1
|
Wu M, Huang Q, Zhang L, Liu Y, Zeng M, Xie C. Apo10 and TKTL1 in blood macrophages as potential biomarkers for early diagnosis of operable breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07569-3. [PMID: 39644404 DOI: 10.1007/s10549-024-07569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Blood macrophage Apo10 and TKTL1 detection is a novel, noninvasive cancer screening approach, but its relevance in breast cancer remains uncertain. We compared the potential diagnostic value of Apo10 and TKTL1 with commonly used tumor markers in differentiating breast cancer patients. METHODS Physical examination and blood sample data from breast cancer patients who did not receive surgery or chemotherapy (retrospective; breast cancer group) and those with benign breast nodules and completely healthy subjects (prospective; control group) were collected from October 2020 to July 2022 at Sun Yat-sen University. Descriptive statistics and receiver operating characteristic (ROC) curves were generated. The area under the ROC curve (AUROC) was calculated to compare the diagnostic efficiency of Apo10 and TKTL1 with conventional biomarkers (carcinoembryonic antigen [CEA], cancer antigens [CA-125, CA-199, CA-153]) in differentiating breast cancer from healthy breasts and benign breast nodules. RESULTS From October 2020 to July 2022, 153 breast cancer patients (primarily early-stage disease: n = 113 (73.9%) stage I/II) and 153 control participants (benign breast nodules, n = 56; healthy, n = 97) were included in this study. The breast cancer subtypes were mainly invasive ductal carcinoma (92.8%), with a few cases of DCIS (5.9%), infiltrating lobular carcinoma (0.7%), and mucinous carcinoma (0.7%). Notably, Apo10, TKTL1, and Apo10 + TKTL1 (APT) levels were significantly greater in the cancer group than in the control group (P < 0.001), demonstrating high diagnostic value (AUC = 0.901, 0.871, 0.938) that surpassed CA-125, CA-199, CA-153, and CEA. In a subgroup analysis excluding stage III patients, APT-based breast cancer screening was minimally affected, with the AUROC (0.933-0.938) varying by ≤ 1%. CONCLUSION Compared with conventional biomarkers, Apo10, TKTL1, and APT showed superior early-stage breast cancer screening efficacy, potentially emerging as a promising marker for discriminating breast cancer from healthy breasts and nontumoral lesions.
Collapse
Affiliation(s)
- Minqing Wu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China
| | - Qiyu Huang
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lijuan Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China
| | - Yuying Liu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China
| | - Musheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, 510060, Guangdong, China.
| | - Chuanbo Xie
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
2
|
Xie C, Wang S, Guo C, Liu Y, Zeng M. Apo10 and TKTL1 in blood macrophages as biomarkers for differentiating lung cancer from benign lung lesions: a comparative study with conventional biomarkers. Cell Oncol (Dordr) 2023; 46:1725-1729. [PMID: 37378867 DOI: 10.1007/s13402-023-00838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The detection of biomarkers in blood macrophages is a new non-invasive cancer screening method, but its performance in early stage lung cancer screening remains undetermined. We evaluated the Apo10 and TKTL1 levels in blood macrophages of 156 early-stage lung cancer patients and 153 controls. APT (combination of Apo10 and TKTL1) level was significantly higher in the lung cancer group than that in the control group (P < 0.001). AUROC analysis showed that APT has high diagnostic value in differentiating early-stage lung cancer (AUC = 0.9132) and can be considered a biomarker for screening lung cancer patients from individuals with lung nodules.
