1
|
Shang L, Shi W, Xu Y, Nong T, Li X, Li Z, Liu Y, Li J, Tang YP, Zhu M, Xu H. A novel compound heterozygous variation in the FKBP10 gene causes Bruck syndrome without congenital contractures: A case report. Heliyon 2024; 10:e28680. [PMID: 38590901 PMCID: PMC11000012 DOI: 10.1016/j.heliyon.2024.e28680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Background Bruck syndrome (BS) is an extremely rare autosomal-recessive connective tissue disorder mainly characterized by bone fragility, congenital joint contracture, and spinal deformity. It is also considered as a rare form of osteogenesis imperfecta (OI) due to features of osteopenia and fragility fractures. Its two forms, BS1 and BS2, are caused by pathogenic variations in FKBP10 and PLOD2, respectively. Objective We aimed to improve the clinical understanding of BS by presenting a case from China and to identify the genetic variants that led to this case. Methods OI was suspected in a Chinese boy with a history of recurrent long bone fractures, lumbar kyphosis, and dentinogenesis imperfecta (DI). Whole-exome sequencing (WES) was performed to identify pathogenic variations. Sanger sequencing was used to confirm the results of the WES. In silico analysis was used to predict the pathogenicity of genetic variants. Results WES and Sanger sequencing revealed a compound heterozygous variation in the FKBP10 gene (NM_021939, c.23dupG in exon 1, and c.825dupC in exon 5). Both variants resulted in a frameshift and premature stop codon. Of these two variants, c.23dupG has not been previously reported. The patient's parents were heterozygous carriers of one variant. In addition, zoledronic acid treatment improved the vertebral deformity and bone mineral density (BMD) significantly in this patient. Conclusions A novel compound heterozygous variation of FKBP10, c.23dupG/c.825dupC, was identified in a patient with moderately severe OI. Based on these findings, the patient was diagnosed with BS1 without congenital joint contractures or OI type XI. This study expands the spectrum of FKBP10 genetic variants that cause BS and OI.
Collapse
Affiliation(s)
- Liyuan Shang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weizhe Shi
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yibo Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tianying Nong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xia Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaohui Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanhan Liu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingchun Li
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ya-Ping Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingwei Zhu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongwen Xu
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Markeviciute V, Puthia M, Arvidsson L, Liu Y, Törnquist E, Tengattini A, Huang J, Bai Y, Vater C, Petrolis R, Zwingenberger S, Krisciukaitis A, Smailys A, Lukosevicius S, Stravinskas M, Isaksson H, Tarasevicius S, Lidgren L, Tägil M, Raina DB. Systemically administered zoledronic acid activates locally implanted synthetic hydroxyapatite particles enhancing peri-implant bone formation: A regenerative medicine approach to improve fracture fixation. Acta Biomater 2024; 179:354-370. [PMID: 38490481 DOI: 10.1016/j.actbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/11/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Fracture fixation in an ageing population is challenging and fixation failure increases mortality and societal costs. We report a novel fracture fixation treatment by applying a hydroxyapatite (HA) based biomaterial at the bone-implant interface and biologically activating the biomaterial by systemic administration of a bisphosphonate (zoledronic acid, ZA). We first used an animal model of implant integration and applied a calcium sulphate (CaS)/HA biomaterial around a metallic screw in the tibia of osteoporotic rats. Using systemic ZA administration at 2-weeks post-surgery, we demonstrated that the implant surrounded by HA particles showed significantly higher peri‑implant bone formation compared to the unaugmented implants at 6-weeks. We then evaluated the optimal timing (day 1, 3, 7 and 14) of ZA administration to achieve a robust effect on peri‑implant bone formation. Using fluorescent ZA, we demonstrated that the uptake of ZA in the CaS/HA material was the highest at 3- and 7-days post-implantation and the uptake kinetics had a profound effect on the eventual peri‑implant bone formation. We furthered our concept in a feasibility study on trochanteric fracture patients randomized to either CaS/HA augmentation or no augmentation followed by systemic ZA treatment. Radiographically, the CaS/HA group showed signs of increased peri‑implant bone formation compared with the controls. Finally, apart from HA, we demonstrated that the concept of biologically activating a ceramic material by ZA could also be applied to β-tricalcium phosphate. This novel approach for fracture treatment that enhances immediate and long-term fracture