1
|
Zhang M, Wang Y, Li B, Yang B, Zhao M, Li B, Liu J, Hu Y, Wu Z, Ong Y, Han X, Ding L, Zhu K, Li J, Luo M, Chen S, Peng L, Zhang L, Chen X, Ni Q. STING-Activating Polymers Boost Lymphatic Delivery of mRNA Vaccine to Potentiate Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412654. [PMID: 39713955 DOI: 10.1002/adma.202412654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The unprecedented success of mRNA vaccines against COVID-19 has inspired scientists to develop mRNA vaccines for cancer immunotherapy. However, using nucleoside modified mRNA as vaccine, though evading innate immune toxicity, diminishes its therapeutic efficacy for cancers. Here, we report a polyvalent stimulator of interferon genes (STING) activating polymer (termed as PD) to bolster the immunogenicity of mRNA vaccine. PD is made of tertiary amine units and conjugated with a biodegradable alkyl chain. Co-formulation of PDs bearing different number of tertiary amines with lipid materials and mRNA resulted in the lipid-like nanoparticles (PD LNPs) which effectively promoted lymphatic delivery and elicited robust immune activation via the STING signaling pathway. Notably, PD with eighteen tertiary amines (PD18) is predominant in balancing immune activity and tolerability. Subcutaneous administration of PD18 LNPs containing ovalbumin (OVA) mRNA enhanced the frequency of antigen specific CD8+ T cell with immune memory, leading to potent anticancer efficacy that surpassed 2'3'-cGAMP in both prophylactic and therapeutic cancer models. Additionally, PD18 LNP-based mRNA vaccine showed conferred resistance to cancer challenge for up to 60 days. Overall, this study offers a new perspective of using STING- activating polymer for imparting synergistic activity in mRNA vaccine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yongling Wang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P. R. China
| | - Benhao Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mengyao Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianping Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yaxin Hu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhaoming Wu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yenhui Ong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaolin Han
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lingwen Ding
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kongfu Zhu
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Jianwei Li
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Min Luo
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Shengqi Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille Universite, CNRS, UMR 7325, ́ "Equipe Labellisee Ligue ́Contre le Cancer", Marseille, 13288, France
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
2
|
Song Q, Xu Y, Zhang M, Wu L, Liu S, Lv Y, Hu T, Zhao J, Zhang X, Xu X, Li Q, Zhou M, Zhang X, Lu P, Yu G, Zhao C, Yang J. A β-1,3/1,6-glucan enhances anti-tumor effects of PD1 antibody by reprogramming tumor microenvironment. Int J Biol Macromol 2024; 279:134660. [PMID: 39134196 DOI: 10.1016/j.ijbiomac.2024.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024]
Abstract
Checkpoint blockades have emerged as a frontline approach in cancer management, designed to enhance the adaptive immune response against tumors. However, its clinical efficacy is limited to a narrow range of tumor types, which necessitates the exploration of novel strategies that target another main branch of the immune system. One such potential strategy is the therapeutic modulation of pattern recognition receptors (PRRs) pathways in innate immune cells, which have shown promise in tumor eradication. Previously, a β-1,3/1,6-glucan with high purity from Durvillaea antarctica (BG136) was reported by our group to exhibit pan-antitumor effects. In the current study, we systemically studied the antitumor activity of BG136 in combination with anti-PD1 antibody in MC38 syngeneic tumor model in vivo. Integrated transcriptomic and metabolomic analyses suggested that BG136 enhanced the antitumor immunity of anti-PD1 antibody by reprogramming the tumor microenvironment to become more proinflammatory. In addition, an increase in innate and adaptive immune cell infiltration and activation, enhanced lipid metabolism, and a decrease in ascorbate and aldarate metabolism were also found. These findings provide mechanistic insights that support the potent antitumor efficacy of BG136 when combined with immune checkpoint inhibitor antibodies.
Collapse
Affiliation(s)
- Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Yuting Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghui Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lijuan Wu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Jun Zhao
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaonan Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Quancai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Peizhe Lu
- Department of Neuroscience, University of Michigan, Ann Arbor, MI 48103, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Marine Science and Technology Center, Qingdao 266100, China.
| |
Collapse
|
3
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Huang X, Tian B, Ren Z, Zhang J, Yan W, Mo Y, Yuan J, Ma Y, Wang R, Liu R, Chen M, Yu J, Chen D. CD34 as a potential prognostic indicator for camrelizumab response in advanced non-small-cell lung cancer: insights from digital spatial profiling. Ther Adv Med Oncol 2024; 16:17588359241289671. [PMID: 39429466 PMCID: PMC11489950 DOI: 10.1177/17588359241289671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Given that only a small subset of patients with advanced non-small-cell lung cancer (aNSCLC) benefit from immune checkpoint inhibitors (ICIs), the effectiveness of ICIs is often compromised by the complex interplay within the tumor microenvironment (TME). Objectives To identify predictive biomarkers associated with ICI resistance at a multi-omics spatial level. Design A total of eight aNSCLC patients who received first-line anti-programmed cell death protein-1 (PD-1) monoclonal antibody camrelizumab at Shandong Cancer Hospital and Institute between 2021 and 2022 were included in the discovery cohort. An additional validation cohort of 45 samples from camrelizumab-treated aNSCLC patients was also enrolled. Methods NanoString GeoMx® digital spatial profiling was conducted at the transcriptomic and proteomic level within pan-cytokeratin (panCK+), CD45+, and CD68+ compartments. For validation, multiplex immunofluorescence (mIF) staining was performed. Results Distinct spatial expression patterns and levels of immune infiltration were observed between tumor and leukocyte compartments. Higher CD34 expression in the macrophage compartment correlated with poorer prognosis and response to camrelizumab (p < 0.05). mIF validation confirmed the association of elevated CD34 expression level with reduced progression-free survival (PFS; hazard ratio (HR) = 5.011, 95% confidence interval: 1.057-23.752, p = 0.042), outperforming traditional tumor markers in predictive accuracy. Conclusion Our findings identify CD34 as a novel spatial biomarker for anti-PD-1 therapy efficacy, potentially guiding the selection of aNSCLC patients who are more likely to benefit from ICI treatment. Trial registration ChiCTR2000040416.
Collapse
Affiliation(s)
- Xinyi Huang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Jingxin Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Weiwei Yan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - You Mo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yujiao Ma
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Ruiyang Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rufei Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Minxin Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| |
Collapse
|
5
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
6
|
Sun L, Huang K, Huang X. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. J Pathog 2024; 2024:9615181. [PMID: 39301082 PMCID: PMC11412752 DOI: 10.1155/2024/9615181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a common food-borne pathogen that causes gastroenteritis and can lead to life-threatening systemic disease when it spreads to vital organs, such as the liver. Stimulator of interferon genes (STING) is a crucial regulator of the host's innate immune response to viral infections, while its role in bacterial infections remains controversial. This study aims to establish a STING-deficient HepG2 cell line through the CRISPR/Cas9 system and evaluate its effects on Salmonella replication. Methods In this study, a STING knockout HepG2 cell line was constructed through the application of CRISPR/Cas9 technology. We assessed cell viability and proliferation using the CCK-8 assay. Subsequently, we investigated the effect of STING deletion on Salmonella replication and the expression of type I interferon-related genes. Results The STING knockout HepG2 cell line was successfully constructed using the CRISPR/Cas9 system. The proliferation capability was diminished in STING-deficient HepG2 cells, while Salmonella Typhimurium replication in these cells was augmented compared to the wild-type (WT) group. Following Salmonella infection, the transcriptional responses of type I interferon-related genes, such as IFNB1 and ISG15, were inhibited in STING-deficient HepG2 cells. Conclusions We successfully constructed a STING-deficient cell line. Our finding of increased Salmonella Typhimurium replication in STING-deficient HepG2 cells provides the basis for further studies on pathogen-host interactions.
