1
|
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Olive tree leaves as a great source of phenolic compounds: Comprehensive profiling of NaDES extracts. Food Chem 2024; 456:140042. [PMID: 38876070 DOI: 10.1016/j.foodchem.2024.140042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Waste from the olive industry is a noticeable source of antioxidant compounds that can be extracted and reused to produce raw materials related to the chemical, cosmetic, food and pharmaceutical sectors. This work studies the phenolic composition of olive leaf samples using liquid chromatography with ultraviolet detection coupled to mass spectrometry (LC-UV-MS). Olive leaf waste samples have been crushed, homogenized, and subjected to a solid-liquid extraction treatment with mechanical shaking at 80 °C for 2 h using Natural Deep Eutectic Solvents (NaDES). The phenolic compound identification in the resulting extracts has been carried out by high-resolution mass spectrometry (HRMS) using data-dependent acquisition mode using an Orbitrap HRMS instrument. >60 different phenolic compounds have been annotated tentatively, of which about 20 have been confirmed from the corresponding standards. Some of the most noticeable compounds are oleuropein and its aglycone and glucoside form, luteolin-7-O-glucoside, 3-hydroxytyrosol, and verbascoside.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain.; Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, E08003 Barcelona, Spain..
| |
Collapse
|
2
|
Loukou S, Papantoniou G, Pantazaki A, Tsolaki M. The Role of Greek Olive Leaf Extract in Patients with Mild Alzheimer's Disease (the GOLDEN Study): A Randomized Controlled Clinical Trial. Neurol Int 2024; 16:1247-1265. [PMID: 39585054 PMCID: PMC11587000 DOI: 10.3390/neurolint16060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Olive leaves are a significant source of biophenols, which have a beneficial impact on cognitive performance. Objective: To examine, for the first time, in humans the effect of the daily consumption of a beverage containing olive leaf extract (OLE) versus a Mediterranean diet (MeDi) on patients diagnosed with mild Alzheimer's Disease (AD), in addition to their regular treatment. Methods: A randomized clinical trial compared OLE's effects on cognitive and functional performance in 55 mild AD patients. Each participant was randomly assigned to two groups: (1) Group 1 was given olive leaves for making a daily beverage and MeDi instructions through monthly diet programs; (2) Group 2 received only the MeDi instructions. After six months, all participants underwent a second neuropsychological evaluation. Results: Group 1 participants had statistically significantly higher MMSE scores compared to Group 2 with a p-value of 0.0135. Specifically, the mean MMSE difference in patients receiving OLE was close to 0, indicating no memory deterioration, whereas in controls it was -4.1, indicative of cognitive decline. The remaining neuropsychological assessments (FRSSD, FUCAS, ADAS-Cog, CDR, GDS, and NPI) revealed better results in the OLE group, except for GDS, which showed no change, but without statistically significant differences between the two groups.
Collapse
Affiliation(s)
- Sofia Loukou
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| | - Georgia Papantoniou
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Psychology, Department of Early Childhood Education, School of Education, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia Pantazaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Magdalini Tsolaki
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| |
Collapse
|
3
|
Solid State Fermentation of Olive Leaves as a Promising Technology to Obtain Hydroxytyrosol and Elenolic Acid Derivatives Enriched Extracts. Antioxidants (Basel) 2022; 11:antiox11091693. [PMID: 36139767 PMCID: PMC9496001 DOI: 10.3390/antiox11091693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Extraction of valuable bioactive compounds from olive leaves is a hot topic and the use of sustainable and green technologies is mandatory in terms of circular economy. In this way, the use of fermentation technologies showed very interesting results in terms of phenolic compound recovery. Because of that in this work the use of solid state fermentations, as valuable tool to improve the phenolic extraction has been checked. Aspergillus oryzae (in mycelium and spore form), Aspergillus awamori and Aspergillus niger were used as fermentation microrganisms. Phenolic compounds were determined by HPLC-ESI-TOF-MS and, to our knowledge, new compounds have been tentatively identified in olive leaves. Fermentation using mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae were effective to increase both hydroxytyrosol and elenolic acid derivatives whereas the use of spores of Aspergillus oryzae caused a loss of hydroxytyrosoyl derivatives, contrary the content of elenolic derivatives are comparable with the other fermentation treatments and higher than control. The proposed fermentation processes using the mycelium of Aspergillus awamori, Aspergillus niger and Aspergillus oryzae lead to an increase the hydroxytyrosyl and elenolic acid derivatives and could be used at industrial scale to obtain enriched extracts.
