1
|
Le Y, Zhao W, Liu X, Chen M, Xiong X, Zhang X, Lin Z. Natural variation in GhKASI_A05 modulates cottonseed oil content in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109159. [PMID: 39353295 DOI: 10.1016/j.plaphy.2024.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cotton is of great economic value because of its fiber that is used in natural textile commodities and its seeds that contain an edible oil with a high content of unsaturated fatty acids and biodiesel applications. Here, we reported that GhKASI_A05 was associated with the cottonseed oil content (SOC) in a natural population via candidate gene association analysis. An 11-bp Indel located in the GhKASI_A05 promoter was found to contribute to SOC and differential expression in upland cotton inbred accessions. Interaction analysis showed that GhWRI1, an AP2/EREBP family transcription factor, that reportedly functions in plant seed oil and fatty acids (FAs) accumulation, directly bound to AW-box cis-elements in two haplotypes of the GhKASI_A05 promoter and activated the expression of GhKASI_A05 at different levels. The seed-specific overexpression of GhKASI_A05 resulted in increased seed size, weight, and protein content, and C16:0 and C18:1 contents but reduced SOC. Our results provide new insights into the biological function of GhKASI in SOC and effective strategies for cotton breeding in the future.
Collapse
Affiliation(s)
- Yu Le
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenxia Zhao
- Xinjiang Seed Industry Development Center of China, Urumqi 453 Qiantangjiang Road, Shayibake district, Urumqi, 830001, China
| | - Xinxin Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinhui Xiong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Sun G, Zhang C, Shan X, Zhang Z, Wang W, Lu W, Dai Z, E L, Wang Y, Ma Z, Hou X. Conjunctive BSA-Seq and BSR-Seq to Map the Genes of Yellow Leaf Mutations in Hot Peppers ( Capsicum annuum L.). Genes (Basel) 2024; 15:1115. [PMID: 39336705 PMCID: PMC11430990 DOI: 10.3390/genes15091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore the primary genetic elements that lead to the variations in the leaf color of hot peppers. To identify the pathways and genes associated with yellow leaf phenotypes, we applied sequencing-based Bulked Segregant Analysis (BSA-Seq) combined with BSR-Seq. We identified 4167 differentially expressed genes (DEGs) in the mutant pool compared with the wild-type pool. The results indicated that DEGs were involved in zeatin biosynthesis, plant hormone signal transduction, signal transduction mechanisms, post-translational modification and protein turnover. A total of 437 candidates were identified by the BSA-Seq, while the BSR-Seq pinpointed four candidate regions in chromosomes 8 and 9, containing 222 candidate genes. Additionally, the combination of BSA-Seq and BSR-Seq showed that there were 113 overlapping candidate genes between the two methods, among which 8 common candidates have been previously reported to be related to the development of chloroplasts, the photomorphogenesis and chlorophyll formation of plant chloroplasts and chlorophyll biogenesis. qRT-PCR analysis of the 8 common candidates showed higher expression levels in the mutant pool compared with the wild-type pool. Among the overlapping candidates, the DEG analysis showed that the CaKAS2 and CaMPH2 genes were down-regulated in the mutant pool compared to the wild type, suggesting that these genes may be key contributors to the yellow leaf phenotype of 96-140YBM. This research will deepen our understanding of the genetic basis of leaf color formation and provide valuable information for the breeding of hot peppers with diverse leaf colors.