Collapse
Affiliation(s)
- Lanqing Sun
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xuan Huang
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Parnian R, Heydarifard F, Mousavi FS, Heydarifard Z, Zandi M. Innate Immune Response to Monkeypox Virus Infection: Mechanisms and Immune Escape. J Innate Immun 2024; 16:413-424. [PMID: 39137733 PMCID: PMC11521483 DOI: 10.1159/000540815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The reemergence of monkeypox virus (Mpox, formerly monkeypox) in 2022 in non-endemic countries has raised significant concerns for global health due to its high transmissibility and mortality rate. A major challenge in combating Mpox is its ability to evade the host's innate immune system, the first line of defense against viral infections. SUMMARY Mpox encodes various proteins that interfere with key antiviral pathways and mechanisms, such as the nuclear factor kappa B signaling, cytokine production, complement and inflammasome activation, and chemokine binding. These proteins modulate the expression and function of innate immune mediators, such as interferons, interleukins, and Toll-like receptors, and impair the recruitment and activation of innate immune cells, such as natural killer cells. By suppressing or altering these innate immune responses, Mpox enhances its replication and infection in the host tissues and organs, leading to systemic inflammation, tissue damage, and organ failure. KEY MESSAGES This study reveals new insights into the molecular and cellular interactions between Mpox and the host's innate immune system. It identifies potential targets and strategies for antiviral interventions, highlighting the importance of understanding these interactions to develop effective treatments and improve global health responses to Mpox outbreaks.
Collapse
Affiliation(s)
- Reza Parnian
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Fatemeh Sadat Mousavi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Heydarifard
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Lu YJ, Vayalakkara RK, Dash BS, Hu SH, Premji TP, Wu CY, Shen YJ, Chen JP. Immunomodulatory R848-Loaded Anti-PD-L1-Conjugated Reduced Graphene Oxide Quantum Dots for Photothermal Immunotherapy of Glioblastoma. Pharmaceutics 2024; 16:1064. [PMID: 39204409 PMCID: PMC11358977 DOI: 10.3390/pharmaceutics16081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer and presents unique challenges to developing novel treatments due to its immunosuppressive milieu where receptors like programmed death ligand 1 (PD-L1) are frequently elevated to prevent an effective anti-tumor immune response. To potentially shift the GBM environment from being immunosuppressive to immune-enhancing, we engineered a novel nanovehicle from reduced graphene oxide quantum dot (rGOQD), which are loaded with the immunomodulatory drug resiquimod (R848) and conjugated with an anti-PD-L1 antibody (aPD-L1). The immunomodulatory rGOQD/R8/aPDL1 nanoparticles can actively target the PD-L1 on the surface of ALTS1C1 murine glioblastoma cells and release R848 to enhance the T-cell-driven anti-tumor response. From in vitro experiments, the PD-L1-mediated intracellular uptake and the rGOQD-induced photothermal response after irradiation with near-infrared laser light led to the death of cancer cells and the release of damage-associated molecular patterns (DAMPs). The combinational effect of R848 and released DAMPs synergistically produces antigens to activate dendritic cells, which can prime T lymphocytes to infiltrate the tumor in vivo. As a result, T cells effectively target and attack the PD-L1-suppressed glioma cells and foster a robust photothermal therapy elicited anti-tumor immune response from a syngeneic mouse model of GBM with subcutaneously implanted ALTS1C1 cells.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Reesha Kakkadavath Vayalakkara
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Thejas Pandaraparambil Premji
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
| | - Chun-Yuan Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Yang-Jin Shen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; (Y.-J.L.); (R.K.V.)
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.)
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Curigliano G, Jimenez MM, Shimizu T, Keam B, Meric-Bernstam F, Rutten A, Glaspy J, Schuler PJ, Parikh NS, Ising M, Hassounah N, Wu J, Leyk M, Chen X, Burks H, Chaudhury A, Otero J, Cabanas EG. A phase I trial of LHC165 single agent and in combination with spartalizumab in patients with advanced solid malignancies. ESMO Open 2024; 9:103643. [PMID: 39088985 PMCID: PMC11345372 DOI: 10.1016/j.esmoop.2024.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND LHC165 is a Toll-like receptor (TLR)-7 agonist that generates an effective tumor antigen-specific T-cell adaptive immune response as well as durable antitumor responses. We aimed to evaluate the safety, tolerability, efficacy, dose-limiting toxicities, and pharmacokinetics (PK) of LHC165 single agent (SA) ± spartalizumab [PDR001; anti-programmed cell death protein 1 (PD-1)] in adult patients with advanced solid tumors. MATERIALS AND METHODS In this phase I/Ib, open-label, dose-escalation/expansion study, patients received LHC165 SA 100-600 μg biweekly through intratumoral (IT) injection and LHC165 600 μg biweekly + spartalizumab 400 mg Q4W through intravenous (IV) infusion. RESULTS Forty-five patients were enrolled: 21 patients received LHC165 SA, and 24 patients received LHC165 + spartalizumab. The median duration of exposure was 8 weeks (range 2-129 weeks). No maximum tolerated dose was reached. Recommended dose expansion was established as LHC165 600 μg biweekly as SA and in combination with spartalizumab 400 mg Q4W. The most common drug-related adverse events (AEs) were pyrexia (22.2%), pruritus (13.3%), chills (11.1%), and asthenia (4.4%). The only serious AE (SAE) suspected to be related to the study drug was grade 3 pancreatitis (n = 1). Across all tumor types, overall response rate and disease control were 6.7% and 17.8%, respectively. Overall median progression-free survival (PFS) and immune-related PFS was 1.7 months. LHC165 serum PK demonstrated an initial rapid release followed by a slower release due to continued release of LHC165 from the injection site. CONCLUSIONS LHC165 demonstrated acceptable safety and tolerability both as SA and in combination with spartalizumab, and evidence of limited antitumor activity was seen in adult patients with relapsed/refractory or metastatic solid tumors.
