1
|
He H, Wang J, Meng Z, Dijkwel PP, Du P, Shi S, Dong Y, Li H, Xie Q. Genome-Wide Analysis of the SRPP/ REF Gene Family in Taraxacum kok-saghyz Provides Insights into Its Expression Patterns in Response to Ethylene and Methyl Jasmonate Treatments. Int J Mol Sci 2024; 25:6864. [PMID: 38999970 PMCID: PMC11241686 DOI: 10.3390/ijms25136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jiayin Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Paul P Dijkwel
- School of Natural Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Pingping Du
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yuxuan Dong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Tan Y, Cao J, Tang C, Liu K. Advances in Genome Sequencing and Natural Rubber Biosynthesis in Rubber-Producing Plants. Curr Issues Mol Biol 2023; 45:9342-9353. [PMID: 38132431 PMCID: PMC10741621 DOI: 10.3390/cimb45120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Natural rubber (cis-1,4-polyisoprene, NR) is an important raw material utilized widely in the manufacturing of medical, agricultural, and industrial products. Rubber tree (Hevea brasiliensis) and several alternative rubber-producing plants (Taraxacum kok-saghyz, Lactuca sativa, and Parthenium argentatum) have the capability to produce high-quality NR. With the progress of genome sequencing, similar rubber biosynthesis pathways have been discovered among different rubber-producing plant species. NR is synthesized and stored in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The rubber transferase complex is considered to be the pivotal enzyme involved in catalyzing NR biosynthesis. However, the exact compositions of the RT complex in rubber-producing plants remain elusive and poorly understood. Here, we review the progress of genome sequencing, natural rubber biosynthesis, and the components of the RT complex in rubber-producing plants. We emphasize that identifying the detailed components of the RT complex holds great significance for exploring the mechanism of NR biosynthesis and accelerating molecular breeding in rubber-producing plants.
Collapse
Affiliation(s)
- Yingchao Tan
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| | - Jie Cao
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| | - Chaorong Tang
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
- Yunnan Institute of Tropical Crops, Xishuangbanna 666100, China
| | - Kaiye Liu
- National Key Laboratory for Biological Breeding of Tropical Crops, Hainan University, Haikou 570228, China; (Y.T.); (J.C.); (C.T.)
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of P.R. China, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Zhao Y, Duan B, Liu Y, Wu Y, Yu D, Ke L, Cai F, Mei J, Zhu N, Sun Y. Identification and characterization of the LDAP family revealed GhLDAP2_Dt enhances drought tolerance in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1167761. [PMID: 37260939 PMCID: PMC10228748 DOI: 10.3389/fpls.2023.1167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
Lipid droplet-associated proteins (LDAPs) play essential roles in tissue growth and development and in drought stress responses in plants. Cotton is an important fiber and cash crop; however, the LDAP family has not been characterized in cotton. In this study, a total of 14, six, seven, and seven genes were confirmed as LDAP family members in Gossypium hirsutum, Gossypium raimondii, Gossypium arboreum, and Gossypium stocksii, respectively. Additionally, expansion in the LDAP family occurred with the formation of Gossypium, which is mirrored in the number of LDAPs found in five Malvaceae species (Gossypioides kirkii, Bombax ceiba, Durio zibethinus, Theobroma cacao, and Corchorus capsularis), Arabidopsis thaliana, and Carica papaya. The phylogenetic tree showed that the LDAP genes in cotton can be divided into three groups (I, II, and III). The analysis of gene structure and conserved domains showed that LDAPs derived from group I (LDAP1/2/3) are highly conserved during evolution, while members from groups II and III had large variations in both domains and gene structures. The gene expression pattern analysis of LDAP genes showed that they are expressed not only in the reproductive organs (ovule) but also in vegetative organs (root, stem, and leaves). The expression level of two genes in group III, GhLDAP6_At/Dt, were significantly higher in fiber development than in other tissues, indicating that it may be an important regulator of cotton fiber development. In group III, GhLDAP2_At/Dt, especially GhLDAP2_Dt was strongly induced by various abiotic stresses. Decreasing the expression of GhLDAP2_Dt in cotton via virus-induced gene silencing increased the drought sensitivity, and the over-expression of GhLDAP2_Dt led to increased tolerance to mannitol-simulated osmotic stress at the germination stage. Thus, we conclude that GhLDAP2_Dt plays a positive role in drought tolerance.