Collapse
Affiliation(s)
- Chuanbo Xie
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, China.
| | - Shuqing Wang
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, China
| | - Chi Guo
- IMB (China) Medical Technologies CO., Ltd, Beijing, China
| | - Yuying Liu
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, China
| | - Musheng Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfengdong Road, Yuexiu District, Guangzhou, 510060, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Li J, Yang C, Zheng Y. A novel disulfidptosis and glycolysis related risk score signature for prediction of prognosis and ICI therapeutic responsiveness in colorectal cancer. Sci Rep 2023; 13:13344. [PMID: 37587262 PMCID: PMC10432503 DOI: 10.1038/s41598-023-40381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Disulfidptosis is a newly-identified non-programmed cell death mode with tight associations with glucose metabolism. Elevated glycolysis is an important metabolic feature of tumor cells, which fulfills the energy requirement for their rapid growth and progression. Our present study determined to develop a disulfidptosis and glycolysis related gene (DGRG) risk score signature to predict the prognosis and ICI therapeutic responsiveness for CRC patients. First, the gene expression and clinical profiles for CRC patients were obtained from TCGA and GEO database. Using weighted gene co-expression network analysis, we identified hub genes showing the strongest correlations with both disulfidptosis and glycolysis activities. Next, a DGRG risk score signature was successfully developed through univariate and least absolute shrinkage and selection operator method Cox regression method. A DGRG risk score-based nomogram could further enhance the predictive performance. In addition, an array of systemic analysis was performed to unravel the correlation of DGRG risk score with tumor microenvironment. The results showed that CRC patients with low DGRG risk level had up-regulated immune cell infiltrations, enhanced metabolic activities and heightened gene mutation frequencies, while high risk patients was the opposite. Moreover, our present study identified low risk CRC patients as potential beneficiaries from immune checkpoint inhibitor (ICI) therapies. Our present work highlighted the potential utility of DGRG risk score signature in prognosis prediction and ICI responsiveness determination for CRC patients, which demonstrated promising clinical application value.
Collapse
Affiliation(s)
- Jiazheng Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Burg S, Smeets R, Gosau M, Failing K, Grust ALC. Case Report: Early detection of lung carcinoid in an asymptomatic individual by blood-test initiated PET-CT imaging. Front Oncol 2023; 13:1177237. [PMID: 37346076 PMCID: PMC10280377 DOI: 10.3389/fonc.2023.1177237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
We present the case of a 53-year-old woman who was diagnosed with early-stage lung cancer by targeted cancer screening consisting of an immunological biopsy-based blood test followed by radiological imaging. The PanTum Detect blood test detects the biomarkers Apo10/DNaseX and Transketolase-like 1 (TKTL1) in circulating macrophage-like cells from peripheral blood samples to identify asymptomatic individuals with a high risk for malignancy. The elevated blood test values initiated an 18F-FDG PET/CT visualization for further clarification. In this case, imaging indicated a lung carcinoma in the right upper lobe. A biopsy confirmed the presence of a lung carcinoma, which was removed surgically. Histologic examination revealed a typical I A2 carcinoid, which was completely removed, making further therapy obsolete.
Collapse
Affiliation(s)
- Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
5
|
Zhang L, Wang Y, Yuan W, An C, Tan Q, Ma J. BEST1 Positive Monocytes in Circulation: Visualize Intratumoral Crosstalk between Cancer Cells and Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205915. [PMID: 37088729 DOI: 10.1002/advs.202205915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by an abundance of monocytes and macrophages recruited from the peripheral blood. However, it has not been determined whether these infiltrated cells can be released back into circulation with a tumor-associated neobiosignature. This study reports that Bestrophin1 (BEST1), a component protein of Ca2+ -activated Cl- channels (CaCCs), is highly expressed on classical monocytes in the peripheral blood of HNSCC patients. This is due to monocyte education by tumor cells, in which tumoral VEGF-A upregulates BEST1 expression on monocytes through the MEK-ERK-ELK1 pathway. This leads to improved secretion of IL-6 and IL-8, which promotes tumor cell proliferation. This work also finds that BEST1 facilitates the motility of monocytes, contributing to the migration of these cells back into circulation. These results suggest that the expression of BEST1 on peripheral monocytes may be a potential tool for monitoring tumor progression, and opens up the possibility of searching for cancer biomarkers on monocytes rather than on the tumor or its products.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Yiran Wang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, P. R. China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qin Tan
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| |
Collapse
|
6
|
Brito-Rocha T, Constâncio V, Henrique R, Jerónimo C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells 2023; 12:cells12060935. [PMID: 36980276 PMCID: PMC10047029 DOI: 10.3390/cells12060935] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, partly owing to late detection which entails limited and often ineffective therapeutic options. Most cancers lack validated screening procedures, and the ones available disclose several drawbacks, leading to low patient compliance and unnecessary workups, adding up the costs to healthcare systems. Hence, there is a great need for innovative, accurate, and minimally invasive tools for early cancer detection. In recent years, multi-cancer early detection (MCED) tests emerged as a promising screening tool, combining molecular analysis of tumor-related markers present in body fluids with artificial intelligence to simultaneously detect a variety of cancers and further discriminate the underlying cancer type. Herein, we aim to provide a highlight of the variety of strategies currently under development concerning MCED, as well as the major factors which are preventing clinical implementation. Although MCED tests depict great potential for clinical application, large-scale clinical validation studies are still lacking.