Collapse
Affiliation(s)
- G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - M M Jimenez
- Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - T Shimizu
- National Cancer Center Hospital, Tokyo, Japan
| | - B Keam
- Seoul National University Hospital, Seoul, South Korea
| | - F Meric-Bernstam
- University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - A Rutten
- Sint-Augustinus Hospital, Antwerp, Belgium
| | - J Glaspy
- University of California, Los Angeles, California, USA
| | - P J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - N S Parikh
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | - M Ising
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | - N Hassounah
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - J Wu
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - M Leyk
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - X Chen
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | - H Burks
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - A Chaudhury
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - J Otero
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | - E Garralda Cabanas
- Vall d'Hebron Institute of Oncology (VHIO), Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
11
|
Jung E, Foroughishafiei A, Hun Chung Y, Steinmetz NF. Enhanced efficacy of a TLR3 agonist delivered by cowpea chlorotic mottle virus nanoparticles. SMALL SCIENCE 2024; 4:2300314. [PMID: 39640945 PMCID: PMC11615967 DOI: 10.1002/smsc.202300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Intratumoral immunotherapies are those that are administered directly into a tumor to remodel the local tumor microenvironment and stimulate systemic anti-tumor immunity. Small molecule Toll-like receptor (TLR) agonists are undergoing development as intratumoral immunotherapies, and here we considered the TLR3 agonist poly(I:C). Because small molecule therapeutics often suffer rapid washout effects and ineffective immune cell uptake, we encapsulated poly(I:C) into nanoparticles derived from cowpea chlorotic mottle virus (CCMV). The particles (but not the separate components) stimulated the activity of macrophages in vitro and were able to reduce tumor growth and prolong survival in mouse models of colon cancer and melanoma. We also combined CCMV-poly(I:C) with oxaliplatin and found the combination therapy to be even more potent, strongly inhibiting tumor growth and increasing survival. The analysis of immune markers revealed that CCMV-poly(I:C) VLPs with oxaliplatin promoted the infiltration and activation of CD4+ and CD8+ cells and the production of IL-4 and IFN-γ, indicating a synergistic immunogenic effect. The combined treatment also enhanced the rate of apoptosis and immunogenic cell death (ICD). Our data support the development of combination therapies involving immunomodulatory plant virus nanoparticles and antineoplastic drugs to attack tumors directly and via the activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Anahid Foroughishafiei
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Young Hun Chung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Moores Cancer Center, University of California, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
12
|
Huang C, Zhi X, Ye T, Wang X, Li K, Li Y, Zhang Q, Jiang L, Ding X. Boosting humoral and cellular immunity with enhanced STING activation by hierarchical mesoporous metal-organic framework adjuvants. J Control Release 2024; 370:691-706. [PMID: 38723671 DOI: 10.1016/j.jconrel.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Vaccination is essential for preventing and controlling infectious diseases, along with reducing mortality. Developing safe and versatile adjuvants to enhance humoral and cellular immune responses to vaccines remains a key challenge in vaccine development. Here, we designed hierarchical mesoporous MOF-801 (HM801) using a Cocamidopropyl betaine (CAPB) and a Pluronics F127 in an aqueous phase system. Meanwhile, we synthesized a novel SARS-CoV-2 nanovaccine (R@M@HM801) with a high loading capacity for both the STING agonist (MSA-2) and the Delta receptor binding domain (Delta-RBD) antigen. R@M@HM801 enhanced MSA-2 and RBD utilization and effectively co-delivered MSA-2 and RBD antigens to antigen-presenting cells in the draining lymph nodes, thereby promoting the activation of both T and B cells. Lymphocyte single-cell analysis showed that R@M@HM801 stimulated robust CD11b+CD4+ T cells, CXCR5+CD4+ T follicular helper (Tfh), and durable CD4+CD44+CD62L-, CD8+CD44+CD62L- effector memory T cell (TEM) immune responses, and promoted the proliferative activation of CD26+ B cells in vivo. Meanwhile, R@M@HM801 induced stronger specific antibodies and neutralization of pseudovirus against Delta compared to the RBD + MAS-2 and RBD + MAS-2 + Alum vaccines. Our study demonstrated the efficacy of a hierarchical mesoporous HM801 and its potential immune activation mechanism in enhancing adaptive immune responses against viruses and other diseases.
Collapse
Affiliation(s)
- Chengjie Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhi
- Shanghai Institute of Virology Shanghai Jiao Tong University School of Medicine 227 South Chongqing Road, Shanghai 200225, PR China.
| | - Tianbao Ye
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiuyuan Wang
- Department of Dermatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Ke Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yiyang Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Smok-Kalwat J, Mertowska P, Mertowski S, Góźdź S, Korona-Głowniak I, Kwaśniewski W, Grywalska E. Analysis of Selected Toll-like Receptors in the Pathogenesis and Advancement of Non-Small-Cell Lung Cancer. J Clin Med 2024; 13:2793. [PMID: 38792335 PMCID: PMC11122486 DOI: 10.3390/jcm13102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Non-small-cell lung cancer (NSCLC) represents a significant global health challenge, contributing to numerous cancer deaths. Despite advances in diagnostics and therapy, identifying reliable biomarkers for prognosis and therapeutic stratification remains difficult. Toll-like receptors (TLRs), crucial for innate immunity, now show potential as contributors to cancer development and progression. This study aims to investigate the role of TLR expression as potential biomarkers in the development and progression of NSCLC. (2) Materials and Methods: The study was conducted on 89 patients diagnosed with NSCLC and 40 healthy volunteers, for whom the prevalence of TLR2, TLR3, TLR4, TLR7, TLR8, and TLR9 was assessed on selected subpopulations of T and B lymphocytes in the peripheral blood of recruited patients along with the assessment of their serum concentration. (3) Result: Our study showed several significant changes in NSCLC patients at the beginning of the study. This resulted in a 5-year follow-up of changes in selected TLRs in recruited patients. Due to the high mortality rate of NSCLC patients, only 16 patients survived the 5 years. (4) Conclusions: The results suggest that TLRs may constitute real biomarker molecules that may be used for future prognostic purposes in NSCLC. However, further validation through prospective clinical and functional studies is necessary to confirm their clinical utility. These conclusions may lead to better risk stratification and tailored interventions, benefiting NSCLC patients and bringing medicine closer to precision.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
14
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
15
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Zhang B, Huang B, Zhang X, Li S, Zhu J, Chen X, Song H, Shang D. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer. Front Oncol 2023; 13:1217654. [PMID: 37519797 PMCID: PMC10382139 DOI: 10.3389/fonc.2023.1217654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background PANoptosis is an inflammatory type of programmed cell death regulated by PANopotosome. Mounting evidence has shown that PANoptosis could be involved in cancer pathogenesis and the tumor immune microenvironment. Nevertheless, there have been no studies on the mechanism of PANoptosis on pancreatic cancer (PC) pathogenesis. Methods We downloaded the data on transcriptomic and clinical features of PC patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Additionally, the data on copy number variation (CNV), methylation and somatic mutations of genes in 33 types of cancers were obtained from TCGA. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic model using LASSO and Cox regression analyses. Moreover, RT-qPCR was performed to determine the expression of genes involved in the model. Results We obtained 66 PANoptosis-related genes (PANRGs) from published studies. Of these, 24 PC-specific prognosis-related genes were identified. Pan-cancer analysis revealed complex genetic changes, including CNV, methylation, and mutation in PANRGs were identified in various cancers. By consensus clustering analysis, PC patients were classified into two PANoptosis-related patterns: PANcluster A and B. In PANcluster A, the patient prognosis was significantly worse compared to PANcluster B. The CIBERSORT algorithm showed a significant increase in the infiltration of CD8+ T cells, monocytes, and naïve B cells, in patients in PANcluster B. Additionally, the infiltration of macrophages, activated mast cells, and dendritic cells were higher in patients in PANcluster A. Patients in PANcluster A were more sensitive to erlotinib, selumetinib and trametinib, whereas patients in PANcluster B were highly sensitive to irinotecan, oxaliplatin and sorafenib. Moreover, we constructed and validated the PANoptosis-related prognostic model to predict the patient's survival. Finally, the GEPIA and Human Protein Atlas databases were analyzed, and RT-qPCR was performed. Compared to normal tissues, a significant increase in CXCL10 and ITGB6 (associated with the model) expression was observed in PC tissues. Conclusion We first identified the PANoptosis-related molecular subtypes and established a PANoptosis-related prognostic model for predicting the survival of patients with PC. These results would aid in exploring the mechanisms of PANoptosis in PC pathogenesis.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Zhu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
19
|
Zhu L, Zhang X, Chen X, Yang D, Nie Y, Pan R, Li L, Wang C, Gui H, Chen S, Jing Q, Wang M, Nie Y. Anti-TNFR2 enhanced the antitumor activity of a new HMGN1/3M-052 stimulated dendritic cell vaccine in a mouse model of colon cancer. Biochem Biophys Res Commun 2023; 653:106-114. [PMID: 36868074 DOI: 10.1016/j.bbrc.2023.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Immunotherapy is the new approach for cancer treatment that can be achieved through several strategies, one of which is dendritic cells (DCs) vaccine therapy. However, traditional DC vaccination lacks accurate targeting, so DC vaccine preparation needs to be optimized. Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment can promote tumor immune escape. Therefore, targeting Tregs has become a strategy for tumor immunotherapy. In this study, we found that HMGN1 (N1, a dendritic cell-activating TLR4 agonist) and 3M-052 (a newly synthesized TLR7/8 agonist) synergistically stimulate DCs maturation and increase the production of proinflammatory cytokines TNFα and IL-12. In a colon cancer mice model, vaccination with N1 and 3M-052 stimulated and tumor antigen-loaded DCs combined with anti-TNFR2 inhibited tumor growth in mice, and the antitumor effect was mainly achieved through stimulation of cytotoxic CD8 T cell activation and depletion of Tregs. Overall, the combinating of DC activation by N1 and 3M-052 with inhibition of Tregs by antagonizing TNFR2 as a therapeutic strategy may represent a more effective strategy for cancer treatment.