Collapse
|
4
|
Peeters K, Miklavčič Višnjevec A, Esakkimuthu ES, Schwarzkopf M, Tavzes Č. The Valorisation of Olive Mill Wastewater from Slovenian Istria by Fe 3O 4 Particles to Recover Polyphenolic Compounds for the Chemical Specialties Sector. Molecules 2021; 26:6946. [PMID: 34834035 PMCID: PMC8622678 DOI: 10.3390/molecules26226946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Olive oil production using three-phase decanter systems creates olive oil and two by-products: olive mill wastewater (OMWW) and pomace. These by-products contain the highest share of polyphenolic compounds that are known to be associated with beneficial effects on human health. Therefore, they are an attractive source of phenolic compounds for further industrial use in the cosmetic, pharmaceutical and food industries. The use of these phenolics is limited due to difficulties in recovery, high reactivity, complexity of the OMWW matrix and different physiochemical properties of phenolic compounds. This research, focused on OMWW, was performed in two phases. First, different polyphenol extraction methods were compared to obtain the method that yields the highest polyphenol concentration. Twenty-five phenolic compounds and their isomers were determined. Acidifying OMWW, followed by five minutes of ultrasonication, resulted in the highest measured polyphenol content of 27 mg/L. Second, the collection of polyphenolic compounds from OMWW via adsorption on unmodified iron (II, III) oxide particles was investigated. Although low yields were obtained for removed polyphenolic compounds in one removal cycle, the process has a high capability to be repeated.
Collapse
Affiliation(s)
- Kelly Peeters
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, University of Primorska, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia;
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| | - Črtomir Tavzes
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; (E.S.E.); (M.S.); (Č.T.)
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, 6000 Koper, Slovenia
| |
Collapse
|
5
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
6
|
Extra-Virgin Olive Oil from Apulian Cultivars and Intestinal Inflammation. Nutrients 2020; 12:nu12041084. [PMID: 32295122 PMCID: PMC7230776 DOI: 10.3390/nu12041084] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial intestinal disorder characterized by chronic intestinal inflammation. The etiology of IBD is still unclear, although genetic, environmental and host factors have been associated to the disease. Extra-virgin olive oil (EVO) is a central component of the Mediterranean diet and it decreases chronic inflammation by interfering with arachidonic acid and NF-κB signaling pathways. Specifically, the different components of EVO are able to confer advantages in terms of health in their site of action. For instance, oleic acid displays a protective effect in liver dysfunction and gut inflammation, whereas phenolic compounds protect colon cells against oxidative damage and improve the symptoms of chronic inflammation in IBD. Given the biological properties of EVO, we investigated whether its administration is able to confer protection in a mouse model of dextrane sodium sulfate (DSS)-induced colitis. Four EVO cultivars from the Apulian Region of Italy, namely Ogliarola (Cima di Bitonto), Coratina, Peranzana and Cima di Mola, respectively, were used. Administration of EVO resulted in reduced body weight loss in our colitis model. Furthermore, mice treated with Ogliarola, Coratina and Cima di Mola EVO displayed a reduction of rectal bleeding and IL-1β, TGFβ, IL-6 gene expression levels. Furthermore, Ogliarola, Coratina and Peranzana EVO administration ameliorated intestinal permeability and histopathological features of inflammation. Our data further validate the well-known positive effects of EVO supplementation in promoting human health and suggest the bona fide contribution of EVO in preventing onset and reducing progression of intestinal inflammation.
Collapse
|
7
|
Lambert de Malezieu M, Ferron S, Sauvager A, Courtel P, Ramassamy C, Tomasi S, Abasq ML. UV-Vis Spectroelectrochemistry of Oleuropein, Tyrosol, and p-Coumaric Acid Individually and in an Equimolar Combination. Differences in LC-ESI-MS 2 Profiles of Oxidation Products and their Neuroprotective Properties. Biomolecules 2019; 9:E802. [PMID: 31795228 PMCID: PMC6995624 DOI: 10.3390/biom9120802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023] Open
Abstract
Major phenolic compounds from olive oil (ArOH-EVOO), oleuropein (Ole), tyrosol (Tyr), and p-coumaric acid (p-Cou), are known for their antioxidant and neuroprotective properties. We previously demonstrated that their combination could potentiate their antioxidant activity in vitro and in cellulo. To further our knowledge of their electron-transfer properties, Ole, Tyr, and p-Cou underwent a spectroelectrochemical study, performed either individually or in equimolar mixtures. Two mixtures (Mix and Mix-seq) were prepared in order to determine whether distinct molecules could arise from their simultaneous or sequential oxidation. The comparison of Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS2) profiles highlighted the presence of specific oxidized products found in the mixes. We hypothesized that they derived from the dimerization between Tyr and Ole or p-Cou, which have reacted either in their native or oxidized forms. Moreover, Ole regenerates when the Mix undergoes oxidation. Our study also showed significant neuroprotection by oxidized Ole and oxidized Mix against H2O2 toxicity on SK-N-SH cells, after 24 h of treatment with very low concentrations (1 and 5 nM). This suggests the putative relevant role of oxidized Ole products to protect or delay neuronal death.