Collapse
Affiliation(s)
- Tiago Brito-Rocha
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Program in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
7
|
Hao S, Meng Q, Sun H, Li Y, Li Y, Gu L, Liu B, Zhang Y, Zhou H, Xu Z, Wang Y. The role of transketolase in human cancer progression and therapy. Biomed Pharmacother 2022; 154:113607. [PMID: 36030587 DOI: 10.1016/j.biopha.2022.113607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
Transketolase (TKT) is an enzyme that is ubiquitously expressed in all living organisms and has been identified as an important regulator of cancer. Recent studies have shown that the TKT family includes the TKT gene and two TKT-like (TKTL) genes; TKTL1 and TKTL2. TKT and TKTL1 have been reported to be involved in the regulation of multiple cancer-related events, such as cancer cell proliferation, metastasis, invasion, epithelial-mesenchymal transition, chemoradiotherapy resistance, and patient survival and prognosis. Therefore, TKT may be an ideal target for cancer treatment. More importantly, the levels of TKTL1 were detected using EDIM technology for the early detection of some malignancies, and TKTL1 was more sensitive and specific than traditional tumor markers. Detecting TKTL1 levels before and after surgery could be used to evaluate the surgery's effect. While targeted TKT suppresses cancer in multiple ways, in some cases, it has detrimental effects on the organism. In this review, we discuss the role of TKT in different tumors and the detailed mechanisms while evaluating its value and limitations in clinical applications. Therefore, this review provides a basis for the clinical application of targeted therapy for TKT in the future, and a strategy for subsequent cancer-related research.
Collapse
Affiliation(s)
- Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Epitope Detection in Monocytes (EDIM) As a New Method of Liquid Biopsy in Pediatric Rhabdomyosarcoma. Biomedicines 2022; 10:biomedicines10081812. [PMID: 36009359 PMCID: PMC9404738 DOI: 10.3390/biomedicines10081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Biomarkers allowing characterization of pediatric rhabdomyosarcoma (RMS) are lacking. Epitope detection in monocytes (EDIM) is a novel method focused on detection of the biomarkers TKTL1 (transketolase-like protein 1) and Apo10 (epitope of DNaseX) in activated monocytes (CD14+/CD16+) from patient’s blood. We investigated the expression of these biomarkers in RMS cell lines, tumor material, and peripheral blood from RMS patients. Expression levels of TKTL1 and DNaseX/Apo10 in RMS cell lines (RH30, RD) and tumor samples were analyzed by RT-PCR and flow cytometry. Blood samples of 29 RMS patients were measured and compared to 27 healthy individuals. The percentages of activated CD14+/CD16+ monocytes harboring TKTL1 and Apo10 were determined. EDIM-TKTL1 and EDIM-Apo10 expression scores were calculated. The relationship between TKTL1 expression and DNA-hypomethylation was evaluated. Both RMS cell lines and tumor samples showed significantly higher expression levels of TKTL1 and DNaseX/Apo10 compared to skeletal muscle cells (SkMC). EDIM-TKTL1 and EDIM-Apo10 scores were positive in 96.5% of patients with RMS. All healthy controls had negative corresponding scores. RMS cell lines show increased expression levels of the biomarkers TKTL1 and DNaseX/Apo10. The sensitivity of the EDIM blood test indicates that this assay might serve as an additional tool in pediatric RMS.