Collapse
Affiliation(s)
- Lan Zhu
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China.
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA.
| | - Yujie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Runsang Pan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Linzhao Li
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Chenglv Wang
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Huan Gui
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Shuanghui Chen
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Qianyu Jing
- School of Preclinical Medicine of Zunyi Medical University, Zunyi, 563000, China.
| | - Mengjiao Wang
- School of Medicine, Guizhou University, Guiyang, 550025, China.
| | - Yingjie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China; School of Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
20
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
21
|
Chen S, Peng A, Chen M, Zhan M. Nanomedicines targeting activation of STING to reshape tumor immune microenvironment and enhance immunotherapeutic efficacy. Front Oncol 2023; 12:1093240. [PMID: 36741735 PMCID: PMC9890065 DOI: 10.3389/fonc.2022.1093240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy has greatly enhanced the effectiveness of cancer treatments, but the efficacy of many current immunotherapies is still limited by the tumor-suppressive immune microenvironment. Multiple studies have shown that activating the stimulation of IFN genes (STING) pathway and inducing innate immunity can significantly impact the tumor immune microenvironment and improve antitumor therapy. While natural or synthetic STING agonists have been identified or developed for preclinical and clinical use, small molecule agonists have limited utility due to degradation and lack of targeting. As such, the delivery and release of STING agonists into tumor tissue is a major challenge that must be addressed in order to further advance the use of STING agonists. To address this challenge, various nanomedicines have been developed. In this paper, we concisely review the antitumor immunotherapeutic mechanisms of STING agonists, highlighting the latest developments in STING agonists and the current progress of nanomedicines for activating STING. We classify the different nanomedicines according to the STING agonists they utilize in order to facilitate understanding of recent advances in this field. Finally, we also discuss the prospects and challenges of this field.
Collapse
Affiliation(s)
- Shanshan Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Muhe Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China,*Correspondence: Muhe Chen, ; Meixiao Zhan,
| |
Collapse
|
22
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
23
|
Fan N, Chen K, Zhu R, Zhang Z, Huang H, Qin S, Zheng Q, He Z, He X, Xiao W, Zhang Y, Gu Y, Zhao C, Liu Y, Jiang X, Li S, Wei Y, Song X. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. SCIENCE ADVANCES 2022; 8:eabq3500. [PMID: 36563159 PMCID: PMC9788765 DOI: 10.1126/sciadv.abq3500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
It is urgent to develop more effective mRNA vaccines against the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants owing to the immune escape. Here, we constructed a novel mRNA delivery system [IC8/Mn lipid nanoparticles (IC8/Mn LNPs)]with high immunogenicity, via introducing a stimulator of interferon genes (STING) agonist [manganese (Mn)] based on a newly synthesized ionizable lipid (IC8). It was found that Mn can not only promote maturation of antigen-presenting cells via activating STING pathway but also improve mRNA expression by facilitating lysosomal escape for the first time. Subsequently, IC8/Mn LNPs loaded with mRNA encoding the Spike protein of SARS-CoV-2 Delta or Omicron variant (IC8/Mn@D or IC8/Mn@O) were prepared. Both mRNA vaccines induced substantial specific immunoglobulin G responses against Delta or Omicron. IC8/Mn@D displayed strong pseudovirus neutralization ability, T helper 1-biased immune responses, and good safety. It can be concluded that IC8/Mn LNPs have great potential for developing Mn-coordinated mRNA vaccines with robust immunogenicity and good safety.
Collapse
Affiliation(s)
- Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Zhu
- WestChina-Frontier PharmaTech Co. Ltd., Chengdu, Sichuan, China
| | - Zhongwei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongshan He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjun Gu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changchun Zhao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Liu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong, China
| | - Yuquan Wei
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Corresponding author.
| |
Collapse
|
24
|
Bolhassani A. Lipid-Based Delivery Systems in Development of Genetic and Subunit Vaccines. Mol Biotechnol 2022; 65:669-698. [PMID: 36462102 PMCID: PMC9734811 DOI: 10.1007/s12033-022-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Dongye Z, Li J, Wu Y. Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br J Cancer 2022; 127:1584-1594. [PMID: 35902641 PMCID: PMC9333350 DOI: 10.1038/s41416-022-01876-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
Over the past decade, tremendous progress has taken place in tumour immunotherapy, relying on the fast development of combination therapy strategies that target multiple immunosuppressive signaling pathways in the immune system of cancer patients to achieve a high response rate in clinical practice. Toll-like receptor 9 (TLR9) agonists have been extensively investigated as therapeutics in monotherapy or combination therapies for the treatment of cancer, infectious diseases and allergies. TLR9 agonists monotherapy shows limited efficacy in cancer patients; whereas, in combination with other therapies including antigen vaccines, radiotherapies, chemotherapies and immunotherapies exhibit great potential. Synthetic unmethylated CpG oligodeoxynucleotide (ODN), a commonly used agonist for TLR9, stimulate various antigen-presenting cells in the tumour microenvironment, which can initiate innate and adaptive immune responses. Novel combination therapy approaches, which co-deliver immunostimulatory CpG-ODN with other therapeutics, have been tested in animal models and early human clinical trials to induce anti-tumour immune responses. In this review, we describe the basic understanding of TLR9 signaling pathway; the delivery methods in most studies; discuss the key challenges of each of the above mentioned TLR9 agonist-based combination immunotherapies and provide an overview of the ongoing clinical trial results from CpG-ODN based combination therapies in cancer patients.
Collapse
Affiliation(s)
- Zhangchi Dongye
- grid.410645.20000 0001 0455 0905Department of Immunology, Medical College of Qingdao University, 266071 Qingdao, Shandong PR China ,grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
26
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
27
|
Ren P, Zhang Y. Focus on pattern recognition receptors to identify prognosis and immune microenvironment in colon cancer. Front Oncol 2022; 12:1010023. [PMID: 36212488 PMCID: PMC9539811 DOI: 10.3389/fonc.2022.1010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
In 2011, J. Hoffman, and B. Beutler won the Nobel Prize of medicine for the fact that they discovered the pattern recognition receptors (PRRs) and meanwhile described their effect on cell activation from the innate and adaptive immune systems. There are more and more evidences that have proved the obvious effect of PRRs on tumorigenesis progression. Nevertheless, the overall impact of PRR genes on prognosis, tumor microenvironmental characteristics and treatment response in patients with colon adenocarcinoma (COAD) remains unclear. In this research, we systematically assessed 20 PRR genes and comprehensively identified the prognostic value and enrichment degree of PRRs. The unsupervised clustering approach was employed for dividing COAD into 4 PRR subtypes, namely cluster A, cluster B, cluster C and cluster D, which were significantly different in terms of the clinical features, the immune infiltrations, and the functions. Among them, cluster B has better immune activities and functions. Cox and LASSO regression analysis was further applied to identify a prognostic five-PRR-based risk signature. Such signature can well predict patients’ overall survival (OS), together with a good robustness. Confounding parameters were controlled, with results indicating the ability of risk score to independently predict COAD patients’ OS. Besides, a nomogram with a strong reliability was created for enhancing the viability exhibited by the risk score in clinical practice. Also, patients who were classified based on the risk score owned distinguishable immune status and tumor mutation status, response to immunotherapy, as well as sensitivity to chemotherapy. A low risk score, featuring increased tumor stemness index (TSI), human leukocyte antigen (HLA), immune checkpoints, and immune activation, demonstrated a superior immunotherapeutic response. According to the study results, the prognostic PRR-based risk signature could serve as a robust biomarker for predicting the clinical outcomes as well as evaluating therapeutic response for COAD patients.
