1
|
Vidal-Quist JC, Ortego F, Rombauts S, Hernández-Crespo P. The genome-wide response of Dermatophagoides pteronyssinus to cystatin A, a peptidase inhibitor from human skin, sheds light on its digestive physiology and allergenicity. INSECT MOLECULAR BIOLOGY 2024; 33:662-677. [PMID: 38878274 DOI: 10.1111/imb.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/19/2024] [Indexed: 11/06/2024]
Abstract
The digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen-related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq. The ingestion of cystatin A resulted in significant regulation of different cysteine endopeptidase and glycosylase genes. One Der p 1-like and two cathepsin B-like cysteine endopeptidase genes of high basal expression were induced, which suggests their prominent role in proteolytic digestion together with major allergen Der p 1. A number of genes putatively participating in the interaction of mites with their microbiota and acquired by horizontal gene transfer were repressed, including genes encoding the peptidase Der p 38, two 1,3-beta-glucanases, a lysozyme and a GH19 chitinase. Finally, the disruption of mite digestion resulted in the regulation of up to 17 allergen and isoallergen genes. Altogether, our results shed light on the putative role of specific genes in digestion and illustrate the connection between the digestive physiology of HDM and allergy.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Félix Ortego
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Stephane Rombauts
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pedro Hernández-Crespo
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Ouyang X, Reihill JA, Douglas LEJ, Martin SL. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur Respir Rev 2024; 33:230126. [PMID: 38657996 PMCID: PMC11040391 DOI: 10.1183/16000617.0126-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
3
|
Shi L, Xiong Q, Ao FK, Wan TY, Xiao X, Liu X, Sun B, Tungtrongchitr A, Leung TF, Tsui SKW. Comparative analysis of cysteine proteases reveals gene family evolution of the group 1 allergens in astigmatic mites. Clin Transl Allergy 2023; 13:e12324. [PMID: 38146799 PMCID: PMC10722327 DOI: 10.1002/clt2.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Astigmatic mites contain potent allergens that can trigger IgE-mediated immune responses, leading to allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. In house dust mites Dermatophagoides pteronyssinus and Dermatophagoides farinae, group 1 allergens (Der p 1 and Der f 1), characterized as papain-like cysteine proteases, have been defined as the major allergens that have high prevalence and potency. Previous studies of mite group 1 allergens mainly focused on identification, comparison of sequence and structure, as well as the investigation of cross-reactivity. To achieve a comprehensive view of mite group 1 allergens, we performed a comparative genomic analysis of all the cysteine proteases in six astigmatic mite species to elucidate the evolutionary relationships of group 1 allergens. METHODS Based on the high-quality and annotated genomes, all the cysteine proteases in six astigmatic mite species were identified by sequence homology search. The phylogenetic relationships, gene synteny and expression levels were revealed by bioinformatic tools. The allergenicity of recombinant cysteine proteases was evaluated by enzyme-linked immunosorbent assay. RESULTS Tandem duplication was revealed as the major feature of cysteine protease gene evolution in astigmatic mites. The high IgE-binding capacity and the significant expression level of the cysteine protease DP_007902.01 suggested its potential as a novel group 1 allergen of D. pteronyssinus. In addition, gene decay events were identified in the skin-burrowing parasitic mite Sarcoptes scabiei. CONCLUSION This comprehensive analysis provided insights into the evolution of cysteine proteases, as well as the component-resolved diagnosis of mite allergies.