Collapse
Affiliation(s)
- Guosheng Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Xi Shan
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Zhenchao Zhang
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Wenlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Wenjun Lu
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Zhongliang Dai
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Liu E
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Yaolong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Zhihu Ma
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| |
Collapse
|
3
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
4
|
Nawade B, Kumar A, Maurya R, Subramani R, Yadav R, Singh K, Rangan P. Longer Duration of Active Oil Biosynthesis during Seed Development Is Crucial for High Oil Yield-Lessons from Genome-Wide In Silico Mining and RNA-Seq Validation in Sesame. PLANTS (BASEL, SWITZERLAND) 2022; 11:2980. [PMID: 36365434 PMCID: PMC9657858 DOI: 10.3390/plants11212980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Sesame, one of the ancient oil crops, is an important oilseed due to its nutritionally rich seeds with high protein content. Genomic scale information for sesame has become available in the public databases in recent years. The genes and their families involved in oil biosynthesis in sesame are less studied than in other oilseed crops. Therefore, we retrieved a total of 69 genes and their translated amino acid sequences, associated with gene families linked to the oil biosynthetic pathway. Genome-wide in silico mining helped identify key regulatory genes for oil biosynthesis, though the findings require functional validation. Comparing sequences of the SiSAD (stearoyl-acyl carrier protein (ACP)-desaturase) coding genes with known SADs helped identify two SiSAD family members that may be palmitoyl-ACP-specific. Based on homology with lysophosphatidic acid acyltransferase (LPAAT) sequences, an uncharacterized gene has been identified as SiLPAAT1. Identified key regulatory genes associated with high oil content were also validated using publicly available transcriptome datasets of genotypes contrasting for oil content at different developmental stages. Our study provides evidence that a longer duration of active oil biosynthesis is crucial for high oil accumulation during seed development. This underscores the importance of early onset of oil biosynthesis in developing seeds. Up-regulating, identified key regulatory genes of oil biosynthesis during early onset of seed development, should help increase oil yields.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Ajay Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rasna Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Kuldeep Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Song S, Zhang L, Zhao Y, Sheng C, Zhou W, Dossou SSK, Wang L, You J, Zhou R, Wei X, Zhang X. Metabolome genome-wide association study provides biochemical and genetic insights into natural variation of primary metabolites in sesame. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1051-1069. [PMID: 36176211 DOI: 10.1111/tpj.15995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.
Collapse
Affiliation(s)
- Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| |
Collapse
|
6
|
Shi ZH, Zhao Z, Liu LZ, Bian XL, Zhang Y. Pore-forming protein βγ-CAT promptly responses to fasting with capacity to deliver macromolecular nutrients. FASEB J 2022; 36:e22533. [PMID: 36065711 DOI: 10.1096/fj.202200528r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
During animal fasting, the nutrient supply and metabolism switch from carbohydrates to a new reliance on the catabolism of energy-dense lipid stores. Assembled under tight regulation, βγ-CAT (a complex of non-lens βγ-crystallin and trefoil factor) is a pore-forming protein and trefoil factor complex identified in toad Bombina maxima. Here, we determined that this protein complex is a constitutive component in toad blood, that actively responds to the animal fasting. The protein complex was able to promote cellular albumin and albumin-bound fatty acid (FA) uptake in a variety of epithelial and endothelial cells, and the effects were attenuated by a macropinocytosis inhibitor. Endothelial cell-derived exosomes containing largely enriched albumin and FAs, called nutrisomes, were released in the presence of βγ-CAT. These specific nutrient vesicles were readily taken up by starved myoblast cells to support their survival. The results uncovered that pore-forming protein βγ-CAT is a fasting responsive element able to drive cell vesicular import and export of macromolecular nutrients.
Collapse
Affiliation(s)
- Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Wang Z, Huang B, Ye J, He Y, Tang S, Wang H, Wen Q. Comparative transcriptomic analysis reveals genes related to the rapid accumulation of oleic acid in Camellia chekiangoleosa, an oil tea plant with early maturity and large fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:95-104. [PMID: 34974387 DOI: 10.1016/j.plaphy.2021.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Camellia chekiangoleosa has a higher oleic acid content and a shorter reproductive cycle than typical oil tea plants. It was intensively sampled over six C. chekiangoleosa seed development stages. The content of fatty acids determined by GC showed that the accumulation of fatty acids gradually increased from the S1 to S5 stages, and the maximum concentration was reached in S5. Then, fatty acids declined slightly in S6. The main fatty acid component showed the same accumulation trend as the total fatty acids, except linolenic acid, which remained at a low level throughout seed developmental stages. Changes in the expression of fatty acid accumulation-related genes were monitored using second-generation and SMRT full-length transcriptome sequencing. Finally, 18.92 G accurate and reliable data were obtained. Differential expression analysis and weighted coexpression analysis revealed two "gene modules" significantly associated with oleic acid and linoleic acid contents, and the high expression of ENR, KAS I, and KAS II, which accumulate substrates for oleic acid synthesis, was thought to be responsible for the rapid accumulation of fatty acids in the early stage. The rapid increase in fatty acids in the second stage may be closely related to the synergy between the high expression of SAD and low expression of FAD2. In addition, many transcription factors, such as ERF, GRAS, GRF, MADS, MYB and WRKY, may be involved in the fatty acid synthesis. Our data provide a rich resource for further studies on the regulation of fatty acid synthesis in C. chekiangoleosa.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Bin Huang
- Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China.
| | - Jinshan Ye
- Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China.
| | - Yichang He
- Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China.
| | - Shijie Tang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Huanli Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Qiang Wen
- Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China.
