1
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
2
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
3
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
4
|
Differential Cellular Balance of Olfactory and Vomeronasal Epithelia in a Transgenic BACHD Rat Model of Huntington's Disease. Int J Mol Sci 2022; 23:ijms23147625. [PMID: 35886975 PMCID: PMC9316117 DOI: 10.3390/ijms23147625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Background. For neurodegenerative diseases such as Huntington’s disease (HD), early diagnosis is essential to treat patients and delay symptoms. Impaired olfaction, as observed as an early symptom in Parkinson´s disease, may also constitute a key symptom in HD. However, there are few reports on olfactory deficits in HD. Therefore, we aimed to investigate, in a transgenic rat model of HD: (1) whether general olfactory impairment exists and (2) whether there are disease-specific dynamics of olfactory dysfunction when the vomeronasal (VNE) and main olfactory epithelium (MOE) are compared. Methods. We used male rats of transgenic line 22 (TG22) of the bacterial artificial chromosome Huntington disease model (BACHD), aged 3 days or 6 months. Cell proliferation, apoptosis and macrophage activity were examined with immunohistochemistry in the VNE and MOE. Results. No differences were observed in cellular parameters in the VNE between the groups. However, the MOE of the 6-month-old HD animals showed a significantly increased number of mature olfactory receptor neurons. Other cellular parameters were not affected. Conclusions. The results obtained in the TG22 line suggest a relative stability in the VNE, whereas the MOE seems at least temporarily affected.
Collapse
|
5
|
Feng X, Yang F, Rabenstein M, Wang Z, Frech MJ, Wree A, Bräuer AU, Witt M, Gläser A, Hermann A, Rolfs A, Luo J. Stimulation of mGluR1/5 Improves Defective Internalization of AMPA Receptors in NPC1 Mutant Mouse. Cereb Cortex 2021; 30:1465-1480. [PMID: 31599924 DOI: 10.1093/cercor/bhz179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is characterized by neurodegeneration caused by cholesterol accumulation in the late endosome/lysosome. In this study, a defective basal and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated internalization of GluR2-containing AMPA receptors in NPC1-/- cortical neurons was detected. Our results show that the amount of cholesterol and group I metabotropic glutamate receptors (mGluR1/5) in lipid rafts of NPC1-/- cortical tissue and neurons are decreased and their downstream signals of p-ERK are defective, which are restored by a rebalance of cholesterol homeostasis through β-cyclodextrin (β-CD) treatment. Application of 3,5-dihydroxyphenylglycine (DHPG)-a mGluR1/5 agonist-and β-CD markedly increases the internalization of AMPA receptors and decreases over-influx of calcium in NPC1-/- neurons, respectively. Furthermore, the defective phosphorylated GluR2 and protein kinase C signals are ameliorated by the treatment with DHPG and β-CD, respectively, suggesting an involvement of them in internalization dysfunction. Taken together, our data imply that abnormal internalization of AMPA receptors is a critical mechanism for neuronal dysfunction and the correction of dysfunctional mGluR1/5 is a potential therapeutic strategy for NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Fan Yang
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Michael Rabenstein
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Zhen Wang
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Andreas Wree
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anja U Bräuer
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg 26129, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Martin Witt
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anne Gläser
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock 18147, Germany
| | | | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| |
Collapse
|
6
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
7
|
Gläser A, Hammerl F, Gräler MH, Coldewey SM, Völkner C, Frech MJ, Yang F, Luo J, Tönnies E, von Bohlen und Halbach O, Brandt N, Heimes D, Neßlauer AM, Korenke GC, Owczarek-Lipska M, Neidhardt J, Rolfs A, Wree A, Witt M, Bräuer AU. Identification of Brain-Specific Treatment Effects in NPC1 Disease by Focusing on Cellular and Molecular Changes of Sphingosine-1-Phosphate Metabolism. Int J Mol Sci 2020; 21:ijms21124502. [PMID: 32599915 PMCID: PMC7352403 DOI: 10.3390/ijms21124502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.