Collapse
Affiliation(s)
- Pengtao Ren
- Department of Colorectal Anal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Zhang
- Electrocardiogram Room, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yuan Zhang,
| |
Collapse
|
28
|
Li T, Liu T, Zhao Z, Pan Y, Xu X, Zhang Y, Zhan S, Zhou S, Zhu W, Guo H, Yang R. Antifungal immunity mediated by C-type lectin receptors may be a novel target in immunotherapy for urothelial bladder cancer. Front Immunol 2022; 13:911325. [PMID: 36131933 PMCID: PMC9483128 DOI: 10.3389/fimmu.2022.911325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapies, such as immune-checkpoint blockade and adoptive T-cell therapy, offer novel treatment options with good efficacy for patients with urothelial bladder cancer. However, heterogeneity and therapeutic resistance have limited the use of immunotherapy. Further research into immune-regulatory mechanisms in bladder cancer is urgently required. Emerging evidence demonstrates that the commensal microbiota and its interactions with host immunity play pivotal roles in a variety of physiological and pathological processes, including in cancer. The gut microbiota has been identified as a potentially effective target of treatment that can be synergized with immunotherapy. The urothelial tract is also a key site for multiple microbes, although the immune-regulatory role of the urinary microbiome in the process of carcinogenesis of bladder cancer remains to be elucidated. We performed a comprehensive analysis of the expression and biological functions of C-type lectin receptors (CLRs), which have been recognized as innate pathogen-associated receptors for fungal microbiota, in bladder cancer. In line with previous research on fungal colonization of the urothelial tract, we found that CLRs, including Dectin-1, Dectin-2, Dectin-3, and macrophage-inducible Ca2+-dependent lectin receptor (Mincle), had a significant association with immune infiltration in bladder cancer. Multiple innate and adaptive pathways are positively correlated with the upregulation of CLRs. In addition, we found a significant correlation between the expression of CLRs and a range of immune-checkpoint proteins in bladder cancer. Based on previous studies and our findings, we hypothesize that the urinary mycobiome plays a key role in the pathogenesis of bladder cancer and call for more research on CLR-mediated anti-fungal immunity against bladder cancer as a novel target for immunotherapy in urothelial bladder cancer.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- *Correspondence: Rong Yang, ; Hongqian Guo,
| |
Collapse
|
29
|
mRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081572. [PMID: 36015198 PMCID: PMC9413374 DOI: 10.3390/pharmaceutics14081572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are attractive antigen-presenting cells to be targeted for vaccinations. However, the systemic delivery of mRNA to DCs is hampered by technical challenges. We recently reported that it is possible to regulate the size of RNA-loaded lipid nanoparticles (LNPs) to over 200 nm with the addition of salt during their formation when a microfluidic device is used and that larger LNPs delivered RNA more efficiently and in greater numbers to splenic DCs compared to the smaller counterparts. In this study, we report on the in vivo optimization of mRNA-loaded LNPs for use in vaccines. The screening included a wide range of methods for controlling particle size in addition to the selection of an appropriate lipid type and its composition. The results showed a clear correlation between particle size, uptake and gene expression activity in splenic DCs and indicated that a size range from 200 to 500 nm is appropriate for use in targeting splenic DCs. It was also found that it was difficult to predict the transgene expression activity and the potency of mRNA vaccines in splenic DCs using the whole spleen. A-11-LNP, which was found to be the optimal formulation, induced better transgene expression activity and maturation in DCs and induced clear therapeutic antitumor effects in an E.G7-OVA tumor model compared to two clinically relevant LNP formulations.
Collapse
|
30
|
Śmiłowicz D, Schlyer D, Boros E, Meimetis L. Evaluation of a Radio-IMmunoStimulant (RIMS) in a Syngeneic Model of Murine Prostate Cancer and ImmunoPET Analysis of T-cell Distribution. Mol Pharm 2022; 19:3217-3227. [PMID: 35895995 DOI: 10.1021/acs.molpharmaceut.2c00361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunosuppressive tumor microenvironment and tumor heterogeneity have led to the resilience of metastatic castrate resistant prostate cancer (mCRPC) to current treatments. To address these challenges, we developed and evaluated a new drug paradigm, Radio-IMmunostimulant (RIMS), in a syngeneic model of murine prostate cancer. RIMS-1 was generated using a convergent synthesis employing solid phase peptide and solution chemistries. The prostate-specific membrane antigen (PSMA) inhibitory constant for natLu-RIMS-1 was determined, and radiolabeling with 177Lu generated 177Lu-RIMS-1. The TLR 7/8 agonist payload release from natLu-RIMS-1 was determined using a cathepsin B assay. The biodistribution of 177Lu-RIMS-1 was evaluated in a bilateral xenograft model in NCru nude mice bearing PSMA(+) (PC3-PiP) and PSMA(-) (PC3-Flu) tumors at 2, 24, and 72 h. The therapeutic effect of 177Lu-RIMS-1 was evaluated in C57BL/6J mice bearing RM1-PGLS (PSMA-positive, green fluorescent protein-positive, and luciferase-positive) tumors and compared to that of 177Lu-PSMA-617 at the same total administered radioactivity of 57 MBq and molar activity of 5.18 MBq/nmol. natLu-RIMS-1 and vehicle were evaluated as the controls. Immuno-positron emission tomography (PET) using 89Zr-DFO-anti-CD3 was used to visualize T-cell distribution during treatment. 177Lu-RIMS-1 was quantitatively radiolabeled at >99% radiochemical purity and maintained a high affinity toward PSMA (Ki = 3.77 ± 0.5 nM). Cathepsin B efficiently released the entire immunostimulant payload in 17.6 h. 177Lu-RIMS-1 displayed a sustained uptake in PSMA(+) tumor tissue up to 72 h (2.65 ± 1.03% ID/g) and was not statistically different (P = 0.1936) compared to 177Lu-PSMA-617 (3.65 ± 0.59% ID/g). All animals treated with 177Lu-RIMS-1 displayed tumor growth suppression and provided a median survival of 30 days (P = 0.0007) while 177Lu-PSMA-617 provided a median survival of 15 days, which was not statistically significant (P = 0.3548) compared to the vehicle group (14 days). ImmunoPET analysis revealed 2-fold more tumor infiltrating T-cells in 177Lu-RIMS-1-treated animals compared to 177Lu-PSMA-617-treated animals; 177Lu-RIMS-1 improves therapeutic outcomes in a syngeneic model of mouse prostate cancer and elicits greater T-cell infiltration to the tumor compared to 177Lu-PSMA-617. These results support further investigation of the RIMS paradigm as the first example of a single molecular entity combining radiotherapy and immunostimulation.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David Schlyer
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States.,Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Labros Meimetis
- Department of Radiology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Sun Y, Yang J, Cai H, Liu J, Liu Y, Luo J, Zhou H. Differential OAT methylation correlates with cell infiltration in tumor microenvironment and overall survival post-radiotherapy in oral squamous cell carcinoma patient. J Oral Pathol Med 2022; 51:611-619. [PMID: 35708285 DOI: 10.1111/jop.13328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Given that DNA methylation and tumor microenvironment (TME) are susceptible to radiotherapy, we aimed to figure out specific differential DNA methylation to reflect oral squamous cell carcinoma (OSCC) prognosis and associated effect on TME changes post-radiotherapy, performing as an efficient biomarker. MATERIALS AND METHODS Differentially methylation analysis was performed using data from TCGA. Curves of Kaplan Meier (K-M) survival, cumulative hazard and events, Cox proportional hazards and Linear regression model were conducted to screen and validate differential methylation genes, while multiple regression equation to analyze if ornithine aminotransferase (OAT) methylation correlates with radiotherapy. For correlation between OAT methylation and immune infiltrates, CIBERSORT and ESTIMATE algorithms were performed, following GSEA and ssGSEA analysis to evaluate biological process. RESULTS Compared to