Collapse
|
9
|
Stagno MJ, Schmidt A, Bochem J, Urla C, Handgretinger R, Cabanillas Stanchi KM, Saup R, Queudeville M, Fuchs J, Warmann SW, Schmid E. Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma-a pilot study. Br J Cancer 2022; 127:1324-1331. [PMID: 35864157 PMCID: PMC9519569 DOI: 10.1038/s41416-022-01855-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background Neuroblastoma (NB) is the most common paediatric extracranial solid malignancy. We analysed the role of the epitope detection in monocytes (EDIM) technique for liquid biopsy in NB patients. Methods Tumour epitopes transketolase-like 1 (TKTL1), Apo10 (DNaseX) and GD2 were assessed: expression levels in seven NB tumour samples and five NB cell lines were analysed using RT-PCR and flow cytometry. LAN-1 cells were co-cultured with blood and assessed using EDIM. Peripheral blood macrophages of patients with neuroblastoma (n = 38) and healthy individuals (control group, n = 37) were labelled (CD14+/CD16+) and assessed for TKTL1, Apo10 and GD2 using the EDIM technology. Results mRNA expression of TKTL1 and DNaseX/Apo10 was elevated in 6/7 NB samples. Spike experiments showed upregulation of TKTL1, Apo10 and GD2 in LAN-1 cells following co-culturing with blood. TKTL1 and Apo10 were present in macrophages of 36/38 patients, and GD2 in 15/19 patients. The 37 control samples were all negative. EDIM expression scores of the three epitopes allowed differentiation between NB patients and healthy individuals. Conclusions The EDIM test might serve as a non-invasive tool for liquid biopsy in children suffering from NB. Future studies are necessary for assessing risk stratification, tumour biology, treatment monitoring, and early detection of tumour relapses.
Collapse
Affiliation(s)
- Matias J Stagno
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Andreas Schmidt
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Jonas Bochem
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Cristian Urla
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Haematology and Oncology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Karin M Cabanillas Stanchi
- Department of Haematology and Oncology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Rafael Saup
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Department of Haematology and Oncology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Steven W Warmann
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Evi Schmid
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Weidle UH, Sela T, Brinkmann U, Niewoehner J. Circular RNAs With Efficacy in Preclinical In Vitro and In Vivo Models of Esophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2022; 19:283-298. [PMID: 35430563 DOI: 10.21873/cgp.20320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is associated with a dismal prognosis. The armamentarium of approved drugs is focused on chemotherapy with modest therapeutic benefit. Recently, checkpoint inhibitory monoclonal antibody Pembrolizumab was approved. In order to identify new targets and modalities for the treatment of esophagus squamous cell carcinoma (ESCC) we searched the literature for circRNAs involved in the pathogenesis of ESCC. We identified two down-regulated and 17 up-regulated circRNAs as well as a synthetic circRNA with efficacy in preclinical in vivo systems. Down-regulated circRNAs sponge microRNAs directed against tumor suppressor genes. Up-regulated circRNAs sponge microRNAs directed against mRNAs, which encode proteins with pro-tumoral functions. We discuss issues such as reconstitution of down-regulated circRNAs and inhibition of up-regulated circRNAs with short interfering RNA (siRNA)- related entities. Also, we address druggability issues of the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
11
|
Alekseeva L, Mironova N. Role of Cell-Free DNA and Deoxyribonucleases in Tumor Progression. Int J Mol Sci 2021; 22:12246. [PMID: 34830126 PMCID: PMC8625144 DOI: 10.3390/ijms222212246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Many studies have reported an increase in the level of circulating cell-free DNA (cfDNA) in the blood of patients with cancer. cfDNA mainly comes from tumor cells and, therefore, carries features of its genomic profile. Moreover, tumor-derived cfDNA can act like oncoviruses, entering the cells of vulnerable organs, transforming them and forming metastatic nodes. Another source of cfDNA is immune cells, including neutrophils that generate neutrophil extracellular traps (NETs). Despite the potential eliminative effect of NETs on tumors, in some cases, their excessive generation provokes tumor growth as well as invasion. Considering both possible pathological contributions of cfDNA, as an agent of oncotransformation and the main component of NETs, the study of deoxyribonucleases (DNases) as anticancer and antimetastatic agents is important and promising. This review considers the pathological role of cfDNA in cancer development and the role of DNases as agents to prevent and/or prohibit tumor progression and the development of metastases.