Collapse
Affiliation(s)
- Ling Shi
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong KongChina
| | - Qing Xiong
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong KongChina
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Fu Kiu Ao
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong KongChina
| | - Tsz Yau Wan
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong KongChina
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, School of MedicineShenzhen UniversityShenzhenChina
| | - Xiaoyu Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of MedicineShenzhen UniversityShenzhenChina
| | - Baoqing Sun
- State Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Ting Fan Leung
- Department of PaediatricsThe Chinese University of Hong KongHong KongChina
| | - Stephen Kwok Wing Tsui
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- Hong Kong Bioinformatics CentreThe Chinese University of Hong KongHong KongChina
- Centre for Microbial Genomics and ProteomicsThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
4
|
O'Grady SM, Kita H. ATP functions as a primary alarmin in allergen-induced type 2 immunity. Am J Physiol Cell Physiol 2023; 325:C1369-C1386. [PMID: 37842751 PMCID: PMC10861152 DOI: 10.1152/ajpcell.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental allergens that interact with the airway epithelium can activate cellular stress pathways that lead to the release of danger signals known as alarmins. The mechanisms of alarmin release are distinct from damage-associated molecular patterns (DAMPs), which typically escape from cells after loss of plasma membrane integrity. Oxidative stress represents a form of allergen-induced cellular stress that stimulates oxidant-sensing mechanisms coupled to pathways, which facilitate alarmin mobilization and efflux across the plasma membrane. In this review, we highlight examples of alarmin release and discuss their roles in the initiation of type 2 immunity and allergic airway inflammation. In addition, we discuss the concept of alarmin amplification, where "primary" alarmins, which are directly released in response to a specific cellular stress, stimulate additional signaling pathways that lead to secretion of "secondary" alarmins that include proinflammatory cytokines, such as IL-33, as well as genomic and mitochondrial DNA that coordinate or amplify type 2 immunity. Accordingly, allergen-evoked cellular stress can elicit a hierarchy of alarmin signaling responses from the airway epithelium that trigger local innate immune reactions, impact adaptive immunity, and exacerbate diseases including asthma and other chronic inflammatory conditions that affect airway function.
Collapse
Affiliation(s)
- Scott M O'Grady
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hirohito Kita
- Division of Allergy, Asthma and Immunology, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
5
|
Allam VSRR, Waern I, Taha S, Akula S, Wernersson S, Pejler G. Nafamostat has anti-asthmatic effects associated with suppressed pro-inflammatory gene expression, eosinophil infiltration and airway hyperreactivity. Front Immunol 2023; 14:1136780. [PMID: 37153590 PMCID: PMC10160450 DOI: 10.3389/fimmu.2023.1136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Asthma is characterized by an imbalance between proteases and their inhibitors. Hence, an attractive therapeutic option could be to interfere with asthma-associated proteases. Here we exploited this option by assessing the impact of nafamostat, a serine protease inhibitor known to neutralize mast cell tryptase. Methods Nafamostat was administered in a mouse model for asthma based on sensitization by house dust mite (HDM) extract, followed by the assessment of effects on airway hyperreactivity, inflammatory parameters and gene expression. Results We show that nafamostat efficiently suppressed the airway hyperreactivity in HDM-sensitized mice. This was accompanied by reduced infiltration of eosinophils and lymphocytes to the airways, and by lower levels of pro-inflammatory compounds within the airway lumen. Further, nafamostat had a dampening impact on goblet cell hyperplasia and smooth muscle layer thickening in the lungs of HDM-sensitized animals. To obtain deeper insight into the underlying mechanisms, a transcriptomic analysis was conducted. This revealed, as expected, that the HDM sensitization caused an upregulated expression of numerous pro-inflammatory genes. Further, the transcriptomic analysis showed that nafamostat suppressed the levels of multiple pro-inflammatory genes, with a particular impact on genes related to asthma. Discussion Taken together, this study provides extensive insight into the ameliorating effect of nafamostat on experimental asthma, and our findings can thereby provide a basis for the further evaluation of nafamostat as a potential therapeutic agent in human asthma.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sowsan Taha
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| |
Collapse
|
6
|
Foo ACY, Mueller GA. Abundance and Stability as Common Properties of Allergens. FRONTIERS IN ALLERGY 2021; 2:769728. [PMID: 35386965 PMCID: PMC8974735 DOI: 10.3389/falgy.2021.769728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
There have been many attempts to identify common biophysical properties which differentiate allergens from their non-immunogenic counterparts. This review will focus on recent studies which examine two such factors: abundance and stability. Anecdotal accounts have speculated that the elevated abundance of potential allergens would increase the likelihood of human exposure and thus the probability of sensitization. Similarly, the stability of potential allergens dictates its ability to remain a viable immunogen during the transfer from the source to humans. This stability could also increase the resilience of potential allergens to both gastric and endosomal degradation, further skewing the immune system toward allergy. Statistical analyses confirm both abundance and stability as common properties of allergens, while epidemiological surveys show a correlation between exposure levels (abundance) and allergic disease. Additional studies show that changes in protein stability can predictably alter gastric/endosomal processing and immunogenicity, providing a mechanistic link between stability and allergenicity. However, notable exceptions exist to both hypotheses which highlight the multifaceted nature of immunological sensitization, and further inform our understanding of some of these other factors and their contribution to allergic disease.
