1
|
Papadimitriou I. Employing emerging technologies such as motion capture to study the complex interplay between genotype and power-related performance traits. Front Physiol 2024; 15:1407753. [PMID: 38841210 PMCID: PMC11150552 DOI: 10.3389/fphys.2024.1407753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Exercise genomics has progressed alongside advancements in molecular genetic technologies that have enhanced our understanding of associations between genes and performance traits. This novel field of research incorporates techniques and tools from epidemiology, molecular genetics, exercise physiology and biostatistics to investigate the complex interplay between genotype and specific quantitative performance traits, such as muscle power output. Here I aimed to illustrate how interdisciplinary training can ensure the effective use of new emerging technologies, such as motion capture, to examine the influence of genetic and epigenetic factors on power-related quantitative performance traits. Furthermore, this study raises awareness about the present research trends in this field, and highlights current gaps and potential future developments. The acquired knowledge will likely have important future implications in the biotech industry, with a focus on gene therapy to combat age-related muscle power decline, personalized medicine and will drive advancements in exercise program design.
Collapse
|
2
|
Zenze M, Singh M. Receptor Targeting Using Copolymer-Modified Gold Nanoparticles for pCMV-Luc Gene Delivery to Liver Cancer Cells In Vitro. Int J Mol Sci 2024; 25:5016. [PMID: 38732235 PMCID: PMC11084699 DOI: 10.3390/ijms25095016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
3
|
Zhang J, Yuan Z, Wang C, Liu L, Wang Y, Guo Y, Zhao G. Aqueous-phase dual-functional chiral perovskites for hydrogen sulfide (H 2S) detection and antibacterial applications in Escherichia coli. J Colloid Interface Sci 2024; 661:740-749. [PMID: 38325172 DOI: 10.1016/j.jcis.2024.01.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Perovskite nanocrystals (PNCs) have attracted extensive attention for their potential applications in biology. However, only a handful of PNCs have been scrutinized in the biological domain due to issues such as instability, poor dispersion, and size inhomogeneity in polar solvents. The development of dual-functional perovskite nanomaterials with hydrogen sulfide (H2S) sensing and antibacterial capabilities is particularly intriguing. In this study, we prepared chiral quasi-two-dimensional (quasi-2D) perovskite nanomaterials, Bio(S-PEA)2CsPb2Br7 and Bio(R-PEA)2CsPb2Br7, that were uniformly dispersed in aqueous media. The effective encapsulation of methoxypolyethylene glycol amine (mPEG-NH2) improved water stability and uniformity of particle size. Circular dichroism (CD) signals were created by the successful insertion of chiral cations. These perovskites as probes showed a rapid and sensitive fluorescence quenching response to H2S, and the effect of imaging detection was observed at the Escherichia coli (E. coli) level. As antibacterial agents, their pronounced positive charge properties facilitated membrane lysis and subsequent E. coli death, indicating a significant antibacterial effect. This work has preliminary explored the application of chiral perovskites in biology and provides insight into the development of bifunctional perovskite nanomaterials for biological applications.
Collapse
Affiliation(s)
- Jingran Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Zihan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China; National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Lele Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
4
|
Peng R, Chen X, Xu F, Hailstone R, Men Y, Du K. Pneumatic nano-sieve for CRISPR-based detection of drug-resistant bacteria. NANOSCALE HORIZONS 2023; 8:1677-1685. [PMID: 37877474 PMCID: PMC11162761 DOI: 10.1039/d3nh00365e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), presents a significant public health concern. Timely detection of MRSA is crucial to enable prompt medical intervention, limit its spread, and reduce antimicrobial resistance. Here, we introduce a miniaturized nano-sieve device featuring a pneumatically-regulated chamber for highly efficient MRSA purification from human plasma samples. By using packed magnetic beads as a filter and leveraging the deformability of the nano-sieve channel, we achieved an on-chip concentration factor of ∼15-fold for MRSA. We integrated this device with recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas detection system, resulting in an on-chip limit of detection (LOD) of approximately 100 CFU mL-1. This developed approach provides a rapid, precise, and centrifuge-free solution suitable for point-of-care diagnostics, with the potential to significantly improve patient outcomes in resource-limited medical conditions.