Collapse
Affiliation(s)
- Anne Gläser
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Franziska Hammerl
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Markus H. Gräler
- Department of Anaesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany;
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Septomics Research Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Fan Yang
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
| | - Jiankai Luo
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (C.V.); (M.J.F.); (F.Y.); (J.L.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Eric Tönnies
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Oliver von Bohlen und Halbach
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, 17487 Greifswald, Germany; (E.T.); (O.v.B.u.H.)
| | - Nicola Brandt
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anna-Maria Neßlauer
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | | | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Junior Research Group, Genetics of childhood brain malformations, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany; (M.O.-L.); (J.N.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
| | | | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
| | - Anja Ursula Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany; (A.G.); (F.H.); (N.B.)
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (D.H.); (A.-M.N.); (A.W.); (M.W.)
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg,26129 Oldenburg, Germany
- Correspondence: ; Tel.: +49-441-798-3995
| |
Collapse
|
8
|
Dragotto J, Palladino G, Canterini S, Caporali P, Patil R, Fiorenza MT, Erickson RP. Decreased neural stem cell proliferation and olfaction in mouse models of Niemann-Pick C1 disease and the response to hydroxypropyl-β-cyclodextrin. J Appl Genet 2019; 60:357-365. [PMID: 31485950 DOI: 10.1007/s13353-019-00517-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
The Npc1nih/nih-null model and the Npc1nmf164/nmf164 hypomorph models of Niemann-Pick C1 (NPC1) disease show defects in olfaction. We have tested the effects of the life-prolonging treatment hydroxypropyl-beta-cyclodextrin (HPBCD) on olfaction and neural stem cell numbers when delivered either systemically or by nasal inhalation. Using the paradigm of finding a hidden cube of food after overnight food deprivation, Npc1nih/nih homozygous mice showed a highly significant delay in finding the food compared with wild-type mice. Npc1nmf164/nmf164 homozygous mice showed an early loss of olfaction which was mildly corrected by somatic delivery of HPBCD which also increased the number of neural stem cells in the mutant but did not change the number in wild-type mice. In contrast, nasal delivery of this drug, at 1/5 the dosage used for somatic delivery, to Npc1nmf164/nmf164 mutant mice delayed loss of olfaction but the control of nasal delivered saline did so as well. The nasal delivery of HPBCD to wild-type mice caused loss of olfaction but nasal delivery of saline did not. Neural stem cell counts were not improved by nasal therapy with HPBCD. We credit the delay in olfaction found with the treatment, a delay which was also found for time of death, to a large amount of stimulation the mice received with handling during the nasal delivery.
Collapse
Affiliation(s)
- Jessica Dragotto
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Paola Caporali
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy
| | - Rutaraj Patil
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, Università La Sapienza di Roma, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
9
|
Bräuer AU, Kuhla A, Holzmann C, Wree A, Witt M. Current Challenges in Understanding the Cellular and Molecular Mechanisms in Niemann-Pick Disease Type C1. Int J Mol Sci 2019; 20:ijms20184392. [PMID: 31500175 PMCID: PMC6771135 DOI: 10.3390/ijms20184392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are a heterogeneous group of very different clinical syndromes. Their most common causes are defects in the hereditary material, and they can therefore be passed on to descendants. Rare diseases become manifest in almost all organs and often have a systemic expressivity, i.e., they affect several organs simultaneously. An effective causal therapy is often not available and can only be developed when the underlying causes of the disease are understood. In this review, we focus on Niemann–Pick disease type C1 (NPC1), which is a rare lipid-storage disorder. Lipids, in particular phospholipids, are a major component of the cell membrane and play important roles in cellular functions, such as extracellular receptor signaling, intracellular second messengers and cellular pressure regulation. An excessive storage of fats, as seen in NPC1, can cause permanent damage to cells and tissues in the brain and peripheral nervous system, but also in other parts of the body. Here, we summarize the impact of NPC1 pathology on several organ systems, as revealed in experimental animal models and humans, and give an overview of current available treatment options.
Collapse
Affiliation(s)
- Anja U Bräuer
- Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
| | - Carsten Holzmann
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Andreas Wree
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Martin Witt
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany.
