1
|
Akaraphanth M, Nordgren TM, Gries CM. CXCR2 perturbation promotes Staphylococcus aureus implant-associated infection. J Med Microbiol 2024; 73:001821. [PMID: 38567642 PMCID: PMC11084549 DOI: 10.1099/jmm.0.001821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.
Collapse
Affiliation(s)
- Mike Akaraphanth
- School of Medicine, University of Colorado, Aurora CO 80045, USA
| | - Tara M. Nordgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Casey M. Gries
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80523, USA
| |
Collapse
|
2
|
Alanko I, Sandberg R, Brockmann E, de Haas CJC, van Strijp JAG, Lamminmäki U, Salo‐Ahen OMH. Isolation and functional analysis of phage-displayed antibody fragments targeting the staphylococcal superantigen-like proteins. Microbiologyopen 2023; 12:e1371. [PMID: 37642487 PMCID: PMC10350561 DOI: 10.1002/mbo3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Staphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen-like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single-chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time-resolved fluorescence-based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL-recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P-selectin glycoprotein ligand 1 competitive binding assay, and an IgG1-mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration-dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv-SSL1-complex models by protein-protein docking. The complex models were subjected to a 100-ns molecular dynamics simulation to assess the possible binding mode of the antibody.
Collapse
Affiliation(s)
- Ida Alanko
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | - Rebecca Sandberg
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | | | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Urpo Lamminmäki
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Outi M. H. Salo‐Ahen
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
3
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
4
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
5
|
Mosevoll KA, Hansen BA, Gundersen IM, Reikvam H, Bruserud Ø, Bruserud Ø, Wendelbo Ø. Systemic Metabolomic Profiles in Adult Patients with Bacterial Sepsis: Characterization of Patient Heterogeneity at the Time of Diagnosis. Biomolecules 2023; 13:biom13020223. [PMID: 36830594 PMCID: PMC9953377 DOI: 10.3390/biom13020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is a dysregulated host response to infection that causes potentially life-threatening organ dysfunction. We investigated the serum metabolomic profile at hospital admission for patients with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016 Sepsis-3 criteria whereas the remaining 25 patients only fulfilled the previous Sepsis-2 criteria and could therefore be classified as having systemic inflammatory response syndrome (SIRS). A total of 1011 identified metabolites were detected in our serum samples. Ninety-seven metabolites differed significantly when comparing Sepsis-3 and Sepsis-2/SIRS patients; 40 of these metabolites constituted a heterogeneous group of amino acid metabolites/peptides. When comparing patients with and without bacteremia, we identified 51 metabolites that differed significantly, including 16 lipid metabolites and 11 amino acid metabolites. Furthermore, 42 metabolites showed a highly significant association with the maximal total Sequential Organ Failure Assessment (SOFA )score during the course of the disease (i.e., Pearson's correlation test, p-value < 0.005, and correlation factor > 0.6); these top-ranked metabolites included 23 amino acid metabolites and a subset of pregnenolone/progestin metabolites. Unsupervised hierarchical clustering analyses based on all 42 top-ranked SOFA correlated metabolites or the subset of 23 top-ranked amino acid metabolites showed that most Sepsis-3 patients differed from Sepsis-2/SIRS patients in their systemic metabolic profile at the time of hospital admission. However, a minority of Sepsis-3 patients showed similarities with the Sepsis-2/SIRS metabolic profile even though several of them showed a high total SOFA score. To conclude, Sepsis-3 patients are heterogeneous with regard to their metabolic profile at the time of hospitalization.