Collapse
Affiliation(s)
- Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Xinye Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
- Department of Microsystems Engineering, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Richard Hailstone
- Center for Imaging Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| |
Collapse
|
5
|
Peng R, Chen X, Xu F, Hailstone R, Men Y, Du K. Pneumatic Nano-Sieve for CRISPR-based Detection of Drug-resistant Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553737. [PMID: 37645720 PMCID: PMC10462146 DOI: 10.1101/2023.08.17.553737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), presents a significant public health concern. Timely detection of MRSA is crucial to enable prompt medical intervention, limit its spread, and reduce antimicrobial resistance. Here, we introduce a miniaturized nano-sieve device featuring a pneumatically-regulated chamber for highly efficient MRSA purification from human plasma samples. By using packed magnetic beads as a filter and leveraging the deformability of the nano-sieve channel, we achieve an on-chip concentration factor of 15 for MRSA. We integrated this device with recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas detection system, resulting in an on-chip limit of detection (LOD) of approximately 100 CFU/mL. This developed approach provides a rapid, precise, and centrifuge-free solution suitable for point-of-care diagnostics, with the potential to significantly improve patient outcomes in resource-limited medical conditions.
Collapse
Affiliation(s)
- Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Xinye Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Richard Hailstone
- Center for Imaging Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| |
Collapse
|
6
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
7
|
Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021; 14:53. [PMID: 35056949 PMCID: PMC8781941 DOI: 10.3390/pharmaceutics14010053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has emerged as a promising treatment strategy in gene therapy, especially against diseases such as cancer. Gold nanoparticles (AuNPs) are regarded as favorable gene delivery vehicles due to their low toxicity, ease of synthesis and ability to be functionalized. This study aimed to prepare functionalized AuNPs (FAuNPs) and evaluate their folate-targeted and nontargeted pCMV-Luc-DNA delivery in breast cancer cells in vitro. CS was added to induce stability and positive charges to the AuNPs (Au-CS), histidine (Au-CS-His) to enhance endosomal escape and folic acid for folate-receptor targeting (Au-CS-FA-His). The FAuNP:pDNA nanocomplexes possessed favorable sizes (<135 nm) and zeta potentials (<-20 mV), strong compaction efficiency and were capable of pDNA protection against nuclease degradation. These nanocomplexes showed minimal cytotoxicity (>73% cell viability) and enhanced transgene activity. The influence of His was notable in the HER2 overexpressing SKBR3 cells, which produced higher gene expression. Furthermore, the FA-targeted nanocomplexes enhanced receptor-mediated endocytosis, especially in MCF-7 cells, as confirmed by the receptor competition assay. While the role of His may need further optimization, the results achieved suggest that these FAuNPs may be suitable gene delivery vehicles for breast cancer therapeutics.