Collapse
Affiliation(s)
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Lavrentiev Ave., 8, 630090 Novosibirsk, Russia;
| |
Collapse
|
12
|
Bojkova D, Costa R, Reus P, Bechtel M, Jaboreck MC, Olmer R, Martin U, Ciesek S, Michaelis M, Cinatl J. Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy. Metabolites 2021; 11:metabo11100699. [PMID: 34677415 PMCID: PMC8540749 DOI: 10.3390/metabo11100699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, 1455 Copenhagen, Denmark;
| | - Philipp Reus
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marco Bechtel
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
| | - Mark-Christian Jaboreck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, External Partner Site, 60596 Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (M.M.); (J.C.J.)
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Correspondence: (M.M.); (J.C.J.)
| |
Collapse
|
13
|
Mattos SECD, Diel LF, Bittencourt LS, Schnorr CE, Gonçalves FA, Bernardi L, Lamers ML. Glycolytic pathway candidate markers in the prognosis of oral squamous cell carcinoma: a systematic review with meta-analysis. ACTA ACUST UNITED AC 2021; 54:e10504. [PMID: 33503201 PMCID: PMC7836401 DOI: 10.1590/1414-431x202010504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Molecular changes that affect mitochondrial glycolysis have been associated with the maintenance of tumor cells. Some metabolic factors have already been described as predictors of disease severity and outcomes. This systematic review was conducted to answer the question: Is the glycolytic pathway correlated with the prognosis of oral squamous cell carcinoma (OSCC)? A search strategy was developed to retrieve studies in English from PubMed, Scopus, and ISI Web of Science using keywords related to squamous cell carcinoma, survival, and glycolytic pathway, with no restriction of publication date. The search retrieved 1273 publications. After the titles and abstracts were analyzed, 27 studies met inclusion criteria. Studies were divided into groups according to two subtopics, glycolytic pathways and diagnosis, which describe the glycolytic profile of OSCC tumors. Several components of tumor energy metabolism found in this review are important predictors of survival of patients with OSCC.
Collapse
Affiliation(s)
- S E C de Mattos
- Programa de Pós-graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L F Diel
- Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L S Bittencourt
- Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto Federal da Educação, Ciência e Tecnologia do Rio Grande do Sul - Porto Alegre Campus, Porto Alegre, RS, Brasil.,Secretaria de Educação do Estado do Rio Grande do Sul, Escola Técnica em Saúde, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - C E Schnorr
- Departamento de Ciências Naturales y Exactas, Universidad De La Costa, Barranquilla, Atlántico, Colombia
| | - F A Gonçalves
- Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Bernardi
- Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Departamento de Ciências Morfológicas, Instituto Básico de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M L Lamers
- Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Departamento de Ciências Morfológicas, Instituto Básico de Ciências da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
14
|
Van Gool SW, Makalowski J, Bonner ER, Feyen O, Domogalla MP, Prix L, Schirrmacher V, Nazarian J, Stuecker W. Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. MEDICINES 2020; 7:medicines7050029. [PMID: 32438648 PMCID: PMC7281768 DOI: 10.3390/medicines7050029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/29/2023]
Abstract
Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG) remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a powerful and promising approach for improving the overall survival (OS) of children with DIPG. Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on 41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible as scheduled, until progression, in all patients without major toxicity. When immunotherapy was part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis, respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression, median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without major toxicity, and warrants further investigation as part of a combinatorial treatment approach for children diagnosed with DIPG.