fixation in osteoporotic bone could potentially reduce reoperations, morbidity and mortality. STATEMENT OF SIGNIFICANCE: • Fracture fixation in an ageing population is challenging. Biomaterial-based augmentation of fracture fixation devices has been attempted but lack of satisfactory biological response limits their widespread use. • We report the biological activation of locally implanted microparticulate hydroxyapatite (HA) particles placed around an implant by systemic administration of the bisphosphonate zoledronic acid (ZA). The biological activation of HA by ZA enhances peri‑implant bone formation. •Timing of ZA administration after HA implantation is critical for optimal ZA uptake and consequently determines the extent of peri‑implant bone formation. • We translate the developed concept from small animal models of implant integration to a proof-of-concept clinical study on osteoporotic trochanteric fracture patients. • ZA based biological activation can also be applied to other calcium phosphate biomaterials.
Collapse
Affiliation(s)
- Vetra Markeviciute
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania; The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden
| | - Manoj Puthia
- The Faculty of Medicine, Division of Dermatology and Venerology, Lund University, 221 84 Lund, Sweden
| | - Linnea Arvidsson
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden
| | - Yang Liu
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden; Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine (SAHZU), Hangzhou, Zhejiang, China
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | - Jintian Huang
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden
| | - Yiguang Bai
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden; Cell, Tissue & Organ engineering laboratory, Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden; Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College Nanchong, Sichuan, China
| | - Corina Vater
- University Hospital Carl Gustav Carus at Technische Universität Dresden, University Center of Orthopedics, Trauma and Plastic Surgery, 01307 Dresden, Germany
| | - Robertas Petrolis
- Department of Physics, Mathematics and Biophysics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefan Zwingenberger
- University Hospital Carl Gustav Carus at Technische Universität Dresden, University Center of Orthopedics, Trauma and Plastic Surgery, 01307 Dresden, Germany
| | - Algimantas Krisciukaitis
- Department of Physics, Mathematics and Biophysics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alfredas Smailys
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Saulius Lukosevicius
- Department of Radiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Stravinskas
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sarunas Tarasevicius
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lars Lidgren
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden
| | - Magnus Tägil
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- The Faculty of Medicine, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Zhang Y, Jia S, Wen G, Xie S, Song Z, Qi M, Liang Y, Bi W, Dong W. Zoledronate Promotes Peri-Implant Osteogenesis in Diabetic Osteoporosis by the AMPK Pathway. Calcif Tissue Int 2023; 113:329-343. [PMID: 37392365 DOI: 10.1007/s00223-023-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Together with diabetic osteoporosis (DOP), diabetes patients experience poor peri-implant osteogenesis following implantation for dentition defects. Zoledronate (ZOL) is widely used to treat osteoporosis clinically. To evaluate the mechanism of ZOL for the treatment of DOP, experiments with DOP rats and high glucose-grown MC3T3-E1 cells were used. The DOP rats treated with ZOL and/or ZOL implants underwent a 4-week implant-healing interval, and then microcomputed tomography, biomechanical testing, and immunohistochemical staining were performed to elucidate the mechanism. In addition, MC3T3-E1 cells were maintained in an osteogenic medium with or without ZOL to confirm the mechanism. The cell migration, cellular actin content, and osteogenic differentiation were evaluated by a cell activity assay, a cell migration assay, as well as alkaline phosphatase, alizarin red S, and immunofluorescence staining. The mRNA and protein expression of adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphogenetic protein 2 (BMP2), and collagen type I (Col-I) were detected using real-time quantitative PCRs and western blot assays, respectively. In the DOP rats, ZOL markedly improved osteogenesis, enhanced bone strength and increased the expression of AMPK, p-AMPK, and Col-I in peri-implant bones. The in vitro findings showed that ZOL reversed the high glucose-induced inhibition of osteogenesis via the AMPK signaling pathway. In conclusion, the ability of ZOL to promote osteogenesis in DOP by targeting AMPK signaling suggests that therapy with ZOL, particularly simultaneous local and systemic administration, may be a unique approach for future implant repair in diabetes patients.