Collapse
Affiliation(s)
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in our understanding how environmental adjuvants promote the development of asthma. RECENT FINDINGS Asthma is a heterogeneous set of lung pathologies with overlapping features. Human studies and animal models suggest that exposure to different environmental adjuvants activate distinct immune pathways, which in turn give rise to distinct forms, or endotypes, of allergic asthma. Depending on their concentrations, inhaled TLR ligands can activate either type 2 inflammation, or Th17 differentiation, along with regulatory responses that function to attenuate inflammation. By contrast, a different category of environmental adjuvants, proteases, activate distinct immune pathways and prime predominantly type 2 immune responses. Asthma is not a single disease, but rather a group of pathologies with overlapping features. Different endotypes of asthma likely arise from perturbations of distinct immunologic pathways during allergic sensitization.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
8
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
9
|
Klimov P, Molva V, Nesvorna M, Pekar S, Shcherbachenko E, Erban T, Hubert J. Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol Ecol 2019; 95:5581497. [DOI: 10.1093/femsec/fiz153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
ABSTRACTThe variation in house dust mite microbial communities is important because various microorganisms modulate the production of allergens by their mite hosts and/or contaminate immunotherapeutic extracts. Temporal changes in mite microbiomes and the mite culture environment occurring at different stages of mite culture development are particularly understudied in this system. Here, we analyzed the dynamics of microbial communities during the culture growth of Dermatophagoides farinae. Changes in microbiomes were related to three key variables: the mite population density, microbial microcosm respiration and concentration of guanine (the mite nitrogenous waste metabolite). Mite populations exhibited the following phases: exponential growth, plateau and exponential decline. The intracellular bacterium Cardinium and the yeast Saccharomyces cerevisiae prevailed in the internal mite microbiomes, and the bacterium Lactobacillus fermentum was prevalent in the mite diet. The reduction in the mite population size during the late phases of culture development was related to the changes in their microbial profiles: the intracellular bacterium Cardinium was replaced by Staphylococcus, Oceanobacillus and Virgibacillus, and S. cerevisiae was replaced by the antagonistic fungi Aspergillus penicillioides and Candida. Increases in the guanine content were positively correlated with increases in the Staphylococcus and A. penicillioides profiles in the culture environment. Our results show that the mite microbiome exhibits strong, dynamic alterations in its profiles across different mite culture growth stages.
Collapse
Affiliation(s)
- Pavel Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48109, USA
- Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Vit Molva
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, CZ-12800 Prague 2, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 267/2, CZ-61137 Brno, Czechia
| | | | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| |
Collapse
|
10
|
Gordon EM, Yao X, Xu H, Karkowsky W, Kaler M, Kalchiem-Dekel O, Barochia AV, Gao M, Keeran KJ, Jeffries KR, Levine SJ. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects. J Allergy Clin Immunol 2019; 144:426-441.e3. [PMID: 30872118 DOI: 10.1016/j.jaci.2019.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND House dust mite (HDM)-challenged Apoe-/- mice display enhanced airway hyperreactivity and mucous cell metaplasia. OBJECTIVE We sought to characterize the pathways that induce apolipoprotein E (APOE) expression by bronchoalveolar lavage fluid (BALF) macrophages from asthmatic subjects and identify how APOE regulates IL-1β secretion. METHODS Macrophages were isolated from asthmatic BALF and derived from THP-1 cells and human monocytes. RESULTS HDM-derived cysteine and serine proteases induced APOE secretion from BALF macrophages through protease-activated receptor 2. APOE at concentrations of less than 2.5 nmol/L, which are similar to levels found in epithelial lining fluid from healthy adults, did not induce IL-1β release from BALF macrophages. In contrast, APOE at concentrations of 25 nmol/L or greater induced nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein (NLRP) 3 and pro-IL-1β expression by BALF macrophages, as well as the caspase-1-mediated generation of mature IL-1β secreted from cells. HDM acted synergistically with APOE to both prime and activate the NLRP3 inflammasome. In a murine model of neutrophilic airway inflammation induced by HDM and polyinosinic-polycytidylic acid, APOE reached a concentration of 32 nmol/L in epithelial lining fluid, with associated increases in BALF IL-1β levels. APOE-dependent NLRP3 inflammasome activation in macrophages was primarily mediated through a potassium efflux-dependent mechanism. CONCLUSION APOE can function as an endogenous, concentration-dependent pulmonary danger signal that primes and activates the NLPR3 inflammasome in BALF macrophages from asthmatic subjects to secrete IL-1β. This might represent a mechanism through which APOE amplifies pulmonary inflammatory responses when concentrations in the lung are increased to greater than normal levels, which can occur during viral exacerbations of HDM-induced asthma characterized by neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Haitao Xu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - William Karkowsky