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| |
Collapse
|
10
|
Witt M, Thiemer R, Meyer A, Schmitt O, Wree A. Main Olfactory and Vomeronasal Epithelium Are Differently Affected in Niemann-Pick Disease Type C1. Int J Mol Sci 2018; 19:ijms19113563. [PMID: 30424529 PMCID: PMC6274921 DOI: 10.3390/ijms19113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Olfactory impairment is one of the earliest symptoms in neurodegenerative disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE) in an NPC1 mouse model. METHODS Proliferation in the VNE and OE was assessed by applying a bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate if degenerative effects of both olfactory systems can be prevented or reversed, some animals were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin (HPβCD), or a monotherapy with HPβCD alone. RESULTS Using BrdU to label dividing cells of the VNE, we detected a proliferation increase of 215% ± 12% in Npc1-/- mice, and 270% ± 10% in combination- treated Npc1-/- animals. The monotherapy with HPβCD led to an increase of 261% ± 10.5% compared to sham-treated Npc1-/- mice. Similar to the OE, we assessed the high regenerative potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1-/- mice was not affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1 pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1-/- mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Thiemer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Anja Meyer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
11
|
Olfactory Dysfunction in CNS Neuroimmunological Disorders: a Review. Mol Neurobiol 2018; 56:3714-3721. [PMID: 30191380 DOI: 10.1007/s12035-018-1341-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
Olfactory dysfunction is deeply associated with quality of human life in the aging population. Olfactory dysfunction is an occasional presymptomatic sign of neuroimmunological multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus. Olfaction is initially processed by olfactory receptor cells that capture odor molecules, and the signals are transmitted to the glomeruli in the olfactory bulbs via olfactory nerves and processed in the primary olfactory cortex in the brain. Damage to either the olfactory receptor cells or the olfactory bulb and primary olfactory cortex may influence olfactory functioning. A close link between neuroimmunological disorders and olfactory dysfunction has been reported in patients and animal models. This review summarizes the literature data concerning olfactory dysfunction in autoimmune diseases including multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus; animal models thereof; and inflammation in the olfactory bulb.
Collapse
|
12
|
Meyer A, Gläser A, Bräuer AU, Wree A, Strotmann J, Rolfs A, Witt M. Olfactory Performance as an Indicator for Protective Treatment Effects in an Animal Model of Neurodegeneration. Front Integr Neurosci 2018; 12:35. [PMID: 30154701 PMCID: PMC6102364 DOI: 10.3389/fnint.2018.00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Neurodegenerative diseases are often accompanied by olfactory deficits. Here we use a rare neurovisceral lipid storage disorder, Niemann–Pick disease C1 (NPC1), to illustrate disease-specific dynamics of olfactory dysfunction and its reaction upon therapy. Previous findings in a transgenic mouse model (NPC1-/-) showed severe morphological and electrophysiological alterations of the olfactory epithelium (OE) and the olfactory bulb (OB) that ameliorated under therapy with combined 2-hydroxypropyl-ß-cyclodextrin (HPßCD)/allopregnanolone/miglustat or HPßCD alone. Methods: A buried pellet test was conducted to assess olfactory performance. qPCR for olfactory key markers and several olfactory receptors was applied to determine if their expression was changed under treatment conditions. In order to investigate the cell dynamics of the OB, we determined proliferative and apoptotic activities using a bromodeoxyuridine (BrdU) protocol and caspase-3 (cas-3) activity. Further, we performed immunohistochemistry and western blotting for microglia (Iba1), astroglia (GFAP) and tyrosine hydroxylase (TH). Results: The buried pellet test revealed a significant olfactory deterioration in NPC1-/- mice, which reverted to normal levels after treatment. At the OE level, mRNA for olfactory markers showed no changes; the mRNA level of classical olfactory receptor (ORs) was unaltered, that of unique ORs was reduced. In the OB of untreated NPC1-/- mice, BrdU and cas-3 data showed increased proliferation and apoptotic activity, respectively. At the protein level, Iba1 and GFAP in the OB indicated increased microgliosis and astrogliosis, which was prevented by treatment. Conclusion: Due to the unique plasticity especially of peripheral olfactory components the results show a successful treatment in NPC1 condition with respect to normalization of olfaction. Unchanged mRNA levels for olfactory marker protein and distinct olfactory receptors indicate no effects in the OE in NPC1-/- mice. Olfactory deficits are thus likely due to central deficits at the level of the OB. Further studies are needed to examine if olfactory performance can also be changed at a later onset and interrupted treatment of the disease. Taken together, our results demonstrate that olfactory testing in patients with NPC1 may be successfully used as a biomarker during the monitoring of the treatment.