Collapse
Affiliation(s)
- Morgane Lambert de Malezieu
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
- INAF, Québec, QC G1V 0A6, Canada
| | - Solenn Ferron
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Aurélie Sauvager
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Patricia Courtel
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
| | - Charles Ramassamy
- INRS-Centre Armand Frappier, Laval, QC H7V 1B7, Canada; (P.C.); (C.R.)
- INAF, Québec, QC G1V 0A6, Canada
| | - Sophie Tomasi
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| | - Marie-Laurence Abasq
- Univ. Rennes, CNRS, ISCR–UMR 6226, 35043 Rennes, France; (M.L.d.M.); (S.F.); (A.S.)
| |
Collapse
|
8
|
Ventura G, Calvano CD, Abbattista R, Bianco M, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1670-1681. [PMID: 31268208 DOI: 10.1002/rcm.8514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Several bioactive compounds, including phenolic acids and secoiridoids, are transferred from olive drupes to olive oil during the first stage of production. Here, the characterization of these low molecular weight (LMW) compounds in olive oil and in closely related processing materials, like olive leaves (OL) and olive mill wastewaters (OMW), was faced up, for the first time, by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS). METHODS A novel binary matrix composed of 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and 9-aminoacridine (9AA) (1:1 molar ratio), displaying excellent ionization properties at low levels of laser energy, was employed in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm). MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Four major secoiridoids typically present in olive oil, i.e., the aglycones of oleuropein and ligstroside, and oleacein and olecanthal at m/z 377.1, 361.1, 319.1 and 303.1, respectively, were detected in virgin olive oil (VOO) extracts, along with some of their chemical/enzymatic hydrolysis by-products, such as elenolic (m/z 241.1), decarboxymethyl-elenolic acids (m/z 183.1) and hydroxytyrosol (m/z 153.1). Besides oleuropein aglycone and oleacein, hydroxylated derivatives of decarboxymethyl-elenolic acid and hydroxytyrosol were evidenced in OMW. CONCLUSIONS While oleuropein was confirmed in OL extracts, several interesting phenolic compounds, including hydroxytyrosol, were recognized in OMW. The proposed approach based on the use of a novel binary matrix for MALDI MS/MS analyses of LMW bioactive compounds can be considered a promising analytical tool for a rapid screening of the phenolic fraction in olive oils and related processing wastes.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ilario Losito
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
9
|
Ventura G, Abbattista R, Calvano CD, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Tandem mass spectrometry characterization of a conjugate between oleuropein and hydrated cis-diammineplatinum(II). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:657-666. [PMID: 30672618 DOI: 10.1002/rcm.8394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Oleuropein (Ole) has been claimed to mitigate cisplatin (CP)-induced acute injury in kidney and liver of mice. In vitro reactivity of hydrated CP species with Ole, and an Ole metabolite, hydroxytyrosol (HT), is of great interest as the preliminary step for gathering in vivo information on the possible physiological role of the Ole/HT-cis-diammineplatinum(II) (Ole/HT-cis-DAP) conjugate. METHODS Reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry using a linear ion trap instrument (RPLC/ESI-MS) and tandem mass (MS/MS) measurements, both in positive and negative ion mode, revealed the molecular identity of platinum-based conjugates. RESULTS The Ole-cis-DAP conjugate (i.e., C25 H36 N2 O13 PtII ) features two cis-ammine non-leaving ligands and a bidentate catechol ligand moiety belonging to Ole; the coordination of the central Pt(II) is square-planar with non-equivalent bond angles compared with the ideal arrangement of 90°. HT, the free Ole metabolite excreted in human urine, acts as bidentate O,O-donor ligand of cis-DAP as well. CONCLUSIONS The first evidence, together with structural information, is provided about the in vitro formation of a conjugate between cis-DAP and Ole or its urinary metabolite HT. Presuming that such conjugates are also generated in vivo, the mechanisms by which they might contribute to reduce CP toxicity remain to be elucidated.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| |
Collapse
|
10
|
Larussa T, Imeneo M, Luzza F. Olive Tree Biophenols in Inflammatory Bowel Disease: When Bitter is Better. Int J Mol Sci 2019; 20:ijms20061390. [PMID: 30897691 PMCID: PMC6471980 DOI: 10.3390/ijms20061390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
The current therapeutic scenario for inflammatory bowel diseases (IBD) involves aminosalicylates, corticosteroids, and immunomodulators, but concerns regarding their safety profiles and high costs heavily impact their widespread use. In recent years, the beneficial effects thatbiophenols—from fruit and vegetables—have on human health have been investigated. The antioxidant and anti-inflammatory properties of phenolic fraction, from olive leaves and fruits, have been suggested, and a potential application in gut inflammation has been supported by in vitro and IBD-animal models studies. In the present review, we first introduced the potential therapeutic role of olive tree biophenolsin chronic inflammatory disease. Then, we aimed to describe their most interesting application for gut inflammation, as the results of basic science studies and animal experimental models. Finally, the potential role of olive tree biophenols in the setting of human IBD is discussed.