Collapse
|
4
|
Dong G, Wang H, Qi J, Leng Y, Huang J, Zhang H, Yan J. Transcriptome analysis of Taraxacum kok-saghyz reveals the role of exogenous methyl jasmonate in regulating rubber biosynthesis and drought tolerance. Gene 2023; 867:147346. [PMID: 36898514 DOI: 10.1016/j.gene.2023.147346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hao Zhang
- Institute of gardening and greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
5
|
Dong G, Fan M, Wang H, Leng Y, Sun J, Huang J, Zhang H, Yan J. Functional Characterization of TkSRPP Promoter in Response to Hormones and Wounding Stress in Transgenic Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020252. [PMID: 36678964 PMCID: PMC9866153 DOI: 10.3390/plants12020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 05/14/2023]
Abstract
Taraxacum kok-saghyz is a model species for studying natural rubber biosynthesis because its root can produce high-quality rubber. Small rubber particle protein (SRPP), a stress-related gene to multiple stress responses, involves in natural rubber biosynthesis. To investigate the transcriptional regulation of the TkSRPP promoter, the full-length promoter PR0 (2188 bp) and its four deletion derivatives, PR1 (1592 bp), PR2 (1274 bp), PR3 (934 bp), and PR4 (450 bp), were fused to β-glucuronidase (GUS) reporter gene and transformed into tobacco. The GUS tissue staining showed that the five promoters distinctly regulated GUS expression utilizing transient transformation of tobacco. The GUS activity driven by a PR0 promoter was detected in transgenic tobacco leaves, stem and roots, suggesting that the TkSRPP promoter was not tissue-specific. Deletion analyses in transgenic tobacco have demonstrated that the PR3 from -934 bp to -450 bp core region responded strongly to the hormones, methyl jasmonate (MeJA), abscisic acid (ABA), and salicylic acid (SA), and also to injury induction. The TkSRPP gene was highly expressed under hormones and wound-induced conditions. This study reveals the regulation pattern of the SRPP promoter, and provides valuable information for studying natural rubber biosynthesis under hormones and wounding stress.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Mengwei Fan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Junting Sun
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi 830000, China
- Correspondence: (H.Z.); (J.Y.)
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi 832003, China
- Correspondence: (H.Z.); (J.Y.)
| |
Collapse
|
6
|
Wang Y, Ouyang JX, Fan DM, Wang SM, Xuan YM, Wang XC, Zheng XQ. Transcriptome analysis of tea ( Camellia sinensis) leaves in response to ammonium starvation and recovery. FRONTIERS IN PLANT SCIENCE 2022; 13:963269. [PMID: 36119592 PMCID: PMC9472221 DOI: 10.3389/fpls.2022.963269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The tea plant is a kind of ammonium-preferring crop, but the mechanism whereby ammonium (NH4 +) regulate its growth is not well understood. The current study focused on the effects of NH4 + on tea plants. Transcriptomic analysis was performed to investigate the early- and late-stage NH4 + deprivation and resupply in tea plants shoots. Through short- and long-term NH4 + deficiency, the dynamic response to NH4 + stress was investigated. The most significant effects of NH4 + deficiency were found to be on photosynthesis and gene ontology (GO) enrichment varied with the length of NH4 + deprivation. Enriched KEGG pathways were also different when NH4 + was resupplied at different concentrations which may indicate reasons for tolerance of high NH4 + concentration. Using weighted gene co-expression network analysis (WGCNA), modules related to significant tea components, tea polyphenols and free amino acids, were identified. Hence, NH4 + could be regarded as a signaling molecule with the response of catechins shown to be higher than that of amino acids. The current work represents a comprehensive transcriptomic analysis of plant responses to NH4 + and reveals many potential genes regulated by NH4 + in tea plants. Such findings may lead to improvements in nitrogen efficiency of tea plants.