Collapse
Affiliation(s)
- Calrin Joseph
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Sooboo Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| |
Collapse
|
8
|
Baral B, Dutta J, Subudhi U. Biophysical interaction between self-assembled branched DNA nanostructures with bovine serum albumin and bovine liver catalase. Int J Biol Macromol 2021; 177:119-128. [PMID: 33609575 DOI: 10.1016/j.ijbiomac.2021.02.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
Branched DNA (bDNA) nanostructures have emerged as self-assembled biomaterials and are being considered for biomedical applications. Herein, we report the biophysical interaction between self-assembled bDNA nanostructure with circulating protein bovine serum albumin (BSA) and cellular enzyme bovine liver catalase (BLC). The binding between bDNA and BSA or BLC was confirmed through the decrease in fluorescence spectra. The Stern-Volmer data supports for non-covalent bonding with ~1 binding site in case of BSA and BLC thus advocating a static binding. Furthermore, FTIR and ITC study confirmed the binding of bDNAs with proteins through hydrogen bonding and van der Waals interaction. The negative free energy observed in ITC represent spontaneous reaction for BLC-bDNA interaction. The biophysical interaction between bDNA nanostructures and proteins was also supported by DLS and zeta potential measurement. With an increase in bDNA concentrations up to 100 nM, no significant change in absorbance and CD spectra was observed for both BLC and BSA which suggests structural stability and unaffected secondary conformation of proteins in presence of bDNA. Furthermore, the catalytic activity of BLC was unaltered in presence of bDNAscr even with increasing the incubation period from 1 h to 24 h. Interestingly, the time-dependent decrease in activity of BLC was protected by bDNAmix. The thermal melting study suggests a higher Tm value for proteins in presence of bDNAmix which demonstrates that interaction with bDNAmix increases the thermal stability of proteins. Collectively these data suggest that self-assembled DNA nanostructure may bind to BSA for facilitating circulation in plasma or binding to intracellular proteins like BLC for stabilization, however the secondary conformation of protein or catalytic activity of enzyme is unaltered in presence of bDNA nanostructure. Thus, the newly established genomic sequence-driven self-assembled DNA nanostructure can be explored for in vitro or in vivo experimental work in recent future.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
A resonance Rayleigh scattering and fluorescence quenching dual-channel sensor for sensitive detection of chitosan based on Eosin Y. Anal Bioanal Chem 2021; 413:1429-1440. [PMID: 33403425 DOI: 10.1007/s00216-020-03107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
The sensitive chitosan (CTS) detection methods based on the resonance Rayleigh scattering (RRS) quenching method and fluorescence quenching of Eosin Y were put forward. In the HAC-NaAC buffer solution, Eosin Y interacted with Triton X-100 to generate the binary complex which served as the RRS spectral probe. When CTS was interacted with the binary complex, the RRS intensity decreased with the increase of CTS. At the same time, the fluorescence intensity of Eosin Y decreased in the presence of Triton X-100, and the fluorescence intensity of "Eosin Y+Triton X-100" system further decreased when CTS was added. So it was further proved that there was a forming complex in "Eosin Y+Triton X100+CTS" system. The interaction was characterized by zeta potential, RRS, fluorescence spectrum, and UV-Vis spectroscopy. Under optimal conditions, there was a good linear relationship between the RRS decreased intensity (ΔI) and the concentration of CTS in the range of 0.05-1.30 μg/mL, with a regression equation of ΔI = 1325c + 73.66 and correlation coefficient (R2) of 0.9907. The detection limit was 0.0777 μg/mL. Likewise, the linear range of the fluorescence quenching was 0.03-1.30 μg/mL; the regression equation was ΔF = 1926c + 294.0 with R2 = 0.9800 under fluorescence quenching. The detection limit was 0.0601 μg/mL. Therefore, the dual-channel sensor for the determination of CTS was applied to the health products, and the results were satisfactory. The t test result showed that there was no statistical difference between the two methods.
Collapse
|
10
|
Nucleic acid extraction: Fundamentals of sample preparation methodologies, current advancements, and future endeavors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications. Top Curr Chem (Cham) 2020; 378:13. [DOI: 10.1007/s41061-019-0277-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
|
12
|
High-Efficiency DNA Extraction Using Poly(4,4′-Cyclohexylidene Bisphenol Oxalate)-Modified Microcrystalline Cellulose-Magnetite Composite. INT J POLYM SCI 2019. [DOI: 10.1155/2019/5738613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we studied the DNA extraction capability of poly(4,4′-cyclohexylidene bisphenol oxalate) following the surface modification and composite formation with that of microcrystalline cellulose (MCC) and magnetic iron oxide nanoparticles (NPs). The physical characterization techniques like scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA) were employed for the poly(bisphenol Z oxalate)-MCC-magnetite composite during different stages of its formation. The results confirmed the successful modification of the polymer surface. On testing in the presence of three types of binding buffers, a high value of 72.4% (out of 10,000 ng/μL) efficiency with a total yield of DNA at 2×106 ng and absorbance ratio of A260/A280 (1.980) was observed for the 2 M GuHCl/EtOH binding buffer. These results were compared against the other two buffers of phosphate-buffered saline (PBS) and NaCl. The lowest value of DNA extraction efficiency at 8125 ng/μL of 58.845% with absorbance ratios of A260/A280 (1.818) for PBS was also observed. The study has concluded an enhancement in the DNA extraction efficiency when the polymer is in the composite stage along with cellulose and magnetite particles as compared against the bare polymer.