normal tissues, only OAT in OSCC was differential significantly by K-M analysis (p = 0.0364). OAT hypermethylation was associated with increased overall survival (HR: 0.65, p = 0.0358). Radiotherapy correlated with OAT methylation (β = -0.01, p = 0.0061); most patients with OAT hypermethylation were radiation-sensitive. Hypomethylated OAT correlated with higher cell infiltrations in TME. Neuroactive ligand-receptor interaction was most significantly related to OAT methylation (p = 9.2e-10). Sulfur metabolism was the most significantly in OAT hypermethylation group (p = 0.0041) and RIG-I-like receptor in OAT hypomethylation group (p = 0.0094). CONCLUSION OAT methylation can serve as a predictor of OSCC prognosis post-radiotherapy with potential mechanism by changing cell infiltrations in TME, but further experimental study deserves to carry out confirming the role and mechanism of OAT methylation in OSCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangfan Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Rostamizadeh L, Molavi O, Rashid M, Ramazani F, Baradaran B, Lavasanaifar A, Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. BIOIMPACTS : BI 2022; 12:261-290. [PMID: 35677663 PMCID: PMC9124882 DOI: 10.34172/bi.2022.23896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
![]()
Immunotherapy is considered a promising approach for cancer treatment. An important strategy for cancer immunotherapy is the use of cancer vaccines, which have been widely used for cancer treatment. Despite the great potential of cancer vaccines for cancer treatment, their therapeutic effects in clinical settings have been limited. The main reason behind the lack of significant therapeutic outcomes for cancer vaccines is believed to be the immunosuppressive tumor microenvironment (TME). The TME counteracts the therapeutic effects of immunotherapy and provides a favorable environment for tumor growth and progression. Therefore, overcoming the immunosuppressive TME can potentially augment the therapeutic effects of cancer immunotherapy in general and therapeutic cancer vaccines in particular. Among the strategies developed for overcoming immunosuppression in TME, the use of toll-like receptor (TLR) agonists has been suggested as a promising approach to reverse immunosuppression. In this paper, we will review the application of the four most widely studied TLR agonists including agonists of TLR3, 4, 7, and 9 in cancer immunotherapy.
Collapse
Affiliation(s)
- Leila Rostamizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramazani
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanaifar
- Faculty of Pharmacy and Pharmaceutical Science, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
33
|
TLR4 regulatory region variants reduce the susceptibility of small-cell lung cancer in Chinese population. Eur J Cancer Prev 2022; 31:363-368. [PMID: 35579180 DOI: 10.1097/cej.0000000000000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Toll-like receptors (TLRs) participate in the induction and regulation of immune responses and are closely related to the occurrence and development of small-cell lung cancer (SCLC). This study aimed to investigate the impact of polymorphisms in the regulatory regions of TLRs on the susceptibility of SCLC. METHODS The case-control study included 304 SCLC patients and 304 healthy controls. TLRs gene polymorphisms were genotyped by PCR-restrictive fragment length polymorphism analysis and TaqMan assay. Unconditional logistic regression was used to estimate odds ratio (OR) and its 95% confidence interval (95% CI). RESULTS Our results showed that TLR4 rs1927914 GG genotype and TLR4 rs7869402 TT genotype reduced the risk of SCLC with OR (95% CI) of 0.54 (0.32-0.90) and 0.47 (0.28-0.80), respectively. Stratified analysis suggested that TLR4 rs1927914 GG genotypes significantly reduced the risk of SCLC among male (OR = 0.35; 95% CI, 0.18-0.69; P < 0.01), the younger patients (OR = 0.49; 95% CI, 0.26-0.94; P = 0.03) and non-drinkers (OR = 0.47; 95% CI, 0.24-0.89; P = 0.02). TLR4 rs7869402 CT or TT genotype significantly reduced the susceptibility to SCLC among male patients (OR = 0.37; 95% CI, 0.19-0.71, P < 0.01), the younger patients (OR = 0.41; 95% CI, 0.22-0.79; P < 0.01), smokers (OR = 0.25; 95% CI, 0.10-0.60; P < 0.01) and drinkers (OR = 0.31; 95% CI, 0.11-0.88; P = 0.03). TLR3 rs5743303, TLR4 rs11536891, TLR5 rs1640816 and TLR7 rs3853839 had no significant correlation with the risk of SCLC. CONCLUSIONS These findings emphasized the important role of TLR4 in the development of SCLC.
Collapse
|
34
|
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, Winstanley A, Damink SO, Malagó M, Davies N, Luong TV, Dhillon A, Mookerjee R, Dhar D, Al-Jehani RM. Inhibition of TLR7 and TLR9 Reduces Human Cholangiocarcinoma Cell Proliferation and Tumor Development. Dig Dis Sci 2022; 67:1806-1821. [PMID: 33939146 DOI: 10.1007/s10620-021-06973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.
Collapse
Affiliation(s)
- Fatma El Zahraa Mohamed
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Pathology Department, Minia University, El-Minia, Egypt
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Shane Minogue
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Alison Winstanley
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Steven Olde Damink
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Massimo Malagó
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Amar Dhillon
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Rajeshwar Mookerjee
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Dipok Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Rajai Munir Al-Jehani
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
35
|
Fukuda K. Networks of CD8+ T Cell Response Activation in Melanoma and Vitiligo. Front Immunol 2022; 13:866703. [PMID: 35432377 PMCID: PMC9011047 DOI: 10.3389/fimmu.2022.866703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/05/2023] Open
Abstract
Melanoma is an aggressive skin cancer derived from melanocyte, which shows high response rate to cancer immunotherapy, such as immune checkpoint inhibitors (ICIs). Vitiligo is an autoimmune skin disease resulting from the destruction of melanocytes by autoreactive CD8+ T cells. Vitiligo induced by cancer immunotherapy is a favorable prognostic factor in patients with melanoma, and growing evidence supports the fact that melanocyte/melanoma-shared antigen (MSA)-specific CD8+ T cells infiltrated in the tumor (melanoma) and skin (vitiligo) microenvironment play pivotal roles in the prognosis of both diseases. Thus, cellular communications that promote MSA-specific CD8+ T cells recruitment, proliferation, and effector functions are now seen as key targets to enhance the efficacy of current therapies for both diseases. Here, we discussed recent advancements in illustrating immune signaling pathways and immune cell types that regulate migration, proliferation, and function of MSA-specific CD8+ T cells in melanoma and vitiligo; and future immunotherapeutic approaches that may enhance clinical outcomes of both diseases.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Keitaro Fukuda,
| |
Collapse
|
36
|
Doshi AS, Cantin S, Prickett LB, Mele DA, Amiji M. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy. J Control Release 2022; 345:721-733. [PMID: 35378213 DOI: 10.1016/j.jconrel.2022.03.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Current methods of STING activation based on intra-tumoral injections of cyclic dinucleotides (CDNs) are not suitable for addressing tumor heterogeneity or for inaccessible, metastatic and abscopal tumors. In this study, we developed systemically administered CD103+ dendritic cell (DCs) targeted liposomal formulations and evaluated the anti-tumor efficacy with low dose. Liposomal CDN formulations were prepared using Clec9a targeting peptide and evaluated therapeutic efficacy in vitro and in vivo in subcutaneous MC38 and B16F10 tumor models. Targeted delivery of CDNs is expected to enhance anti-tumor immune response as well as reduce off-target toxicities. With intravenous 0.1 mg/kg systemic CDN dose of the targeted liposomal formulation, our results showed robust immune response with significant antitumor efficacy both as a monotherapy and in combination with anti-PD-L1 antibody. These results show that a CD103+ DC targeted CDN formulation can lead to potent immune stimulation upon systemic administration even in relatively "cold" tumors such as B16F10.