Collapse
Affiliation(s)
- Anja Meyer
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Anne Gläser
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Jörg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Ebner L, Gläser A, Bräuer A, Witt M, Wree A, Rolfs A, Frank M, Vollmar B, Kuhla A. Evaluation of Two Liver Treatment Strategies in a Mouse Model of Niemann-Pick-Disease Type C1. Int J Mol Sci 2018; 19:ijms19040972. [PMID: 29587349 PMCID: PMC5979582 DOI: 10.3390/ijms19040972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Niemann–Pick-disease type C1 (NPC1) is an autosomal-recessive cholesterol-storage disorder. Besides other symptoms, NPC1 patients develop liver dysfunction and hepatosplenomegaly. The mechanisms of hepatomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. Here, we used an NPC1 mouse model to study an additive hepatoprotective effect of a combination of 2-hydroxypropyl-β-cyclodextrin (HPβCD), miglustat and allopregnanolone (combination therapy) with the previously established monotherapy using HPβCD. We examined transgene effects as well as treatment effects on liver morphology and hepatic lipid metabolism, focusing on hepatic cholesterol transporter genes. Livers of Npc1−/− mice showed hepatic cholesterol sequestration with consecutive liver injury, an increase of lipogenetic gene expression, e.g., HMG-CoA, a decrease of lipolytic gene expression, e.g., pparα and acox1, and a decrease of lipid transporter gene expression, e.g., acat1, abca1 and fatp2. Both, combination therapy and monotherapy, led to a reduction of hepatic lipids and an amelioration of NPC1 liver disease symptoms. Monotherapy effects were related to pparα- and acox1-associated lipolysis/β-oxidation and to fatp2-induced fatty acid transport, whereas the combination therapy additionally increased the cholesterol transport via abca1 and apoE. However, HPβCD monotherapy additionally increased cholesterol synthesis as indicated by a marked increase of the HMG-CoA and srebp-2 mRNA expression, probably as a result of increased hepatocellular proliferation.
Collapse
Affiliation(s)
- Lynn Ebner
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| | - Anne Gläser
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Anja Bräuer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany.
| |
Collapse
|
14
|
Kim J, Choi Y, Ahn M, Jung K, Shin T. Olfactory Dysfunction in Autoimmune Central Nervous System Neuroinflammation. Mol Neurobiol 2018; 55:8499-8508. [PMID: 29557516 DOI: 10.1007/s12035-018-1001-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/07/2018] [Indexed: 12/31/2022]
Abstract
Olfactory dysfunction is an early sign of neuroinflammation of the central nervous system (CNS). Microgliosis and astrogliosis are representative pathological changes that develop during neuroinflammation of CNS tissues. Autoimmune CNS inflammation, including human multiple sclerosis, is an occasional cause of olfactory disorders. We evaluated whether gliosis and olfactory dysfunction developed in animals with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis. Neuroinflammatory lesions characterized by infiltration of inflammatory cells and microglial cell activation were occasionally found in the olfactory bulbs of EAE-affected rats. Microglial activation, visualized by immunohistochemical staining of ionized calcium binding protein (Iba)-1, and astrogliosis in the olfactory bulb were also evident in the olfactory bulb of EAE rats. Inflammatory cells were found along the olfactory nerves and in the olfactory submucosa. Western blot analysis of olfactory marker protein (OMP) levels showed that OMP expression was significantly downregulated in the olfactory mucosa of EAE rats. On the buried food test, EAE-affected mice required significantly more time to find a bait pellet. Collectively, the results suggest that the olfactory dysfunction of EAE is closely linked to downregulation of OMP and the development of inflammatory foci in the olfactory system in an animal model of human multiple sclerosis.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuna Choi
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kyungsook Jung
- Immunoregulatory Materials Research Center Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, 56212, Jeonbuk, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|