Collapse
|
13
|
Enhanced solid phase extraction of DNA using hydrophilic monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) microparticles. Mol Biol Rep 2019; 46:3063-3072. [DOI: 10.1007/s11033-019-04742-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022]
|
14
|
Sosa-Acosta J, Silva J, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona J, Díaz-García A. Iron Oxide Nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Nejdl L, Zelnickova J, Vaneckova T, Hynek D, Adam V, Vaculovicova M. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. NEW J CHEM 2018. [DOI: 10.1039/c7nj05167k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article, the authors report a systematic study of the self-assembly of CdTe quantum dots (QDs) stabilized by mercaptosuccinic acid (MSA) at laboratory temperature (25 °C) or after thermal treatment (90 °C).
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Jaroslava Zelnickova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
| | - Tereza Vaneckova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Vojtech Adam
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- CZ 613 00 Brno
- Czech Republic
- Central European Institute of Technology
| |
Collapse
|
16
|
Haddad Y, Dostalova S, Kudr J, Zitka O, Heger Z, Adam V. DNA-magnetic Particle Binding Analysis by Dynamic and Electrophoretic Light Scattering. J Vis Exp 2017. [PMID: 29155773 DOI: 10.3791/56815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Isolation of DNA using magnetic particles is a field of high importance in biotechnology and molecular biology research. This protocol describes the evaluation of DNA-magnetic particles binding via dynamic light scattering (DLS) and electrophoretic light scattering (ELS). Analysis by DLS provides valuable information on the physicochemical properties of particles including particle size, polydispersity, and zeta potential. The latter describes the surface charge of the particle which plays major role in electrostatic binding of materials such as DNA. Here, a comparative analysis exploits three chemical modifications of nanoparticles and microparticles and their effects on DNA binding and elution. Chemical modifications by branched polyethylenimine, tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane are investigated. Since DNA exhibits a negative charge, it is expected that zeta potential of particle surface will decrease upon binding of DNA. Forming of clusters should also affect particle size. In order to investigate the efficiency of these particles in isolation and elution of DNA, the particles are mixed with DNA in low pH (~6), high ionic strength and dehydration environment. Particles are washed on magnet and then DNA is eluted by Tris-HCl buffer (pH = 8). DNA copy number is estimated using quantitative polymerase chain reaction (PCR). Zeta potential, particle size, polydispersity and quantitative PCR data are evaluated and compared. DLS is an insightful and supporting method of analysis that adds a new perspective to the process of screening of particles for DNA isolation.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
| | - Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno; Central European Institute of Technology, Brno University of Technology;
| |
Collapse
|
17
|
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E243. [PMID: 28850089 PMCID: PMC5618354 DOI: 10.3390/nano7090243] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Mirko Cernak
- CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| |
Collapse
|
18
|
Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe₃O₄ Nanoparticles. Molecules 2016; 21:molecules21081066. [PMID: 27537863 PMCID: PMC6273110 DOI: 10.3390/molecules21081066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe3O4 and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10–12 nm. X-ray diffraction analysis suggested the existence of Fe3O4 and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu2+ and Zn2+. This new material holds considerable promise in selective magneto separation and optical determination applications.
Collapse
|