Collapse
Affiliation(s)
- Aatman S Doshi
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America
| | - Susan Cantin
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Laura B Prickett
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Deanna A Mele
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
37
|
Choueiri TK, Albiges L, Atkins MB, Bakouny Z, Bratslavsky G, Braun DA, Haas NB, Haanen JB, Hakimi AA, Jewett MA, Jonasch E, Kaelin WG, Kapur P, Labaki C, Lewis B, McDermott DF, Pal SK, Pels K, Poteat S, Powles T, Rathmell WK, Rini BI, Signoretti S, Tannir NM, Uzzo RG, Hammers HJ. From Basic Science to Clinical Translation in Kidney Cancer: A Report from the Second Kidney Cancer Research Summit. Clin Cancer Res 2022; 28:831-839. [PMID: 34965942 PMCID: PMC9223120 DOI: 10.1158/1078-0432.ccr-21-3238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
The second Kidney Cancer Research Summit was held virtually in October 2020. The meeting gathered worldwide experts in the field of kidney cancer, including basic, translational, and clinical scientists as well as patient advocates. Novel studies were presented, addressing areas of unmet need related to different topics. These include novel metabolic targets, promising immunotherapeutic regimens, predictive genomic and transcriptomic biomarkers, and variant histologies of renal cell carcinoma (RCC). With the development of pioneering technologies, and an unprecedented commitment to kidney cancer research, the field has tremendously evolved. This perspective aims to summarize the different sessions of the conference, outline major advances in the understanding of RCC and discuss current challenges faced by the field.
Collapse
Affiliation(s)
- Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Michael B. Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gennady Bratslavsky
- Department of Urology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naomi B. Haas
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John B.A.G. Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A.S. Jewett
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David F. McDermott
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kevin Pels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Brian I. Rini
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert G. Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hans J. Hammers
- Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
39
|
Veneziani I, Alicata C, Pelosi A, Landolina N, Ricci B, D'Oria V, Fagotti A, Scambia G, Moretta L, Maggi E. Toll-like receptor 8 agonists improve NK-cell function primarily targeting CD56brightCD16− subset. J Immunother Cancer 2022; 10:jitc-2021-003385. [PMID: 35091452 PMCID: PMC8804697 DOI: 10.1136/jitc-2021-003385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/05/2022] Open
Abstract
Background Toll-like receptors (TLRs) are pattern-recognition sensors mainly expressed in innate immune cells that directly recognize conserved pathogen structures (pathogen-associated molecular patterns-PAMPs). Natural killer (NK) cells have been described to express different endosomal TLRs triggered by RNA and DNA sequences derived from both viruses and bacteria. This study was addressed to establish which endosomal TLR could directly mediate NK activation and function after proper stimuli. It was also important to establish the most suitable TLR agonist to be used as adjuvant in tumor vaccines or in combined cancer immunotherapies. Methods We assessed endosomal TLR expression in total NK cells by using RT-qPCR and western blotting technique. In some experiments, we purified CD56brightCD16− and CD56dimCD16+ cells subsets by using NK Cell Isolation Kit Activation marker, cytokine production, CD107a expression and cytotoxicity assay were evaluated by flow cytometry. Cytokine release was quantified by ELISA. NK cells obtained from ovarian ascites underwent the same analyses. Results Although the four endosomal TLRs (TLR3, TLR7/8, and TLR9) were uniformly expressed on CD56brightCD16− and CD56dimCD16+ cell subsets, the TLR7/8 (R848), TLR3 (polyinosinic-polycytidylic acid, Poly I:C) and TLR9 (ODN2395) ligands promoted NK-cell function only in the presence of suboptimal doses of cytokines, including interleukin (IL)-2, IL-12, IL-15, and IL-18, produced in vivo by other environmental cells. We showed that R848 rather than TLR3 and TLR9 agonists primarily activated CD56brightCD16− NK cells by increasing their proliferation, cytokine production and cytotoxic activity. Moreover, we demonstrated that R848, which usually triggers TLR7 and TLR8 on dendritic cells, macrophages and neutrophils cells, activated CD56brightCD16− NK-cell subset only via TLR8. Indeed, specific TLR8 but not TLR7 agonists increased cytokine production and cytotoxic activity of CD56brightCD16− NK cells. Importantly, these activities were also observed in peritoneal NK cells from patients with metastatic ovarian carcinoma, prevalently belonging to the CD56brightCD16− subset. Conclusion These data highlight the potential value of TLR8 in NK cells as a new target for immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Irene Veneziani
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Claudia Alicata
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Andrea Pelosi
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Nadine Landolina
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Biancamaria Ricci
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Anna Fagotti
- Department of Woman's Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Campus di Roma, Roma, Lazio, Italy
| | - Giovanni Scambia
- Department of Woman's Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Campus di Roma, Roma, Lazio, Italy
| | - Lorenzo Moretta
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Enrico Maggi
- Department of Immunology, Bambino Gesu Pediatric Hospital, Roma, Italy
| |
Collapse
|
40
|
Stephen B, Hajjar J. Immune System in Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:1-43. [PMID: 34972961 DOI: 10.1007/978-3-030-79308-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.
Collapse
Affiliation(s)
- Bettzy Stephen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Joud Hajjar
- Assistant Professor, Service Chief of Adult Allergy & Immunology, Division of Immunology, Allergy & Retrovirology, Baylor College of Medicine and Texas Children' Hospital, Houston, TX, USA
| |
Collapse
|
41
|
Li K, Zhang Z, Mei Y, Li M, Yang Q, WU Q, Yang H, HE LIANGCAN, Liu S. Targeting innate immune system by nanoparticles for cancer immunotherapy. J Mater Chem B 2022; 10:1709-1733. [DOI: 10.1039/d1tb02818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system...
Collapse
|
42
|
Shi L, Gu H. Emerging Nanoparticle Strategies for Modulating Tumor-Associated Macrophage Polarization. Biomolecules 2021; 11:biom11121912. [PMID: 34944555 PMCID: PMC8699338 DOI: 10.3390/biom11121912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has made great progress in recent years, yet the efficacy of solid tumors remains far less than expected. One of the main hurdles is to overcome the immune-suppressive tumor microenvironment (TME). Among all cells in TME, tumor-associated macrophages (TAMs) play pivotal roles because of their abundance, multifaceted interactions to adaptive and host immune systems, as well as their context-dependent plasticity. Underlying the highly plastic characteristic, lots of research interests are focused on repolarizing TAMs from M2-like pro-tumor phenotype towards M1-like antitumoral ones. Nanotechnology offers great opportunities for targeting and modulating TAM polarization to mount the therapeutic efficacy in cancer immunotherapy. Here, this mini-review highlights those emerging nano-approaches for TAM repolarization in the last three years.
Collapse
|
43
|
Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci 2021; 22:ijms222413397. [PMID: 34948194 PMCID: PMC8704656 DOI: 10.3390/ijms222413397] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a pivotal role in the first line of host defense against infections and is equipped with patterns recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRRS, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) recognize distinct microbial components and directly activate immune cells. TLRs are transmembrane receptors, while NLRs and RLRs are intracellular molecules. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. The innate immune system also influences pathways involved in cancer immunosurveillance. Natural and synthetic agonists of TLRs, NLRs, or RLRs can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8+ T cells, and NK cells, into the tumor microenvironment, and are being explored as promising adjuvants in cancer immunotherapies. In this review, we provide a concise overview of TLRs, NLRs, and RLRs: their structure, functions, signaling pathways, and regulation. We also describe various ligands for these receptors and their possible application in treatment of hematopoietic diseases.