Collapse
Affiliation(s)
- Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Bent Are Hansen
- Department of Medicine, Central Hospital for Sogn and Fjordane, 6812 Førde, Norway
| | - Ingunn Margareetta Gundersen
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence:
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
6
|
Huang J, Chen Y, Guo Z, Yu Y, Zhang Y, Li P, Shi L, Lv G, Sun B. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis. BURNS & TRAUMA 2023; 11:tkac050. [PMID: 36659877 PMCID: PMC9840905 DOI: 10.1093/burnst/tkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/22/2022] [Indexed: 01/17/2023]
Abstract
Background Early detection, timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis. However, studies on indicators for early warning and intervention have rarely been conducted. This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries. Methods We conducted a multi-center, prospective multi-omics study, including genomics, microRNAomics, proteomics and single-cell transcriptomics, in 60 patients with severe burn injuries. A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers. Results Through genomic analysis, we identified seven important susceptibility genes (DNAH11, LAMA2, ABCA2, ZFAND4, CEP290, MUC20 and ENTPD1) in patients with severe burn injuries complicated with sepsis. Through plasma miRNAomics studies, we identified four miRNAs (hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-451a and hsa-miR-423-5p) that may serve as early warning markers of burn-associated sepsis. A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10. In addition, the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries, as also supported by findings from single-cell transcriptome sequencing of neutrophils. Through further studies on severely burned mice, we determined that S100A8 is also a potential early therapeutic target for severe burn injuries, beyond being an early warning indicator. Conclusions Our multi-omics study identified seven susceptibility genes, four miRNAs and two proteins as early warning markers for severe burn-associated sepsis. In severe burn-associated sepsis, the protein S100A8 has both warning and therapeutic effects.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Yu
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu, China
| | - Pingsong Li
- Department of Burns and Plastic Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, Jiangsu, China
| | - Lei Shi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Guozhong Lv
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214041, Jiangsu, China
| | | |
Collapse
|
7
|
Tsuji T. [Modulation of Host Immune System by Staphylococcal Superantigen-like (SSL) Proteins]. YAKUGAKU ZASSHI 2021; 141:579-589. [PMID: 33790123 DOI: 10.1248/yakushi.20-00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a common pathogen causing a wide range of infectious diseases in humans and animals. This bacterium secretes a variety of exoproteins, including toxins known as superantigens, such as toxic shock syndrome toxin-1 (TSST-1) and enterotoxins. Staphylococcal superantigen-like (SSL) proteins are a family of exoproteins showing structural similarities with superantigens but no superantigenic activity. This family is composed of 14 members (SSL1-SSL14), and recent studies have revealed that these members exhibit various immunomodulatory activities: e.g., inhibition of antibody and complement functions, impairment of leukocyte trafficking, modulation of receptor functions, inappropriate activation of immunocytes, and inhibition of blood coagulation. These activities have been proposed to contribute to immune evasion of the bacteria. The interactions between SSL proteins and their target molecules in the host immune system and the pathophysiological roles of SSL proteins in the bacterial infections are reviewed in this article.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Hoshi University School of Pharmacy and Pharmaceutical Sciences.,Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
8
|
Liu S, Yu G, Liu L, Zou X, Zhou L, Hu E, Song Y. Identification of Prognostic Stromal-Immune Score-Based Genes in Hepatocellular Carcinoma Microenvironment. Front Genet 2021; 12:625236. [PMID: 33643387 PMCID: PMC7905188 DOI: 10.3389/fgene.2021.625236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
A growing amount of evidence has suggested the clinical importance of stromal and immune cells in the liver cancer microenvironment. However, reliable prognostic signatures based on assessments of stromal and immune components have not been well-established. This study aimed to identify stromal-immune score–based potential prognostic biomarkers for hepatocellular carcinoma. Stromal and immune scores were estimated from transcriptomic profiles of a liver cancer cohort from The Cancer Genome Atlas using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm. Least absolute shrinkage and selection operator (LASSO) algorithm was applied to select prognostic genes. Favorable overall survivals and progression-free interval were found in patients with high stromal score and immune score, and 828 differentially expressed genes were identified. Functional enrichment analysis and protein–protein interaction networks further showed that these genes mainly participated in immune response, extracellular matrix, and cell adhesion. MMP9 (matrix metallopeptidase 9) was identified as a prognostic tumor microenvironment–associated gene by using LASSO and TIMER (Tumor IMmune Estimation Resource) algorithms and was found to be positively correlated with immunosuppressive molecules and drug response.