Collapse
Affiliation(s)
- Yu Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jia-Xue Ouyang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Dong-Mei Fan
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Shu-Mao Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yi-Min Xuan
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Wang
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
- Institute of Dafo Longjing, Xinchang, China
| | - Xin-Qiang Zheng
- College of Agriculture and Biotechnology, Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Dai L, Yang H, Zhao X, Wang L. Identification of cis conformation natural rubber and proteins in Ficus altissima Blume latex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:376-384. [PMID: 34404008 DOI: 10.1016/j.plaphy.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Ficus altissima Blume, a horticultural plant in tropical and warm subtropical regions, can produce natural rubber with comparable molecular weight to the Hevea brasiliensis rubber. The F. altissima latex has an acidic pH (about 4.89). The rubber particle size distribution is a unimodal profile, and the peak frequency is at a size of 4.5 μm. The natural rubber of F. altissima was determined to be a cis conformation via 13C NMR. The Mp (molecular weight of the peak maxima) of the deproteinized F. altissima rubber was 9.34 × 105 Da. LC-MS was used to identify the proteins of rubber particles and serum. The most abundant protein of the creamy rubber particle layer is an acid phosphatase, while the most abundant proteins of serum were an (R)-mandelonitrilelyase and a polygalacturonase inhibitor. Pharmaceutical proteins (ficins) or enzymes related to the biosynthesis of natural medicines (a cannabidiolic acid synthase and two lupeol synthase) were identified in F. altissima latex. The data of this study may be helpful for research on the functions of latex in latex-borne plants and the biosynthesis mechanism of natural rubber.
Collapse
Affiliation(s)
- Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Xizhu Zhao
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan, PR China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan, PR China.
| |
Collapse
|
8
|
Identification and Characterization of Glycoproteins and Their Responsive Patterns upon Ethylene Stimulation in the Rubber Latex. Int J Mol Sci 2020; 21:ijms21155282. [PMID: 32722428 PMCID: PMC7432319 DOI: 10.3390/ijms21155282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such as phosphorylation, glycosylation and ubiquitination, are crucial in natural rubber biosynthesis. In this study, comparative proteomics was performed to identify the glycosylated proteins in rubber latex treated with ethylene for different days. Combined with Pro-Q Glycoprotein gel staining and mass spectrometry techniques, we provided the first visual profiling of glycoproteomics of rubber latex and finally identified 144 glycosylated protein species, including 65 differentially accumulated proteins (DAPs) after treating with ethylene for three and/or five days. Gene Ontology (GO) functional annotation showed that these ethylene-responsive glycoproteins are mainly involved in cell parts, membrane components and metabolism. Pathway analysis demonstrated that these glycosylated rubber latex proteins are mainly involved in carbohydrate metabolism, energy metabolism, degradation function and cellular processes in rubber latex metabolism. Protein-protein interaction analysis revealed that these DAPs are mainly centered on acetyl-CoA acetyltransferase and hydroxymethylglutaryl-CoA synthase (HMGS) in the mevalonate pathway for natural rubber biosynthesis. In our glycoproteomics, three protein isoforms of HMGS2 were identified from rubber latex, and only one HMGS2 isoform was sharply increased in rubber latex by ethylene treatment for five days. Furthermore, the HbHMGS2 gene was over-expressed in a model rubber-producing grass Taraxacum Kok-saghyz and rubber content in the roots of transgenic rubber grass was significantly increased over that in the wild type plant, indicating HMGS2 is the key component for natural rubber production.
Collapse
|
9
|
Jin C, Li Z, Li Y, Wang S, Li L, Liu M, Ye J. Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides. Mol Biol Rep 2020; 47:1979-1990. [PMID: 32040708 DOI: 10.1007/s11033-020-05294-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.
Collapse
Affiliation(s)
- Cangfu Jin
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhouqi Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yu Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Forestry College, Fujian A&F University, Fuzhou, Fujian, China
| | - Shuhui Wang
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Yantai Forestry Science Institute, Yantai, Shandong, China
| | - Long Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Minhao Liu
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Ye
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Cherian S, Ryu SB, Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2041-2061. [PMID: 31150158 PMCID: PMC6790360 DOI: 10.1111/pbi.13181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 05/26/2023]
Abstract
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR-enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)-the synthesis of the high molecular weight rubber polymer itself-is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.