Collapse
Affiliation(s)
- Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| | - Maria Imeneo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
11
|
Sivakumar G, Uccella NA, Gentile L. Probing Downstream Olive Biophenol Secoiridoids. Int J Mol Sci 2018; 19:ijms19102892. [PMID: 30249049 PMCID: PMC6212805 DOI: 10.3390/ijms19102892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Numerous bioactive biophenol secoiridoids (BPsecos) are found in the fruit, leaves, and oil of olives. These BPsecos play important roles in both the taste of food and human health. The main BPseco bioactive from green olive fruits, leaves, and table olives is oleuropein, while olive oil is rich in oleuropein downstream pathway molecules. The aim of this study was to probe olive BPseco downstream molecular pathways that are alike in biological and olive processing systems at different pHs and reaction times. The downstream molecular pathway were analyzed by high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI/MS) and typed neglected of different overlap (TNDO) computational methods. Our study showed oleuropein highest occupied molecular orbital (HOMO) and HOMO-1 triggered the free radical processes, while HOMO-2 and lowest unoccupied molecular orbital (LUMO) were polar reactions of glucoside and ester groups. Olive BPsecos were found to be stable under acid and base catalylic experiments. Oleuropein aglycone opened to diales and rearranged to hydroxytyrosil-elenolate under strong reaction conditions. The results suggest that competition among olive BPseco HOMOs could induce glucoside hydrolysis during olive milling due to native olive β-glucosidases. The underlined olive BPsecos downstream molecular mechanism herein could provide new insights into the olive milling process to improve BPseco bioactives in olive oil and table olives, which would enhance both the functional food and the nutraceuticals that are produced from olives.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX 77204, USA.
| | - Nicola A Uccella
- IRESMO Foundation Group, via Petrozza 16A, 87040 Montalto Uffugo, Italy.
- Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, P. Bucci 42C, 87036 Rende, Italy.
| | - Luigi Gentile
- Chemistry and Chemical Technology Department, University of Calabria, P. Bucci 12C, 87036 Rende, Italy.
- Molecular Ecology, Microbial Ecology and Evolutionary Genetics (MEMEG) unit, Department of Biology, Lund University, 22362 Lund, Sweden.
| |
Collapse
|
12
|
Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2018; 19:ijms19020493. [PMID: 29414845 PMCID: PMC5855715 DOI: 10.3390/ijms19020493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022] Open
Abstract
Many studies reported that air pollution particulate matter (PM) exposure was associated with myocardial infarction (MI). Acrolein representing the unsaturated aldehydes, the main component of PM, derives from the incomplete combustion of wood, plastic, fossil fuels and the main constitute of cigarette smoking. However, the effect of acrolein on MI remains not that clear. In the current study, the effect of acrolein-exacerbated MI was investigated. In vivo, male Sprague–Dawley rats received olive leaf extract (OLE) followed by acrolein, then isoprenaline (ISO) was received by subcutaneous injection to induce MI. Results showed that the expression levels of GRP78 and CHOP, two major components of endoplasmic reticulum (ER) stress were higher in the combination of acrolein and ISO than those in ISO treatment. The apoptosis marker, Bax, was also higher while the anti-apoptosis indicator, Bcl2 expression was lower both at protein and mRNA levels in the combination group. Also, the acrolein-protein adducts and myocardial pathological damage increased in the combination of acrolein and ISO relative to the ISO treatment. Besides, cardiac parameters, ejection fraction (EF) and fractional shortening (FS) were reduced more significantly when acrolein was added than in ISO treatment. Interestingly, all the changes were able to be ameliorated by OLE. Since hydroxytyrosol (HT) and oleuropein (OP) were the main components in OLE, we next investigated the effect of HT and OP on cardiomyocyte H9c2 cell apoptosis induced by acrolein through ER stress and Bax pathway. Results showed that GRP78, CHOP and Bax expression were upregulated, while Bcl2 expression was downregulated both at the protein and mRNA levels, when the H9c2 cells were treated with acrolein. In addition, pretreatment with HT can reverse the expression of GRP78, CHOP, Bax and Bcl2 on the protein and mRNA levels, while there was no effect of OP on the expression of GRP78 and CHOP on the mRNA levels. Overall, all these results demonstrated that OLE and the main components (HT and OP) could prevent the negative effects of acrolein on myocardium and cardiomyocytes.
Collapse
|