Collapse
Affiliation(s)
- Shanshan Liu
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Liu
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejing Zou
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Zhou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erqiang Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Song
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Szafraniec GM, Szeleszczuk P, Dolka B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals (Basel) 2020; 10:ani10081421. [PMID: 32823920 PMCID: PMC7460464 DOI: 10.3390/ani10081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This literature review provides a synthesis and evaluation of the current knowledge on Staphylococcus agnetis (S. agnetis) and its implications in poultry pathology. Recent studies revealed that S. agnetis can cause bacterial chondronecrosis with osteomyelitis (BCO), endocarditis, and septicemia in broiler chickens. Lameness constitutes one of the major health and welfare problems causing huge economic losses in the poultry industry. To date, a range of infectious and non-infectious factors have been associated with lameness in poultry. Among bacteria of the genus Staphylococcus, Staphylococcus aureus is the main species associated with locomotor problems. This contrasts with S. agnetis, which until recently had not been considered as a poultry pathogen. Previously only reported in cattle, S. agnetis has expanded its host range to chickens, and due to its unique characteristics has become recognized as a new emerging pathogen. The genotypic and phenotypic similarities between S. agnetis and other two staphylococci (S. hyicus and S. chromogenes) make this pathogen capable of escaping recognition due to misidentification. Although a significant amount of research on S. agnetis has been conducted, many facts about this novel species are still unknown and further studies are required to understand its full significance in poultry pathology. Abstract This review aims to summarize recent discoveries and advancements regarding the characteristics of Staphylococcus agnetis (S. agnetis) and its role in poultry pathology. S. agnetis is an emerging pathogen that was primarily associated with mastitis in dairy cattle. After a presumed host jump from cattle to poultry, it was identified as a pathological agent in broiler chickens (Gallus gallus domesticus), causing lameness induced by bacterial chondronecrosis with osteomyelitis (BCO), septicemia, and valvular endocarditis. Economic and welfare losses caused by lameness are global problems in the poultry industry, and S. agnetis has been shown to have a potential to induce high incidences of lameness in broiler chickens. S. agnetis exhibits a distinct repertoire of virulence factors found in many different staphylococci. It is closely related to S. hyicus and S. chromogenes, hence infections caused by S. agnetis may be misdiagnosed or even undiagnosed. As there are very few reports on S. agnetis in poultry, many facts about its pathogenesis, epidemiology, routes of transmission, and the potential impacts on the poultry industry remain unknown.
Collapse
|
11
|
Regulation of the Staphylococcal Superantigen-Like Protein 1 Gene of Community-Associated Methicillin-Resistant Staphylococcus aureus in Murine Abscesses. Toxins (Basel) 2019; 11:toxins11070391. [PMID: 31277443 PMCID: PMC6669464 DOI: 10.3390/toxins11070391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes substantial skin and soft tissue infections annually in the United States and expresses numerous virulence factors, including a family of toxins known as the staphylococcal superantigen-like (SSL) proteins. Many of the SSL protein structures have been determined and implicated in immune system avoidance, but the full scope that these proteins play in different infection contexts remains unknown and continues to warrant investigation. Analysis of ssl gene regulation may provide valuable information related to the function of these proteins. To determine the transcriptional regulation of the ssl1 gene of CA-MRSA strain MW2, an ssl1 promoter::lux fusion was constructed and transformed into S.aureus strains RN6390 and Newman. Resulting strains were grown in a defined minimal medium (DSM) broth and nutrient-rich brain-heart infusion (BHI) broth and expression was determined by luminescence. Transcription of ssl1 was up-regulated and occurred earlier during growth in DSM broth compared to BHI broth suggesting expression is regulated by nutrient availability. RN6390 and Newman strains containing the ssl1::lux fusion were also used to analyze regulation in vivo using a mouse abscess model of infection. A marked increase in ssl1 transcription occurred early during infection, suggesting SSL1 is important during early stages of infection, perhaps to avoid the immune system.