Collapse
Affiliation(s)
- Sam Cherian
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Research & Development CenterDRB Holding Co. LTDBusanKorea
| | - Stephen Beungtae Ryu
- Plant Systems Engineering Research CentreKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeonKorea
- Department of Biosystems and BioengineeringKRIBB School of BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Katrina Cornish
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Department of Food, Agricultural and Biological EngineeringThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
11
|
Proteomic Landscape Has Revealed Small Rubber Particles Are Crucial Rubber Biosynthetic Machines for Ethylene-Stimulation in Natural Rubber Production. Int J Mol Sci 2019; 20:ijms20205082. [PMID: 31614967 PMCID: PMC6829444 DOI: 10.3390/ijms20205082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Rubber particles are a specific organelle for natural rubber biosynthesis (NRB) and storage. Ethylene can significantly improve rubber latex production by increasing the generation of small rubber particles (SRPs), regulating protein accumulation, and activating many enzyme activities. We conducted a quantitative proteomics study of different SRPs upon ethylene stimulation by differential in-gel electrophoresis (DIGE) and using isobaric tags for relative and absolute quantification (iTRAQ) methods. In DIGE, 79 differentially accumulated proteins (DAPs) were determined as ethylene responsive proteins. Our results show that the abundance of many NRB-related proteins has been sharply induced upon ethylene stimulation. Among them, 23 proteins were identified as rubber elongation factor (REF) and small rubber particle protein (SRPP) family members, including 16 REF and 7 SRPP isoforms. Then, 138 unique phosphorylated peptides, containing 129 phosphorylated amino acids from the 64 REF/SRPP family members, were identified, and most serine and threonine were phosphorylated. Furthermore, we identified 226 DAPs from more than 2000 SRP proteins by iTRAQ. Integrative analysis revealed that almost all NRB-related proteins can be detected in SRPs, and many proteins are positively responsive to ethylene stimulation. These results indicate that ethylene may stimulate latex production by regulating the accumulation of some key proteins. The phosphorylation modification of REF and SRPP isoforms might be crucial for NRB, and SRP may act as a complex natural rubber biosynthetic machine.
Collapse
|
12
|
Xie Q, Ding G, Zhu L, Yu L, Yuan B, Gao X, Wang D, Sun Y, Liu Y, Li H, Wang X. Proteomic Landscape of the Mature Roots in a Rubber-Producing Grass Taraxacum Kok-saghyz. Int J Mol Sci 2019; 20:ijms20102596. [PMID: 31137823 PMCID: PMC6566844 DOI: 10.3390/ijms20102596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
The rubber grass Taraxacum kok-saghyz (TKS) contains large amounts of natural rubber (cis-1,4-polyisoprene) in its enlarged roots and it is an alternative crop source of natural rubber. Natural rubber biosynthesis (NRB) and storage in the mature roots of TKS is a cascade process involving many genes, proteins and their cofactors. The TKS genome has just been annotated and many NRB-related genes have been determined. However, there is limited knowledge about the protein regulation mechanism for NRB in TKS roots. We identified 371 protein species from the mature roots of TKS by combining two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Meanwhile, a large-scale shotgun analysis of proteins in TKS roots at the enlargement stage was performed, and 3545 individual proteins were determined. Subsequently, all identified proteins from 2-DE gel and shotgun MS in TKS roots were subject to gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and most proteins were involved in carbon metabolic process with catalytic activity in membrane-bounded organelles, followed by proteins with binding ability, transportation and phenylpropanoid biosynthesis activities. Fifty-eight NRB-related proteins, including eight small rubber particle protein (SRPP) and two rubber elongation factor(REF) members, were identified from the TKS roots, and these proteins were involved in both mevalonate acid (MVA) and methylerythritol phosphate (MEP) pathways. To our best knowledge, it is the first high-resolution draft proteome map of the mature TKS roots. Our proteomics of TKS roots revealed both MVA and MEP pathways are important for NRB, and SRPP might be more important than REF for NRB in TKS roots. These findings would not only deepen our understanding of the TKS root proteome, but also provide new evidence on the roles of these NRB-related proteins in the mature TKS roots.
Collapse
Affiliation(s)
- Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Guohua Ding
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Liping Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Li Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Boxuan Yuan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Xuan Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yang Liu
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xuchu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi 832003, China.
- Key Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou 571158, Hainan, China.