Collapse
Affiliation(s)
- Yan Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shunyi Jia
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Guochen Wen
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shanen Xie
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhiqiang Song
- Oral and Maxillofacial Surgery, TangShan BoChuang Stomatology Hospital, Tangshan, 063000, Hebei, China
| | - Mengchun Qi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yongqiang Liang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wenjuan Bi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Institute of Stomatology, Chinese PLA General Hospital, Fuxing Lu 28#, Beijing, 100853, China.
| |
Collapse
|
4
|
Tang L, Li B, Su Q, Chen X, He R. Identification of hub genes and therapeutic drugs in osteonecrosis of the femoral head through integrated bioinformatics analysis and literature mining. Sci Rep 2023; 13:11972. [PMID: 37488209 PMCID: PMC10366127 DOI: 10.1038/s41598-023-39258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a multifactorial disease leading to severely limited function. By far, the etiology and pathogenesis of ONFH are not fully understood, and surgery is the only effective way to treat ONFH. This study aims to identify hub genes and therapeutic drugs in ONFH. Two gene expression profiles were downloaded from the gene expression omnibus database, and the hub genes and candidate drugs for ONFH were identified through integrated bioinformatics analysis and cross-validated by literature mining. A total of 159 DEGs were identified. PTGS2, LRRK2, ANXA5, IGF1R, MCL1, TIMP2, LYN, CD68, CBL, and RUNX2 were validated as 10 hub genes, which has considerable implications for future genetic research and related research fields of ONFH. Our findings indicate that 85 drugs interact with ONFH, with most drugs exhibiting a positive impact on ONFH by promoting osteogenesis and angiogenesis or inhibiting microcirculation embolism, rather than being anti-inflammatory. Our study provides novel insights into the pathogenesis, prevention, and treatment of ONFH.
Collapse
Affiliation(s)
- Lan Tang
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Bin Li
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Qiuming Su
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Kunming, Calmette Hospital, Kunming City, Yunnan Province, China
| | - Xi Chen
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Rongxin He
- Department of Orthopedic, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jiefang Road, Hangzhou City, 310001, Zhejiang Province, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
5
|
Lu J, Hu D, Ma C, Shuai B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front Pharmacol 2022; 13:938447. [PMID: 35774616 PMCID: PMC9237325 DOI: 10.3389/fphar.2022.938447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is known as a silent disease in which the loss of bone mass and bone density does not cause obvious symptoms, resulting in insufficient treatment and preventive measures. The losses of bone mass and bone density become more severe over time and an only small percentage of patients are diagnosed when OP-related fractures occur. The high disability and mortality rates of OP-related fractures cause great psychological and physical damage and impose a heavy economic burden on individuals and society. Therefore, early intervention and treatment must be emphasized to achieve the overall goal of reducing the fracture risk. Anti-OP drugs are currently divided into three classes: antiresorptive agents, anabolic agents, and drugs with other mechanisms. In this review, research progress related to common anti-OP drugs in these three classes as well as targeted therapies is summarized to help researchers and clinicians understand their mechanisms of action and to promote pharmacological research and novel drug development.