| |
Collapse
|
8
|
Zhou T, Yang Y, Li T, Liu H, Zhou F, Zhao Y. Sesame β-ketoacyl-acyl carrier protein synthase I regulates pollen development by interacting with an adenosine triphosphate-binding cassette transporter in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 173:1048-1062. [PMID: 34270100 DOI: 10.1111/ppl.13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Male gametogenesis is an important biological process critical for seed formation and successful breeding. Understanding the molecular mechanisms of male fertility might facilitate hybrid breeding and increase crop yields. Sesame anther development is largely unknown. Here, a sesame β-ketoacyl-[acyl carrier protein] synthase I (SiKASI) was cloned and characterized as being involved in pollen and pollen wall development. Immunohistochemical analysis showed that the spatiotemporal expression of SiKASI protein was altered in sterile sesame anthers compared with fertile anthers. In addition, SiKASI overexpression in Arabidopsis caused male sterility. Cytological observations revealed defective microspore and pollen wall development in SiKASI-overexpressing plants. Aberrant lipid droplets were detected in the tapetal cells of SiKASI-overexpressing plants, and most of the microspores of transgenic plants contained few cytoplasmic inclusions, with irregular pollen wall components embedded on their surfaces. Moreover, the fatty acid metabolism and the expression of a sporopollenin biosynthesis-related gene set were altered in the anthers of SiKASI-overexpressing plants. Additionally, SiKASI interacted with an adenosine triphosphate (ATP)-binding cassette (ABC) transporter. Taken together, our findings suggested that SiKASI was crucial for fatty acid metabolism and might interact with ABCG18 for normal pollen fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanxiao Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Tianyu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongyan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
9
|
Cheng K, Pan YF, Liu LM, Zhang HQ, Zhang YM. Integrated Transcriptomic and Bioinformatics Analyses Reveal the Molecular Mechanisms for the Differences in Seed Oil and Starch Content Between Glycine max and Cicer arietinum. FRONTIERS IN PLANT SCIENCE 2021; 12:743680. [PMID: 34764968 PMCID: PMC8576049 DOI: 10.3389/fpls.2021.743680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The seed oil and starch content of soybean are significantly different from that of chickpea. However, there are limited studies on its molecular mechanisms. To address this issue, we conducted integrated transcriptomic and bioinformatics analyses for species-specific genes and acyl-lipid-, starch-, and carbon metabolism-related genes. Among seven expressional patterns of soybean-specific genes, four were highly expressed at the middle- and late oil accumulation stages; these genes significantly enriched fatty acid synthesis and carbon metabolism, and along with common acetyl CoA carboxylase (ACCase) highly expressed at soybean middle seed development stage, common starch-degrading enzyme beta-amylase-5 (BAM5) was highly expressed at soybean early seed development stage and oil synthesis-related genes ACCase, KAS, KAR, ACP, and long-chain acyl-CoA synthetase (LACS) were co-expressed with WRI1, which may result in high seed oil content and low seed starch content in soybean. The common ADP-glucose pyrophosphorylase (AGPase) was highly expressed at chickpea middle seed development stage, along with more starch biosynthesis genes co-expressed with four-transcription-factor homologous genes in chickpea than in soybean, and the common WRI1 was not co-expressed with oil synthesis genes in chickpea, which may result in high seed starch content and low seed oil content in chickpea. The above results may be used to improve chickpea seed oil content in two ways. One is to edit CaWRI1 to co-express with oil synthesis-related genes, which may increase carbon metabolites flowing to oil synthesis, and another is to increase the expression levels of miRNA159 and miRNA319 to inhibit the expression of MYB33, which may downregulate starch synthesis-related genes, making more carbon metabolites flow into oil synthesis. Our study will provide a basis for future breeding efforts to increase the oil content of chickpea seeds.
Collapse
|
10
|
González-Thuillier I, Venegas-Calerón M, Moreno-Pérez AJ, Salas JJ, Garcés R, von Wettstein-Knowles P, Martínez-Force E. Sunflower (Helianthus annuus) fatty acid synthase complex: β-Ketoacyl-[acyl carrier protein] reductase genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:689-699. [PMID: 34214779 DOI: 10.1016/j.plaphy.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Fatty acids play many roles in plants, but the function of some key genes involved in fatty acid biosynthesis in plant development are not yet properly understood. Here, we clone two β-ketoacyl-[ACP] reductase (KAR) genes from sunflower, HaKAR1 and HaKAR2, and characterize their functional roles. The enzymes cloned were the only two copies present in the sunflower genome. Both displayed a high degree of similarity, but their promoters infer different regulation. The two sunflower KAR genes were constitutively expressed in all tissues examined, being maximum in developing cotyledons at the start of oil synthesis. Over-expression of HaKAR1 in E. coli changed the fatty acid composition by promoting the elongation of C16:0 to C18:0 fatty acids. The enzymatic characterization of HaKAR1 revealed similar kinetic parameters to homologues from other oil accumulating species. The results point to a partially functional redundancy between HaKAR1 and HaKAR2. This study clearly revealed that these genes play a prominent role in de novo fatty acids synthesis in sunflower seeds.