| |
Collapse
|
13
|
Rey MD, Castillejo MÁ, Sánchez-Lucas R, Guerrero-Sanchez VM, López-Hidalgo C, Romero-Rodríguez C, Valero-Galván J, Sghaier-Hammami B, Simova-Stoilova L, Echevarría-Zomeño S, Jorge I, Gómez-Gálvez I, Papa ME, Carvalho K, Rodríguez de Francisco LE, Maldonado-Alconada AM, Valledor L, Jorrín-Novo JV. Proteomics, Holm Oak ( Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other? Int J Mol Sci 2019; 20:ijms20030692. [PMID: 30736277 PMCID: PMC6386906 DOI: 10.3390/ijms20030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomics has had a big impact on plant biology, considered as a valuable tool for several forest species, such as Quercus, Pines, Poplars, and Eucalyptus. This review assesses the potential and limitations of the proteomics approaches and is focused on Quercus ilex as a model species and other forest tree species. Proteomics has been used with Q. ilex since 2003 with the main aim of examining natural variability, developmental processes, and responses to biotic and abiotic stresses as in other species of the genus Quercus or Pinus. As with the progress in techniques in proteomics in other plant species, the research in Q. ilex moved from 2-DE based strategy to the latest gel-free shotgun workflows. Experimental design, protein extraction, mass spectrometric analysis, confidence levels of qualitative and quantitative proteomics data, and their interpretation are a true challenge with relation to forest tree species due to their extreme orphan and recalcitrant (non-orthodox) nature. Implementing a systems biology approach, it is time to validate proteomics data using complementary techniques and integrate it with the -omics and classical approaches. The full potential of the protein field in plant research is quite far from being entirely exploited. However, despite the methodological limitations present in proteomics, there is no doubt that this discipline has contributed to deeper knowledge of plant biology and, currently, is increasingly employed for translational purposes.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Ángeles Castillejo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Victor M Guerrero-Sanchez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina López-Hidalgo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Asunción 1001-1925, Paraguay.
| | - José Valero-Galván
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juarez 32310, Mexico.
| | - Besma Sghaier-Hammami
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113 Sofia, Bulgaria.
| | - Sira Echevarría-Zomeño
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Inmaculada Jorge
- Department of Vascular Biology and Inflammation (BVI), Spanish National Centre for Cardiovascular Research, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Isabel Gómez-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Eugenia Papa
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Kamilla Carvalho
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | | | - Ana María Maldonado-Alconada
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Luis Valledor
- Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Santiago Gascón Building, 2nd Floor (Office 2.9), 33006 Oviedo, Spain.
| | - Jesús V Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| |
Collapse
|
14
|
Men X, Wang F, Chen GQ, Zhang HB, Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int J Mol Sci 2018; 20:E50. [PMID: 30583567 PMCID: PMC6337083 DOI: 10.3390/ijms20010050] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.
Collapse
Affiliation(s)
- Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guo-Qiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Hai-Bo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| |
Collapse
|
15
|
Cornish K, Scott DJ, Xie W, Mau CJD, Zheng YF, Liu XH, Prestwich GD. Unusual subunits are directly involved in binding substrates for natural rubber biosynthesis in multiple plant species. PHYTOCHEMISTRY 2018; 156:55-72. [PMID: 30195165 DOI: 10.1016/j.phytochem.2018.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 05/11/2023]
Abstract
Rubber particles from rubber-producing plant species have many different species-specific proteins bound to their external monolayer biomembranes. To date, identification of those proteins directly involved in enzymatic catalysis of rubber polymerization has not been fully accomplished using solubilization, purification or reconstitution approaches. In an alternative approach, we use several tritiated photoaffinity-labeled benzophenone analogs of the allylic pyrophosphate substrates, required by rubber transferase (RT-ase) to initiate the synthesis of new rubber molecules, to identify the proteins involved in catalysis. Enzymatically-active rubber particles were purified from three phylogenetically-distant rubber producing species, Parthenium argentatum Gray, Hevea brasiliensis Muell. Arg, and Ficus elastica Roxb., each representing a different Superorder of the Dicotyledonae. Geranyl pyrophosphate with the benzophenone in the para position (Bz-GPP(p)) was the most active initiator of rubber biosynthesis in all three species. When rubber particles were exposed to ultra-violet radiation, 95% of RT-ase activity was eliminated in the presence of 50 μΜ Bz-GPP(p), compared to only 50% of activity in the absence of this analog. 3H-Bz-GPP(p) then was used to label and identify the proteins involved in substrate binding and these proteins were characterized electrophoretically. In all three species, three distinct proteins were labeled, one very large protein and two very small proteins, as follows: P. argentatum 287,000, 3,990, and 1,790 Da; H. brasiliensis 241,000, 3,650 and 1,600 Da; F. elastica 360,000, 3,900 and 1,800 Da. The isoelectric points of the P. argentatum proteins were 7.6 for the 287,000 Da, 10.4 for the 3,990 Da and 3.5 for the 1,790 Da proteins, and of the F. elastica proteins were 7.7 for the 360,000 Da, 6,0 for the 3,900 Da, and 11.0 for the 1,800 Da proteins. H. brasiliensis protein pI values were not determined. Additional analysis indicated that the three proteins are components of a membrane-bound complex and that the ratio of each small protein to the large one is 3:1, and the large protein exists as a dimer. Also, the large proteins are membrane bound whereas both small proteins are strongly associated with the large proteins, rather than to the rubber particle proteolipid membrane.