Collapse
|
6
|
Petrovici AR, Silion M, Simionescu N, Kallala R, Pinteala M, Maier SS. Quantification of Low Amounts of Zoledronic Acid by HPLC-ESI-MS Analysis: Method Development and Validation. Int J Mol Sci 2022; 23:ijms23115944. [PMID: 35682618 PMCID: PMC9180824 DOI: 10.3390/ijms23115944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Zoledronic acid (ZA) is used in the treatment of various bone pathologies, but it forms complexes with calcium ions present in body fluids, decreasing ZA bioavailability. Thereby, the study first describes the identification of ZA-calcium complexes that form in calcium-rich environments, in order to establish the bioavailable ZA concentration. Then, a new method for quantification of low ZA amounts in milieus that mimics in vivo conditions by using simulated body fluid and calcium sulfate hemihydrate was described. Almost all analytical methods of ZA quantification described in the literature require compound derivatization. At very low concentrations, derivatization is prone to analyte loss, therefore compromising the analytical results. In our study, we avoided ZA derivatization by using a high-performance liquid chromatography and electrospray ionization mass spectrometry (HPLC-ESI-MS) system, conducting the investigation based on the fragmentation mass extracted ion chromatograms specific to the ZA protonated form. The method was validated by selectivity, precision, accuracy, linearity, signal to noise ratio, and limit of detection and limit of quantification calculation. Experimentally, this method can detect ranges of 0.1–0.5 ng/mL and precisely quantify ZA concentrations as low as 0.1 ng/mL. This method could provide the basis for quantifying low amounts of ZA in the blood during long-term administration.
Collapse
Affiliation(s)
- Anca-Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-R.P.); (M.P.)
| | - Mihaela Silion
- Physics of Polymers and Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-R.P.); (M.P.)
- Correspondence: (N.S.); (S.S.M.); Tel.: +40-332-880-050 (N.S.); +40-740-024-729 (S.S.M.)
| | - Rami Kallala
- Corthotec Limited, 130 Wood Street, London EC2V 6DL, UK;
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-R.P.); (M.P.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-R.P.); (M.P.)
- Polymers Research Center, “Gheorghe Asachi” Technical University of Iasi, 73 Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence: (N.S.); (S.S.M.); Tel.: +40-332-880-050 (N.S.); +40-740-024-729 (S.S.M.)
| |
Collapse
|
7
|
Abstract
SIRT3 is an NAD+-dependent deacetylase in the mitochondria with an extensive ability to regulate mitochondrial morphology and function. It has been reported that SIRT3 participates in the occurrence and development of many aging-related diseases. Osteoporosis is a common aging-related disease characterized by decreased bone mass and fragility fractures, which has caused a huge burden on society. Current research shows that SIRT3 is involved in the physiological processes of senescence of bone marrow mesenchymal stem cells (BMSCs), differentiation of BMSCs and osteoclasts. However, the specific effects and mechanisms of SIRT3 in osteoporosis are not clear. In the current review, we elaborated on the physiological functions of SIRT3, the cell types involved in bone remodeling, and the role of SIRT3 in osteoporosis. Furthermore, it also provided a theoretical basis for SIRT3 as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopaedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Shuangshuang Wang,
| |
Collapse
|
8
|
Feehan J, Nurgali K, Apostolopoulos V, Duque G. Development and validation of a new method to isolate, expand, and differentiate circulating osteogenic precursor (COP) cells. Bone Rep 2021; 15:101109. [PMID: 34368409 PMCID: PMC8326352 DOI: 10.1016/j.bonr.2021.101109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells are a population of progenitor cells in the peripheral blood with the capacity to form bone in vitro and in vivo. They have characteristics of the mesenchymal stem and progenitor pool found in the bone marrow; however, more recently, a population of COP cells has been identified with markers of the hematopoietic lineage such as CD45 and CD34. While this population has been associated with several bone pathologies, a lack of cell culture models and inconsistent characterization has limited mechanistic research into their behavior and physiology. In this study, we describe a method for the isolation of CD45+/CD34+/alkaline phosphatase (ALP) + COP cells via fluorescence-activated cell sorting, as well as their expansion and differentiation in culture. Hematopoietic COP cells are a discreet population within the monocyte fraction of the peripheral blood mononuclear cells, which form proliferative, fibroblastoid colonies in culture. Their expression of hematopoietic markers decreases with time in culture, but they express markers of osteogenesis and deposit calcium with differentiation. It is hoped that this will provide a standard for their isolation, for consistency in future research efforts, to allow for the translation of COP cells into clinical settings.