Collapse
Affiliation(s)
- Irene González-Thuillier
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Biosciences, Jealotts Hill Research Station, Warfield, Bracknell, RG42 6EY, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | | | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
11
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
12
|
Yang T, Wang X, Dong T, Xu W, Liu A. Isolation and functional analyses of PvFAD2 and PvFAD3 involved in the biosynthesis of polyunsaturated fatty acids from Sacha Inchi ( Plukenetia volubilis). PeerJ 2020; 8:e9169. [PMID: 32607277 PMCID: PMC7315619 DOI: 10.7717/peerj.9169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
The development of ω-3 fatty acid-rich vegetable oils is essential to enrich the production of functional foods. Sacha Inchi (Plukenetia volubilis L.) is a unique oilseed crop with much potential. Its seeds contain rich polyunsaturated fatty acids (PUFAs), especially linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3). Endoplasmic reticulum -located ω-6 and ω-3 fatty acid desaturases (FAD) are responsible for the biosynthesis of LA and ALA, respectively, in plant seeds. Here, we isolated two full-length FAD genes from Sacha Inchi, named PvFAD2 and PvFAD3, which encoded predicted amino acid residues of 384 and 379 in protein, respectively. Protein sequence and subcellular localization analysis revealed that they were located in the endoplasmic reticulum (ER). Heterologous expression in Saccharomyces cerevisiae confirmed that PvFAD2 and PvFAD3 could catalyze LA and ALA synthesis, respectively. The stability and catalytic efficiency of the PvFAD3 protein may be closely related to temperature. In transgenic tobacco, using seed-specific expression promoters, PvFAD2 and PvFAD3 significantly promotes the production of LA (from 68% to 70.5%) and ALA (from 0.7% to 3.1%) in seed oil. These results show that PvFAD2 and PvFAD3 do, indeed, function as crucial enzymes for PUFAs biosynthesis, and provide a key gene source for the sustainable production of lipids with tailored fatty acid compositions via genetic engineering in other oil crops.
Collapse
Affiliation(s)
- Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaojuan Wang
- Department of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou, Henan, China
| | - Tingnan Dong
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
13
|
Kaminski KP, Goepfert S, Ivanov NV, Peitsch MC. Production of Valuable Compounds in Tobacco. THE TOBACCO PLANT GENOME 2020. [DOI: 10.1007/978-3-030-29493-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Xie X, Meesapyodsuk D, Qiu X. Enhancing oil production in Arabidopsis through expression of a ketoacyl-ACP synthase domain of the PUFA synthase from Thraustochytrium. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:172. [PMID: 31297160 PMCID: PMC6599236 DOI: 10.1186/s13068-019-1514-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant seed oil is an important bioresource for human food and animal feed, as well as industrial bioproducts. Therefore, increasing oil content in seeds has been one of the primary targets in the breeding programs of oilseed crops. Thraustochytrium is a marine protist that can produce a high level of very long-chain polyunsaturated fatty acids (VLCPUFAs) using a PUFA synthase, a polyketide synthase-like fatty acid synthase with multiple catalytic domains. Our previous study showed that a KS domain from the synthase could complement an Escherichia coli mutant defective in β-ketoacyl-ACP synthase I (FabB) and increase the total fatty acid production. In this study, this KS domain from the PUFA synthase was further functionally analyzed in Arabidopsis thaliana for the capacity of oil production. RESULTS The plastidial expression of the KS domain could complement the defective phenotypes of a KASI knockout mutant generated by CRISPR/Cas9. Seed-specific expression of the domain in wild-type Arabidopsis significantly increased seed weight and seed oil, and altered the unsaturation level of fatty acids in seeds, as well as promoted seed germination and early seedling growth. CONCLUSIONS The condensation process of fatty acid biosynthesis in plants is a limiting step, and overexpression of the KS domain from a PUFA synthase of microbial origin offers a new strategy to increase oil production in oilseed plants.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
15
|