Collapse
Affiliation(s)
- Katrina Cornish
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA; Center of Applied Plant Sciences, Institute of Materials Research, Institute of Humanitarian Engineering, Department of Chemistry and Biochemistry, USA.
| | - Deborah J Scott
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Wenshuang Xie
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Christopher J D Mau
- USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Yi Feng Zheng
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Xiao-Hui Liu
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, South 2000 East, Rm. 307, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Habib MAH, Gan CY, Abdul Latiff A, Ismail MN. Unrestrictive identification of post-translational modifications in Hevea brasiliensis latex. Biochem Cell Biol 2018; 96:818-824. [PMID: 30058361 DOI: 10.1139/bcb-2018-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in modern society. Post-translational modifications (PTMs) of the latex proteins are important for the stability and functionality of the proteins. In this study, latex proteins were acquired from the C-serum, lutoids, and rubber particle layers of latex without using prior enrichment steps; they were fragmented using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron-transfer dissociation (ETD) activation methods. PEAKS 7 were used to search for unspecified PTMs, followed by analysis through PTM prediction tools to crosscheck both results. There were 73 peptides in 47 proteins from H. brasiliensis protein sequences derived from UniProtKB were identified and predicted to be post-translationally modified. The peptides with PTMs identified include phosphorylation, lysine acetylation, N-terminal acetylation, hydroxylation, and ubiquitination. Most of the PTMs discovered have yet to be reported in UniProt, which would provide great assistance in the research of the functional properties of H. brasiliensis latex proteins, as well as being useful biomarkers. The data are available via the MassIVE repository with identifier MSV000082419.
Collapse
Affiliation(s)
- Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau, Pinang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau, Pinang, Malaysia
| | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 USM, Pulau, Pinang, Malaysia
| |
Collapse
|
17
|
Deng X, Guo D, Yang S, Shi M, Chao J, Li H, Peng S, Tian W. Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3559-3571. [PMID: 29726901 DOI: 10.1093/jxb/ery169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/27/2018] [Indexed: 05/27/2023]
Abstract
Rubber trees are the world's major source of natural rubber. Rubber-containing latex is obtained from the laticifer cells of the rubber tree (Hevea brasiliensis) via regular tapping. Rubber biosynthesis is a typical isoprenoid metabolic process in the laticifer cells; however, little is known about the positive feedback regulation caused by the loss of latex that occurs through tapping. In this study, we demonstrate the crucial role of jasmonate signalling in this feedback regulation. The endogenous levels of jasmonate, the expression levels of rubber biosynthesis-related genes, and the efficiency of in vitro rubber biosynthesis were found to be significantly higher in laticifer cells of regularly tapped trees than those of virgin (i.e. untapped) trees. Application of methyl jasmonate had similar effects to latex harvesting in up-regulating the rubber biosynthesis-related genes and enhancing rubber biosynthesis. The specific jasmonate signalling module in laticifer cells was identified as COI1-JAZ3-MYC2. Its activation was associated with enhanced rubber biosynthesis via up-regulation of the expression of a farnesyl pyrophosphate synthase gene and a small rubber particle protein gene. The increase in the corresponding proteins, especially that of farnesyl pyrophosphate synthase, probably contributes to the increased efficiency of rubber biosynthesis. To our knowledge, this is the first study to reveal a jasmonate signalling pathway in the regulation of rubber biosynthesis in laticifer cells. The identification of the specific jasmonate signalling module in the laticifer cells of the rubber tree may provide a basis for genetic improvement of rubber yield potential.