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Karen J Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
11
|
Acevedo N, Zakzuk J, Caraballo L. House Dust Mite Allergy Under Changing Environments. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:450-469. [PMID: 31172715 PMCID: PMC6557771 DOI: 10.4168/aair.2019.11.4.450] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Environmental variations induced by industrialization and climate change partially explain the increase in prevalence and severity of allergic disease. One possible mechanism is the increase in allergen production leading to more exposure and sensitization in susceptible individuals. House dust mites (HDMs) are important sources of allergens inducing asthma and rhinitis, and experimentally they have been demonstrated to be very sensitive to microenvironment modifications; therefore, global or regional changes in temperature, humidity, air pollution or other environmental conditions could modify natural HDM growth, survival and allergen production. There is evidence that sensitization to HDMs has increased in some regions of the world, especially in the subtropical and tropical areas; however, the relationship of this increase with environmental changes is not so clear as has reported for pollen allergens. In this review, we address this point and explore the effects of current and predicted environmental changes on HDM growth, survival and allergen production, which could lead to immunoglobulin E (IgE) sensitization and allergic disease prevalence. We also assess the role of adjuvants of IgE responses, such as air pollution and helminth infections, and discuss the genetic and epigenetic aspects that could influence the adaptive process of humans to drastic and relatively recent environmental changes we are experiencing.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| |
Collapse
|
12
|
Bexley J, Kingswell N, Olivry T. Serum IgE cross-reactivity between fish and chicken meats in dogs. Vet Dermatol 2018; 30:25-e8. [PMID: 30378189 DOI: 10.1111/vde.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND In humans, a cross-reactive clinical allergy has been reported between three chicken and fish meat proteins: beta-enolase, aldolase A and parvalbumin. OBJECTIVE To evaluate if IgE cross-reactivity between chicken and fish also existed in the dog. ANIMALS Sera from dogs with suspected allergic skin disease and with IgE against chicken and fish. METHODS AND MATERIALS Sera were analysed by ELISA and immunoblotting with chicken, white fish (haddock and cod) and salmon extracts. Reciprocal inhibition ELISAs and inhibition immunoblots were then performed. Protein sequencing of bands identified on multiple extracts was determined by mass spectrometry. RESULTS Out of 53 archived canine sera tested by ELISA against chicken, white fish or salmon, 15 (28%), 12 (23%) and 26 (49%), respectively, had elevated IgE against one, two or all three of these extracts. Seven of the triple-reactive sera were subjected to reciprocal inhibition ELISAs. A >50% inhibition was found between chicken-fish, chicken-salmon and fish-salmon in seven, four and five of seven dogs, respectively. Immunoblotting identified multiple IgE-binding proteins of identical molecular weights in the three extracts; these were partially to fully cross-reactive by inhibition immunoblotting. Mass spectrometry identified nine cross-reactive proteins as: pyruvate kinase, creatine kinase, alpha-actin, glyceraldehyde-3-phosphate dehydrogenase, beta-enolase, aldolase, malate dehydrogenase, lactate dehydrogenase and triose-phosphate isomerase 1. All of these have been reported previously as fish, shellfish and/or chicken allergens for humans. CONCLUSIONS AND CLINICAL IMPORTANCE Whether any of these newly identified IgE cross-reactive chicken-fish allergens is the cause of clinical allergy needs to be determined in dogs reacting to at least two of these common food sources.
Collapse
Affiliation(s)
- Jennifer Bexley
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Nicola Kingswell
- Avacta Animal Health, Unit 651, Street 5, Thorp Arch Estate, Wetherby, Yorkshire, LS23 7FZ, UK
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Research Building, 1060 William Moore Drive, Raleigh, NC, 27606, USA.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|