Collapse
Affiliation(s)
- Stefaan W. Van Gool
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
- Correspondence: ; Tel.: +49-221-420-39925
| | - Jennifer Makalowski
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Erin R. Bonner
- Center for Genetic Medicine, Children’s National Health System, Washington, DC 20010, USA;
- Institute for Biomedical Sciences, The George Washington University School of Medicine and health Sciences, Washington, DC 20052, USA
| | - Oliver Feyen
- Zyagnum, Reißstrasse 1, 64319 Pfungstadt, Germany;
| | - Matthias P. Domogalla
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Lothar Prix
- Biofocus, Berghäuser Strasse 295, 45659 Recklinghausen, Germany;
| | - Volker Schirrmacher
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| | - Javad Nazarian
- DIPG Research Institute, Universitäts-Kinderspital Zürich; Steinwiesstrasse 75, Ch-8032 Zürich, Switzerland;
| | - Wilfried Stuecker
- Immun-Onkologisches Zentrum Köln, Hohenstaufenring 30-32, 50674 Köln, Germany; (J.M.); (M.P.D.); (V.S.); (W.S.)
| |
Collapse
|
15
|
Saman S, Stagno M, Warmann S, Malek N, Plentz R, Schmid E. Biomarkers Apo10 and TKTL1: Epitope-detection in monocytes (EDIM) as a new diagnostic approach for cholangiocellular, pancreatic and colorectal carcinoma. Cancer Biomark 2020; 27:129-137. [PMID: 31771043 PMCID: PMC7029314 DOI: 10.3233/cbm-190414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The EDIM (Epitope detection in monocytes) blood test is based on two biomarkers Apo10 and TKTL1. Apo10 is responsible for cell proliferation and resistance to apoptosis. TKTL1 plays a major role in anaerobic glycolysis of tumor cells, leading to destruction of the basal membrane and metastasis as well as in controlling cell cycle. For the first time we analyzed Apo10 and TKLT1 in patients with cholangiocellular (CCC), pancreatic (PC), and colorectal carcinoma (CRC). METHODS Blood samples of 62 patients with CCC, PC, and CRC were measured and compared to 29 control patients. We also investigated 13 patients with inflammatory conditions, because elevated TKTL1 and Apo10 have been previously described in affected individuals. Flow cytometry was used to detect surface antigens CD14+/CD16+ (activated monocytes/macrophages). Percentages of macrophages harboring TKTL1 and Apo10 were determined. A combined EDIM score (EDIM-CS: TKTL1 plus Apo10) was calculated. Results were correlated with serum tumor markers CEA and CA19-9. RESULTS Patients with CCC had 100% positive EDIM-CS but CEA and CA19-9 were positive in only 22.2% and 70%, respectively. Patients with PC had 100% positive EDIM-CS but positive tumor markers in only 37.5% (CEA) and 72.7% (CA19-9). Patients with CRC had 100% positive EDIM-CS but only 50% positive CEA. EDIM-CS was positive in 100% (62/62) of all cancer patients and in 0% of healthy individuals. Of the individuals with inflammation, 7.7% had a positive EDIM-CS. CONCLUSION The sensitivity of the EDIM blood test and the comparison with traditional tumor markers indicate that this new test might improve the detection of carcinomas (CCC, PC and, CRC) and might be relevant for the diagnosis of all tumor entities.
Collapse
Affiliation(s)
- S. Saman
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - M.J. Stagno
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - S.W. Warmann
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - N.P. Malek
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| | - R.R. Plentz
- Medical Clinic, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
- Klinikum Bremen Nord, Department of Gastroenterology, Oncology and Diabetology, Bremen
| | - E. Schmid
- Department of Pediatric Surgery and Pediatric Urology, Children’s Hospital, Eberhard-Karls-University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
16
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|