Collapse
Affiliation(s)
- Xiaomin Deng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Dong Guo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shuguang Yang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Minjing Shi
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Jinquan Chao
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | - Huiliang Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weimin Tian
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| |
Collapse
|
18
|
Wang D, Sun Y, Chang L, Tong Z, Xie Q, Jin X, Zhu L, He P, Li H, Wang X. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis. J Proteomics 2018; 182:53-64. [PMID: 29729991 DOI: 10.1016/j.jprot.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
Abstract
Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. SIGNIFICANCE Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Quanliang Xie
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Liping Zhu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Peng He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
19
|
Zhu L, Jin X, Xie Q, Yao Q, Wang X, Li H. Calcium-Dependent Protein Kinase Family Genes Involved in Ethylene-Induced Natural Rubber Production in Different Hevea brasiliensis Cultivars. Int J Mol Sci 2018; 19:ijms19040947. [PMID: 29565813 PMCID: PMC5979512 DOI: 10.3390/ijms19040947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Natural rubber latex production can be improved by ethylene stimulation in the rubber tree (Hevea brasiliensis). However, the expression levels of most functional proteins for natural rubber biosynthesis are not induced after ethylene application, indicating that post-translational modifications, especially protein phosphorylation, may play important roles in ethylene signaling in Hevea. Here, we performed a comprehensive investigation on evolution, ethylene-induced expression and protein-protein interaction of calcium-dependent protein kinases (CPKs), an important serine/threonine protein kinase family, in Hevea. Nine duplication events were determined in the 30 identified HbCPK genes. Expression profiling of HbCPKs in three rubber tree cultivars with low, medium and high ethylene sensitivity showed that HbCPK6, 17, 20, 22, 24, 28 and 30 are induced by ethylene in at least one cultivar. Evolution rate analysis suggested accelerated evolution rates in two paralogue pairs, HbCPK9/18 and HbCPK19/20. Analysis of proteomic data for rubber latex after ethylene treatment showed that seven HbCPK proteins could be detected, including six ethylene-induced ones. Protein-protein interaction analysis of the 493 different abundant proteins revealed that protein kinases, especially calcium-dependent protein kinases, possess most key nodes of the interaction network, indicating that protein kinase and protein phosphorylation play important roles in ethylene signaling in latex of Hevea. In summary, our data revealed the expression patterns of HbCPK family members and functional divergence of two HbCPK paralogue pairs, as well as the potential important roles of HbCPKs in ethylene-induced rubber production improvement in Hevea.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Qi Yao
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
20
|
Cloning and Aggregation Characterization of Rubber Elongation Factor and Small Rubber Particle Protein from Ficus carica. Mol Biotechnol 2017; 60:83-91. [DOI: 10.1007/s12033-017-0051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Jin X, Zhu L, Yao Q, Meng X, Ding G, Wang D, Xie Q, Tong Z, Tao C, Yu L, Li H, Wang X. Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis) Cultivars. Genes (Basel) 2017; 8:genes8100261. [PMID: 28984837 PMCID: PMC5664111 DOI: 10.3390/genes8100261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/03/2022] Open
Abstract
Rubber tree (Heveabrasiliensis) is the only commercially cultivated plant for producing natural rubber, one of the most essential industrial raw materials. Knowledge of the evolutionary and functional characteristics of kinases in H. brasiliensis is limited because of the long growth period and lack of well annotated genome information. Here, we reported mitogen-activated protein kinases in H. brasiliensis (HbMPKs) by manually checking and correcting the rubber tree genome. Of the 20 identified HbMPKs, four members were validated by proteomic data. Protein motif and phylogenetic analyses classified these members into four known groups comprising Thr-Glu-Tyr (TEY) and Thr-Asp-Tyr (TDY) domains, respectively. Evolutionary and syntenic analyses suggested four duplication events: HbMPK3/HbMPK6, HbMPK8/HbMPK9/HbMPK15, HbMPK10/HbMPK12 and HbMPK11/HbMPK16/HbMPK19. Expression profiling of the identified HbMPKs in roots, stems, leaves and latex obtained from three cultivars with different latex yield ability revealed tissue- and variety-expression specificity of HbMPK paralogues. Gene expression patterns under osmotic, oxidative, salt and cold stresses, combined with cis-element distribution analyses, indicated different regulation patterns of HbMPK paralogues. Further, Ka/Ks and Tajima analyses suggested an accelerated evolutionary rate in paralogues HbMPK10/12. These results revealed HbMPKs have diverse functions in natural rubber biosynthesis, and highlighted the potential possibility of using MPKs to improve stress tolerance in future rubber tree breeding.
Collapse
Affiliation(s)
- Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Liping Zhu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Qi Yao
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xueru Meng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Guohua Ding
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Chengcheng Tao
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Li Yu
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|