Collapse
|
12
|
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
|
13
|
Nasser A, Moradi M, Jazireian P, Safari H, Alizadeh-Sani M, Pourmand MR, Azimi T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb Pathog 2019; 131:259-269. [PMID: 31002964 DOI: 10.1016/j.micpath.2019.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus (S.aureus) is a Gram-positive bacterium that causes many infections and diseases. This pathogen can cause many types of infections such as impetigo, toxic shock syndrome toxin (TSST1), pneumonia, endocarditis, and autoimmune diseases like lupus erythematosus and can infect other healthy individuals. In the pathogenic process, colonization is a main risk factor for invasive diseases. Various factors including the cell wall-associated factors and receptors of the epithelial cells facilitate adhesion and colonization of this pathogen. S. aureus has many enzymes, toxins, and strategies to evade from the immune system either by an enzyme that lyses cellular component or by hiding from the immune system via surface antigens like protein A and second immunoglobulin-binding protein (Sbi). The strategies of this bacterium can be divided into five groups: A: Inhibit neutrophil recruitment B: Inhibit phagocytosis C: Inhibit killing by ROS, D: Neutrophil killing, and E: Resistance to antimicrobial peptide. On the other hand, innate immune system via neutrophils, the most important polymorphonuclear leukocytes, fights against bacterial cells by neutrophil extracellular trap (NET). In this review, we try to explain the role of each factor in immune evasion.
Collapse
Affiliation(s)
- Ahmad Nasser
- Microbiology Research center, Ilam University of Medical Sciences, Ilam, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Jazireian
- Department of Biology, University Campus 2,University of Guilan, Rasht, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Food Safety and Hygiene Division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Botelho AMN, Cerqueira e Costa MO, Moustafa AM, Beltrame CO, Ferreira FA, Côrtes MF, Costa BSS, Silva DNS, Bandeira PT, Lima NCB, Souza RC, de Almeida LGP, Vasconcelos ATR, Narechania A, Ryan C, O’Brien K, Kolokotronis SO, Planet PJ, Nicolás MF, Figueiredo AMS. Local Diversification of Methicillin- Resistant Staphylococcus aureus ST239 in South America After Its Rapid Worldwide Dissemination. Front Microbiol 2019; 10:82. [PMID: 30873127 PMCID: PMC6400870 DOI: 10.3389/fmicb.2019.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.
Collapse
Affiliation(s)
- Ana Maria Nunes Botelho
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ahmed M. Moustafa
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Cristiana Ossaille Beltrame
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabienne Antunes Ferreira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Farrel Côrtes
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Souza Scramignon Costa
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Nascimento Santos Silva
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Terra Bandeira
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | | | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Chanelle Ryan
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Kelsey O’Brien
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
| | - Sergios-Orestis Kolokotronis
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Paul J. Planet
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | | | - Agnes Marie Sá Figueiredo
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Tang A, Caballero AR, Bierdeman MA, Marquart ME, Foster TJ, Monk IR, O'Callaghan RJ. Staphylococcus aureus Superantigen-Like Protein SSL1: A Toxic Protease. Pathogens 2019; 8:pathogens8010002. [PMID: 30609641 PMCID: PMC6471365 DOI: 10.3390/pathogens8010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a major cause of corneal infections that can cause reduced vision, even blindness. Secreted toxins cause tissue damage and inflammation resulting in scars that lead to vision loss. Identifying tissue damaging proteins is a prerequisite to limiting these harmful reactions. The present study characterized a previously unrecognized S. aureus toxin. This secreted toxin was purified from strain Newman ΔhlaΔhlg, the N-terminal sequence determined, the gene cloned, and the purified recombinant protein was tested in the rabbit cornea. The virulence of a toxin deletion mutant was compared to its parent and the mutant after gene restoration (rescue strain). The toxin (23 kDa) had an N-terminal sequence matching the Newman superantigen-like protein SSL1. An SSL1 homodimer (46 kDa) had proteolytic activity as demonstrated by zymography and cleavage of a synthetic substrate, collagens, and cytokines (IL-17A, IFN-γ, and IL-8); the protease was susceptible to serine protease inhibitors. As compared to the parent and rescue strains, the ssl1 mutant had significantly reduced virulence, but not reduced bacterial growth, in vivo. The ocular isolates tested had the ssl1 gene, with allele type 2 being the predominant type. SSL1 is a protease with corneal virulence and activity on host defense and structural proteins.
Collapse
Affiliation(s)
- Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Armando R Caballero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Michael A Bierdeman
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, D02 PN40, Ireland.
| | - Ian R Monk
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, D02 PN40, Ireland.
