs Composed of Neural Precursor Cells, Recombinant Spidroin and PRP for Neural Tissue Regeneration. Sci Rep 2019; 9:3161. [PMID: 30816182 PMCID: PMC6395623 DOI: 10.1038/s41598-019-39341-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
We have designed a novel two-component matrix (SPRPix) for the encapsulation of directly reprogrammed human neural precursor cells (drNPC). The matrix is comprised of 1) a solid anisotropic complex scaffold prepared by electrospinning a mixture of recombinant analogues of the spider dragline silk proteins - spidroin 1 (rS1/9) and spidroin 2 (rS2/12) - and polycaprolactone (PCL) (rSS-PCL), and 2) a "liquid matrix" based on platelet-rich plasma (PRP). The combination of PRP and spidroin promoted drNPC proliferation with the formation of neural tissue organoids and dramatically activated neurogenesis. Differentiation of drNPCs generated large numbers of βIII-tubulin and MAP2 positive neurons as well as some GFAP-positive astrocytes, which likely had a neuronal supporting function. Interestingly the SPRPix microfibrils appeared to provide strong guidance cues as the differentiating neurons oriented their processes parallel to them. Implantation of the SPRPix matrix containing human drNPC into the brain and spinal cord of two healthy Rhesus macaque monkeys showed good biocompatibility: no astroglial and microglial reaction was present around the implanted construct. Importantly, the human drNPCs survived for the 3 month study period and differentiated into MAP2 positive neurons. Tissue engineered constructs based on SPRPix exhibits important attributes that warrant further examination in spinal cord injury treatment.
Collapse
Affiliation(s)
- V P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia.
| | - V G Bogush
- Scientific Center "Kurchatov Institute" - Research Institute for Genetics and Selection of Industrial Microorganisms", 1-st Dorozhniy pr., 1, 117545, Moscow, Russia
| | - V A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - N N Sovetnikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - E M Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - V A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - K V Sidoruk
- Scientific Center "Kurchatov Institute" - Research Institute for Genetics and Selection of Industrial Microorganisms", 1-st Dorozhniy pr., 1, 117545, Moscow, Russia
| | - M A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
| | - P S Timashev
- Federal Research Center "Crystallography and Photonics", Institute of Photonic Technology of the Russian Academy of Sciences, 2 Pionerskaya St., Troitsk, 142190, Moscow, Russia
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
- N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991, Moscow, Russia
| | - S L Kotova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991, Moscow, Russia
- N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991, Moscow, Russia
| | - K B Yushkov
- National University of Science and Technology "MISIS", 4 Leninsky Prospekt, 119049, Moscow, Russia
| | - A V Averyanov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - A V Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia 28 Orekhovy Blvd., 115682, Moscow, Russia
| | - J-E Ahlfors
- New World Laboratories Inc., Laval, Quebec, Canada.
| |
Collapse
|
24
|
Zhang Z, Wang F, Song M. The cell repair research of spinal cord injury: a review of cell transplantation to treat spinal cord injury. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through retrospective analysis of the literature on the cell repair of spinal cord injury worldwide, it is found that the mechanism of cell transplantation repairing spinal cord injury is mainly to replace damaged neurons, protect host neurons, prevent apoptosis, promote axonal regeneration and synapse formation, promote myelination, and secrete trophic factors or growth factors to improve microenvironment. A variety of cells are used to repair spinal cord injury. Stem cells include multipotent stem cells, embryonic stem cells, and induced pluripotent stem cells. The multipotent stem cells are mainly various types of mesenchymal stem cells and neural stem cells. Non-stem cells include olfactory ensheathing cells and Schwann cells. Transplantation of inhibitory interneurons to alleviate neuropathic pain in patients is receiving widespread attention. Different types of cell transplantation have their own advantages and disadvantages, and multiple cell transplantation may be more helpful to the patient’s functional recovery. These cells have certain effects on the recovery of neurological function and the improvement of complications, but further exploration is needed in clinical application. The application of a variety of cell transplantation, gene technology, bioengineering and other technologies has made the prospect of cell transplantation more extensive. There is a need to find a safe and effective comprehensive treatment to maximize and restore the patient’s performance.
Collapse
|
25
|
Taheri B, Soleimani M, Fekri Aval S, Esmaeili E, Bazi Z, Zarghami N. Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. J Cell Physiol 2018; 234:8455-8464. [PMID: 30478831 DOI: 10.1002/jcp.27775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
In recent years, induced pluripotent stem cells (iPSCs) have been considered as a promising approach in the field of regenerative medicine. iPSCs can be generated from patients' somatic cells and possess the potential to differentiate, under proper conditions, into any cell type. However, the clinical application of iPS cells is restricted because of their tumorigenic potential. Recent studies have indicated that stem cells exert their therapeutic benefit via a paracrine mechanism, and extracellular vesicles have been demonstrated that play a critical role in this paracrine mechanism. Due to lower immunogenicity, easier management, and presenting no risk of tumor formation, in recent years, researchers turned attention to exosomes as potential alternatives to whole-cell therapy. Application of exosomes derived from iPSCs and their derived precursor provides a promising approach for personalized regenerative medicine. This study reviews the physiological functions of extracellular vesicles and discusses their potential therapeutic benefit in regenerative medicine.