Yang T, Yu Q, Xu W, Li DZ, Chen F, Liu A. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC PLANT BIOLOGY 2018; 18:247. [PMID: 30340521 PMCID: PMC6195686 DOI: 10.1186/s12870-018-1463-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/03/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Malania oleifera Chun et Lee (Olacaceae), an evergreen broad-leaved woody tree native to southwest China, is an important oilseed tree. Its seed oil has a high level of nervonic acid (cis-tetracos-15-enoic acid, over 60%), which is essential for human health. M. oleifera seed oil is a promising source of nervonic acid, but little is known about the physiological and molecular mechanisms underlying its biosynthesis. RESULTS In this study, we recorded oil accumulation at four stages of seed development. Using a high-throughput RNA-sequencing technique, we obtained 55,843 unigenes, of which 29,176 unigenes were functionally annotated. By comparison, 22,833 unigenes had a two-fold or greater expression at the fast oil accumulation stage than at the initial stage. Of these, 198 unigenes were identified as being functionally involved in diverse lipid metabolism processes (including de novo fatty acid synthesis, carbon chain elongation and modification, and triacylglycerol assembly). Key genes (encoding KCS, KCR, HCD and ECR), putatively responsible for nervonic acid biosynthesis, were isolated and their expression profiles during seed development were confirmed by quantitative real-time PCR analysis. Also, we isolated regulatory factors (such as WRI1, ABI3 and FUS3) that are putatively involved in the regulation of oil biosynthesis and seed development. CONCLUSION Our results provide novel data on the physiological and molecular mechanisms of nervonic acid biosynthesis and oil accumulation in M. oleifera seeds, and will also serve as a starting point for biotechnological genetic engineering for the production of nervonic acid resources.
Collapse
Affiliation(s)
- Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| | - Qian Yu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| | - De-zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204 China
| | - Fu Chen
- The Camellia Institute, Yunnan Academy of Forestry, Kunming, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 China
| |
Collapse
|
16
|
Lin H, Shen H, Lee YK. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase. Front Microbiol 2018; 9:619. [PMID: 29670594 PMCID: PMC5893845 DOI: 10.3389/fmicb.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/16/2018] [Indexed: 01/18/2023] Open
Abstract
Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan K Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Xiong W, Wei Q, Wu P, Zhang S, Li J, Chen Y, Li M, Jiang H, Wu G. Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:152-160. [PMID: 28521208 DOI: 10.1016/j.jplph.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The β-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants.
Collapse
Affiliation(s)
- Wangdan Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Sheng Zhang
- Guangzhou Institution of Biomedicine and Health, Chinese Academy of Chinese, Guangzhou 510530, PR China
| | - Jun Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China.
| |
Collapse
|
18
|
Dobbels AA, Michno JM, Campbell BW, Virdi KS, Stec AO, Muehlbauer GJ, Naeve SL, Stupar RM. An Induced Chromosomal Translocation in Soybean Disrupts a KASI Ortholog and Is Associated with a High-Sucrose and Low-Oil Seed Phenotype. G3 (BETHESDA, MD.) 2017; 7:1215-1223. [PMID: 28235823 PMCID: PMC5386870 DOI: 10.1534/g3.116.038596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/11/2017] [Indexed: 12/15/2022]
Abstract
Mutagenesis is a useful tool in many crop species to induce heritable genetic variability for trait improvement and gene discovery. In this study, forward screening of a soybean fast neutron (FN) mutant population identified an individual that produced seed with nearly twice the amount of sucrose (8.1% on dry matter basis) and less than half the amount of oil (8.5% on dry matter basis) as compared to wild type. Bulked segregant analysis (BSA), comparative genomic hybridization, and genome resequencing were used to associate the seed composition phenotype with a reciprocal translocation between chromosomes 8 and 13. In a backcross population, the translocation perfectly cosegregated with the seed composition phenotype and exhibited non-Mendelian segregation patterns. We hypothesize that the translocation is responsible for the altered seed composition by disrupting a β-ketoacyl-[acyl carrier protein] synthase 1 (KASI) ortholog. KASI is a core fatty acid synthesis enzyme that is involved in the conversion of sucrose into oil in developing seeds. This finding may lead to new research directions for developing soybean cultivars with modified carbohydrate and oil seed composition.
Collapse
Affiliation(s)
- Austin A Dobbels
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Jean-Michel Michno
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Kamaldeep S Virdi
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Seth L Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|