Collapse
|
44
|
Activation of Innate Immunity by Therapeutic Nucleic Acids. Int J Mol Sci 2021; 22:ijms222413360. [PMID: 34948156 PMCID: PMC8704878 DOI: 10.3390/ijms222413360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid-based therapeutics have gained increased attention during recent decades because of their wide range of application prospects. Immunostimulatory nucleic acids represent a promising class of potential drugs for the treatment of tumoral and viral diseases due to their low toxicity and stimulation of the body’s own innate immunity by acting on the natural mechanisms of its activation. The repertoire of nucleic acids that directly interact with the components of the immune system is expanding with the improvement of both analytical methods and methods for the synthesis of nucleic acids and their derivatives. Despite the obvious progress in this area, the problem of delivering therapeutic acids to target cells as well as the unresolved issue of achieving a specific therapeutic effect based on activating the mechanism of interferon and anti-inflammatory cytokine synthesis. Minimizing the undesirable effects of excessive secretion of inflammatory cytokines remains an unsolved task. This review examines recent data on the types of immunostimulatory nucleic acids, the receptors interacting with them, and the mechanisms of immunity activation under the action of these molecules. Finally, data on immunostimulatory nucleic acids in ongoing and completed clinical trials will be summarized.
Collapse
|
45
|
Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, Thüminger L, Greinix H, Kargl J, Prochazka K, Feichtinger J, Deutsch AJA. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:13311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
Affiliation(s)
- Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Lea Thüminger
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Katharina Prochazka
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Alexander JA. Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| |
Collapse
|
46
|
EZH2 Inhibitor Enhances the STING Agonist‒Induced Antitumor Immunity in Melanoma. J Invest Dermatol 2021; 142:1158-1170.e8. [PMID: 34571002 DOI: 10.1016/j.jid.2021.08.437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
STING agonists are a new class of drugs for cancer immunotherapy that activate both innate and adaptive antitumor immunity. Recently, multiple clinical trials of STING agonists have been conducted in hematological malignancies and solid tumors. However, STING is commonly suppressed in melanoma through mechanisms that remain unclear. We found that STING expression was epigenetically suppressed by H3K27me3 in melanoma, and EZH2 inhibitor could induce an H3K27 shift from trimethylation to acetylation, resulting in increased expression of STING. Furthermore, a combination of STING agonist and EZH2 inhibitor upregulated major histocompatibility complex class I expression and chemokine production. Whole-transcriptome analysis showed that IFN-1‒related genes were significantly upregulated in the combination treatment group. In addition, the combination treatment synergistically reduced tumor growth and increased CD8+ T-cell infiltration in a poorly immunogenic melanoma mouse model B16-F10. These results showed, to our knowledge, a previously unreported mechanism underlying the epigenetic regulation of STING expression in melanoma; a combination of STING agonists and EZH2 inhibitors can boost the antitumor immune response and would be a promising treatment option for patients with melanoma who are refractory to current immunotherapies.
Collapse
|
47
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Jeong S, Choi Y, Kim K. Engineering Therapeutic Strategies in Cancer Immunotherapy via Exogenous Delivery of Toll-like Receptor Agonists. Pharmaceutics 2021; 13:1374. [PMID: 34575449 PMCID: PMC8466827 DOI: 10.3390/pharmaceutics13091374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
As a currently spotlighted method for cancer treatment, cancer immunotherapy has made a lot of progress in recent years. Among tremendous cancer immunotherapy boosters available nowadays, Toll-like receptor (TLR) agonists were specifically selected, because of their effective activation of innate and adaptive immune cells, such as dendritic cells (DCs), T cells, and macrophages. TLR agonists can activate signaling pathways of DCs to express CD80 and CD86 molecules, and secrete various cytokines and chemokines. The maturation of DCs stimulates naïve T cells to differentiate into functional cells, and induces B cell activation. Although TLR agonists have anti-tumor ability by activating the immune system of the host, their drawbacks, which include poor efficiency and remarkably short retention time in the body, must be overcome. In this review, we classify and summarize the recently reported delivery strategies using (1) exogenous TLR agonists to maintain the biological and physiological signaling activities of cargo agonists, (2) usage of multiple TLR agonists for synergistic immune responses, and (3) co-delivery using the combination with other immunomodulators or stimulants. In contrast to naked TLR agonists, these exogenous TLR delivery strategies successfully facilitated immune responses and subsequently mediated anti-tumor efficacy.
Collapse
Affiliation(s)
| | | | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Korea; (S.J.); (Y.C.)
| |
Collapse
|
49
|
Yao Y, Shen Y, Shao H, Liu Y, Ji Y, Du G, Ye X, Huang P, Chen H. Polymorphisms of RIG-I-like receptor influence HBV clearance in Chinese Han population. J Med Virol 2021; 93:4957-4965. [PMID: 33783003 DOI: 10.1002/jmv.26969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Retinoic acid-inducible gene I-like receptors (RLRs) play an essential role in human innate immune, which may influence the spontaneous clearance of hepatitis B virus (HBV) infection. We aimed to investigate whether the SNPs in RLR family were associated with HBV spontaneous clearance. The current study included 82 participants with spontaneous clearance, 601 asymptomatic hepatitis B surface antigen (HBsAg) carriers, and 168 participants with chronic hepatitis B (CHB). Six SNPs (DDX58 rs3824456, rs3205166, DHX58 rs2074160, rs2074158, IFIH1 rs2111485, rs3747517) were genotyped to explore their association with HBV spontaneous clearance. Patients carrying the mutant allele C at rs3824456 or A at rs2074160 were more likely to achieve spontaneous clearance compared with asymptomatic HBsAg carriers (additive model: odds ratio [OR] = 0.69, 95% confidence interval [CI] = 0.49-0.97; dominant model: OR = 0.54, 95% CI = 0.31-0.95, respectively). In addition, patients carrying the mutant allele G at rs2111485 were more likely to achieve spontaneous clearance compared with CHB (dominant model: OR = 0.47, 95% CI = 0.25-0.87). The mutations were protective factors for HBV spontaneous clearance. These results suggest the DDX58 rs3824456, DHX58 s2074160, IFIH1 rs2111485 were associated with spontaneous clearance of HBV, which may be predictive markers in the Chinese Han population of HBV.
Collapse
Affiliation(s)
- Yinan Yao
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yan Shen
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Haifeng Shao
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yuchang Liu
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yan Ji
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Guoming Du
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiming Chen
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| |
Collapse
|
50
|
Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi NS, McCauley SM, Guney MH, Luban J, Funakoshi T, Yaguchi T, Kawakami Y, Khvorova A, Fitzgerald KA, Harris JE. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med 2021; 218:212521. [PMID: 34325468 PMCID: PMC8329870 DOI: 10.1084/jem.20200962] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The STING and absent in melanoma 2 (AIM2) pathways are activated by the presence of cytosolic DNA, and STING agonists enhance immunotherapeutic responses. Here, we show that dendritic cell (DC) expression of AIM2 within human melanoma correlates with poor prognosis and, in contrast to STING, AIM2 exerts an immunosuppressive effect within the melanoma microenvironment. Vaccination with AIM2-deficient DCs improves the efficacy of both adoptive T cell therapy and anti–PD-1 immunotherapy for “cold tumors,” which exhibit poor therapeutic responses. This effect did not depend on prolonged survival of vaccinated DCs, but on tumor-derived DNA that activates STING-dependent type I IFN secretion and subsequent production of CXCL10 to recruit CD8+ T cells. Additionally, loss of AIM2-dependent IL-1β and IL-18 processing enhanced the treatment response further by limiting the recruitment of regulatory T cells. Finally, AIM2 siRNA-treated mouse DCs in vivo and human DCs in vitro enhanced similar anti-tumor immune responses. Thus, targeting AIM2 in tumor-infiltrating DCs is a promising new treatment strategy for melanoma.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Okamura
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Rebecca L Riding
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Mehmet H Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Katherine A Fitzgerald
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|