Collapse
Affiliation(s)
- Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | | | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Bazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord. Trends Neurosci 2018; 41:625-639. [PMID: 30017476 DOI: 10.1016/j.tins.2018.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
The central nervous system is not a static, hard-wired organ. Examples of neuroplasticity, whether at the level of the synapse, the cell, or within and between circuits, can be found during development, throughout the progression of disease, or after injury. One essential component of the molecular, anatomical, and functional changes associated with neuroplasticity is the spinal interneuron (SpIN). Here, we draw on recent multidisciplinary studies to identify and interrogate subsets of SpINs and their roles in locomotor and respiratory circuits. We highlight some of the recent progress that elucidates the importance of SpINs in circuits affected by spinal cord injury (SCI), especially those within respiratory networks; we also discuss potential ways that spinal neuroplasticity can be therapeutically harnessed for recovery.
Collapse
|
27
|
Nagoshi N, Okano H. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury. Cell Mol Life Sci 2018; 75:989-1000. [PMID: 28993834 PMCID: PMC11105708 DOI: 10.1007/s00018-017-2676-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 09/03/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
A number of studies have demonstrated that transplantation of neural precursor cells (NPCs) promotes functional recovery after spinal cord injury (SCI). However, the NPCs had been mostly harvested from embryonic stem cells or fetal tissue, raising the ethical concern. Yamanaka and his colleagues established induced pluripotent stem cells (iPSCs) which could be generated from somatic cells, and this innovative development has made rapid progression in the field of SCI regeneration. We and other groups succeeded in producing NPCs from iPSCs, and demonstrated beneficial effects after transplantation for animal models of SCI. In particular, efficacy of human iPSC-NPCs in non-human primate SCI models fostered momentum of clinical application for SCI patients. At the same time, however, artificial induction methods in iPSC technology created alternative issues including genetic and epigenetic abnormalities, and tumorigenicity after transplantation. To overcome these problems, it is critically important to select origins of somatic cells, use integration-free system during transfection of reprogramming factors, and thoroughly investigate the characteristics of iPSC-NPCs with respect to quality management. Moreover, since most of the previous studies have focused on subacute phase of SCI, establishment of effective NPC transplantation should be evaluated for chronic phase hereafter. Our group is currently preparing clinical-grade human iPSC-NPCs, and will move forward toward clinical study for subacute SCI patients soon in the near future.
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
28
|
Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes. J Dermatol Sci 2017; 89:263-271. [PMID: 29229433 DOI: 10.1016/j.jdermsci.2017.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC) technology enables patient-specific pluripotent stem cells to be derived from adult somatic cells without the use of an embryonic cell source. To date, recessive dystrophic epidermolysis bullosa (RDEB)-specific iPSCs have been generated from patients using integrating retroviral vectors. However, vector integration into the host genome can endanger the biosafety and differentiation propensities of iPSCs. Although various integration-free reprogramming systems have been reported, their utility in reprogramming somatic cells from patients remains largely undetermined. OBJECTIVE Our study aims to establish safe iPSCs from keratinocytes of RDEB patients using non-integration vector. METHOD We optimized and infected non-integrating Sendai viral vectors to reprogram keratinocytes from healthy volunteers and RDEB patients. RESULTS Sendai vector infection led to the reproducible generation of genomic modification-free iPSCs from these keratinocytes, which was proved by immunohistochemistry, reverse transcription polymerase chain reaction, methylation assay, teratoma assay and embryoid body formation assay. Furthermore, we confirmed that these iPSCs have the potential to differentiate into dermal fibroblasts and epidermal keratinocytes. CONCLUSION This is the first report to prove that the Sendai vector system facilitates the reliable reprogramming of patient keratinocytes into transgene-free iPSCs, providing another pluripotent platform for personalized diagnostic and therapeutic approaches to RDEB.
Collapse
|
29
|
Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi AK, Abou-Kheir W. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci 2017; 10:50. [PMID: 28293168 PMCID: PMC5329035 DOI: 10.3389/fnmol.2017.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro. The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
30
|
Abstract
Spinal cord injury (SCI) is a devastating condition with loss of motor and sensory functions below the injury level. Cell based therapies are experimented in pre-clinical studies around the world. Neural stem cells are located intra-cranially in subventricular zone and hippocampus which are highly invasive sources. The olfactory epithelium is a neurogenic tissue where neurogenesis takes place throughout the adult life by a population of stem/progenitor cells. Easily accessible olfactory neuroepithelial stem/progenitor cells are an attractive cell source for transplantation in SCI. Globose basal cells (GBCs) were isolated from rat olfactory epithelium, characterized by flow cytometry and immunohistochemically. These cells were further studied for neurosphere formation and neuronal induction. T10 laminectomy was done to create drop-weight SCI in rats. On the 9th day following SCI, 5 × 105 cells were transplanted into injured rat spinal cord. The outcome of transplantation was assessed by the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, motor evoked potential and histological observation. GBCs expressed neural stem cell markers nestin, SOX2, NCAM and also mesenchymal stem cell markers (CD29, CD54, CD90, CD73, CD105). These cells formed neurosphere, a culture characteristics of NSCs and on induction, differentiated cells expressed neuronal markers βIII tubulin, microtubule-associated protein 2, neuronal nuclei, and neurofilament. GBCs transplanted rats exhibited hindlimb motor recovery as confirmed by BBB score and gastrocnemius muscle electromyography amplitude was increased compared to controls. Green fluorescent protein labelled GBCs survived around the injury epicenter and differentiated into βIII tubulin-immunoreactive neuron-like cells. GBCs could be an alternative to NSCs from an accessible source for autologous neurotransplantation after SCI without ethical issues.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - George Tharion
- Department of Physical Medicine & Rehabilitation, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
31
|
|