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, 3000 Melbourne, Australia.
| | - Richard J O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
16
|
Koymans KJ, Feitsma LJ, Bisschop A, Huizinga EG, van Strijp JAG, de Haas CJC, McCarthy AJ. Molecular basis determining species specificity for TLR2 inhibition by staphylococcal superantigen-like protein 3 (SSL3). Vet Res 2018; 49:115. [PMID: 30486901 PMCID: PMC6263051 DOI: 10.1186/s13567-018-0609-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a versatile opportunistic pathogen, causing disease in human and animal species. Its pathogenicity is linked to the ability of S. aureus to secrete immunomodulatory molecules. These evasion proteins bind to host receptors or their ligands, resulting in inhibitory effects through high affinity protein–protein interactions. Staphylococcal evasion molecules are often species-specific due to differences in host target proteins between species. We recently solved the crystal structure of murine TLR2 in complex with immunomodulatory molecule staphylococcal superantigen-like protein 3 (SSL3), which revealed the essential residues within SSL3 for TLR2 inhibition. In this study we aimed to investigate the molecular basis of the interaction on the TLR2 side. The SSL3 binding region on murine TLR2 was compared to that of other species through sequence alignment and homology modeling, which identified interspecies differences. To examine whether this resulted in altered SSL3 activity on the corresponding TLR2s, bovine, equine, human, and murine TLR2 were stably expressed in HEK293T cells and the ability of SSL3 to inhibit TLR2 was assessed. We found that SSL3 was unable to inhibit bovine TLR2. Subsequent loss and gain of function mutagenesis showed that the lack of inhibition is explained by the absence of two tyrosine residues in bovine TLR2 that play a prominent role in the SSL3–TLR2 interface. We found no evidence for the existence of allelic SSL3 variants that have adapted to the bovine host. Thus, within this paper we reveal the molecular determinants of the TLR2–SSL3 interaction which adds to our understanding of staphylococcal host specificity.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Louris J Feitsma
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2018; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Production of Staphylococcal Complement Inhibitor (SCIN) and Other Immune Modulators during the Early Stages of Staphylococcus aureus Biofilm Formation in a Mammalian Cell Culture Medium. Infect Immun 2018; 86:IAI.00352-18. [PMID: 29784858 DOI: 10.1128/iai.00352-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Immune modulators are known to be produced by matured biofilms and during different stages of planktonic growth of Staphylococcus aureus Little is known about immune modulator production during the early stages of biofilm formation, thus raising the following question: how does S. aureus protect itself from the innate immune responses at these stages? Therefore, we determined the production of the following immune modulators: chemotaxis inhibitory protein of staphylococci (CHIPS); staphylococcal complement inhibitor (SCIN); formyl peptide receptor-like 1 inhibitor; gamma-hemolysin component B; leukocidins D, E, and S; staphylococcal superantigen-like proteins 1, 3, 5, and 9; and staphylococcal enterotoxin A. Production was determined during in vitro biofilm formation in Iscove's modified Dulbecco's medium at different time points using a competitive Luminex assay and mass spectrometry. Both methods demonstrated the production of the immune modulators SCIN and CHIPS during the early stages of biofilm formation. The green fluorescence protein promoter fusion technology confirmed scn (SCIN) and, to a lesser extent, chp (CHIPS) transcription during the early stages of biofilm formation. Furthermore, we found that SCIN could inhibit human complement activation induced by early biofilms, indicating that S. aureus is able to modulate the innate immune system already during the early stages of biofilm formation in vitro These results form a stepping stone toward elucidating the role of immune modulators in the establishment of biofilms in vivo and present opportunities to develop preventive strategies.
Collapse
|
19
|
Tuffs SW, Haeryfar SMM, McCormick JK. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018; 7:pathogens7020053. [PMID: 29843476 PMCID: PMC6027230 DOI: 10.3390/pathogens7020053] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON N6A 3K7, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
20
|
Kobayashi SD, Malachowa N, DeLeo FR. Neutrophils and Bacterial Immune Evasion. J Innate Immun 2018; 10:432-441. [PMID: 29642066 DOI: 10.1159/000487756] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are an important component of the innate immune system and provide a front line of defense against bacterial infection. Although most bacteria are killed readily by neutrophils, some bacterial pathogens have the capacity to circumvent destruction by these host leukocytes. The ability of bacterial pathogens to avoid killing by neutrophils often involves multiple attributes or characteristics, including the production of virulence molecules. These molecules are diverse in composition and function, and collectively have the potential to alter or inhibit neutrophil recruitment, phagocytosis, bactericidal activity, and/or apoptosis. Here, we review the ability of bacteria to target these processes.
Collapse
|
21
|
Kohno K, Itoh S, Hanai A, Takii T, Fujiwara T, Onozaki K, Tsuji T, Hida S. Identification of matrix metalloproteinase 9-interacting sequences in staphylococcal superantigen-like protein 5. Biochem Biophys Res Commun 2018; 497:713-718. [PMID: 29462623 DOI: 10.1016/j.bbrc.2018.02.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Staphylococcal superantigen like 5 (SSL5) is an exotoxin produced by S. aureus and has a strong inhibitory effect on MMP-9 enzymatic activity. However, the mechanism of inhibition remains unclear. We sought to identify the responsible regions of SSL5 for the interaction with MMP-9 by comparing a series of domain swap and deletion mutants of SSL5. Binding analyses revealed that SSL5 had two regions for binding to MMP-9 catalytic domain, β1-3 region (25SKELKNVTGY RYSKGGKHYL IFDKNRKFTR VQIFGK60) in N-terminal half and α4β9 region (138KELDFKLRQY LIQNFDLYKK FPKDSKIKVI MKD170) in C-terminal half. The collagen binding domain and zinc-chelating histidine residues of MMP-9 were not essential for the specific binding to SSL5. The domain swap mutants of SSL5 that conserved β1-3 but not α4β9 region inhibited the gelatinolysis by MMP-9, and the mutant of SSL7 that substituted β1-3 region to that of SSL5 acquired the binding and inhibitory activity. Furthermore, the polypeptide that harbored β1-3 region of SSL5 inhibited gelatinolysis by MMP-9. Taken together, SSL5 inhibits the MMP9 activity through binding to the catalytic domain, and the β1-3 region is responsible for the inhibition of proteolytic activity of MMP-9.
Collapse
Affiliation(s)
- Katsuhiro Kohno
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Akari Hanai
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takemasa Takii
- Bacteriology Division, Mycobacterium Reference Centre, Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Graduate School of Pharmaceutical Sciences, Kindai University, 3-4-1. Kowakae, Higashi-osaka 577-8502, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
22
|
Kurisaka C, Oku T, Itoh S, Tsuji T. Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 2018; 62:168-175. [PMID: 29328525 DOI: 10.1111/1348-0421.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Staphylococcal superantigen-like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase (MMP)-9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid-containing glycans of MMP-9, but the roles of sialic acids in the interaction between SSL5 and MMP-9 are still controversial. In the present study, we prepared recombinant glutathione S-transferase-tagged SSL5 (GST-SSL5) and analyzed its binding capacity to MMP-9 by pull-down assay after various modifications of its carbohydrate moieties. We observed that GST-SSL5 specifically bound to MMP-9 from a human monocytic leukemia cell line (THP-1 cells) and inhibited its enzymatic activity in a concentration-dependent manner. After MMP-9 was treated with neuraminidase, its binding activity towards GST-SSL5 was markedly decreased. Furthermore, recombinant MMP-9 produced by sialic acid-deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild-type CHO-K1 cells. Treatment of MMP-9 with PNGase F to remove N-glycan resulted in no significant change in the GST-SSL5/MMP-9 interaction. In contrast, the binding of GST-SSL5 to MMP-9 secreted from THP-1 cells cultured in the presence of an inhibitor for the biosynthesis of O-glycan (benzyl-GalNAc) was weaker than the binding of GST-SSL5 to MMP-9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid-containing O-glycans of MMP-9 for the interaction of MMP-9 with GST-SSL5.
Collapse
Affiliation(s)
- Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
23
|
The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices. Sci Rep 2017; 7:13665. [PMID: 29057978 PMCID: PMC5651841 DOI: 10.1038/s41598-017-14168-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.
Collapse
|
24
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
26
|
Itoh S, Takii T, Onozaki K, Tsuji T, Hida S. Identification of the blood coagulation factor interacting sequences in staphylococcal superantigen-like protein 10. Biochem Biophys Res Commun 2017; 485:201-208. [DOI: 10.1016/j.bbrc.2017.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 02/03/2023]
|