Collapse
Affiliation(s)
- Jack Feehan
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Corresponding author at: Level 3, Western Centre for Health Research and Education, Sunshine Hospital, Furlong Road, St Albans, 3021 Melbourne, Australia.
| |
Collapse
|
9
|
Dalle Carbonare L, Mottes M, Valenti MT. Medication-Related Osteonecrosis of the Jaw (MRONJ): Are Antiresorptive Drugs the Main Culprits or Only Accomplices? The Triggering Role of Vitamin D Deficiency. Nutrients 2021; 13:561. [PMID: 33567797 PMCID: PMC7915474 DOI: 10.3390/nu13020561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
Osteonecrosis of the jaw (ONJ) is a severe clinical condition characterized mostly but not exclusively by an area of exposed bone in the mandible and/or maxilla that typically does not heal over a period of 6-8 weeks. The diagnosis is first of all clinical, but an imaging feedback such as Magnetic Resonance is essential to confirm clinical suspicions. In the last few decades, medication-related osteonecrosis of the jaw (MRONJ) has been widely discussed. From the first case reported in 2003, many case series and reviews have appeared in the scientific literature. Almost all papers concerning this topic conclude that bisphosphonates (BPs) can induce this severe clinical condition, particularly in cancer patients. Nevertheless, the exact mechanism by which amino-BPs would be responsible for ONJ is still debatable. Recent findings suggest a possible alternative explanation for BPs role in this pattern. In the present work we discuss how a condition of osteomalacia and low vitamin D levels might be determinant factors.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine, University of Verona, 37134 Verona, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy;
| | - Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
10
|
Feehan J, Kassem M, Pignolo RJ, Duque G. Bone From Blood: Characteristics and Clinical Implications of Circulating Osteogenic Progenitor (COP) Cells. J Bone Miner Res 2021; 36:12-23. [PMID: 33118647 DOI: 10.1002/jbmr.4204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Circulating osteogenic progenitor (COP) cells are a population of cells in the peripheral blood with the capacity for bone formation, as well as broader differentiation into mesoderm-like cells in vitro. Although some of their biological characteristics are documented in vitro, their role in diseases of the musculoskeletal system remains yet to be fully evaluated. In this review, we provide an overview of the role of COP cells in a number of physiological and pathological conditions, as well as identify areas for future research. In addition, we suggest possible areas for clinical utilization in the management of musculoskeletal diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Hughes R, Chen X, Hunter KD, Hobbs JK, Holen I, Brown NJ. Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid. FASEB J 2019; 33:12768-12779. [PMID: 31490705 PMCID: PMC6902700 DOI: 10.1096/fj.201900553rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Zoledronic acid (ZOL) is an antiresorptive drug used to prevent bone loss in a variety of conditions, acting mainly through suppression of osteoclast activity. There is growing evidence that ZOL can also affect cells of the mesenchymal lineage in bone. We present novel data revealing significant changes in the abundance of perivascular mesenchymal stromal cells (MSCs)/osteoprogenitors and osteoblasts following the injection of ZOL, in vivo. In young mice with high bone turnover and an abundance of perivascular osteoprogenitors, ZOL significantly (P < 0.0001) increased new bone formation. This was accompanied by a decline in osterix-positive osteoprogenitors and a corresponding increase in osteoblasts. However, these effects were not observed in mature mice with low bone turnover. Interestingly, the ZOL-induced changes in cells of the mesenchymal lineage occurred independently of effects on the osteogenic vasculature. Thus, we demonstrate that a single, clinically relevant dose of ZOL can induce new bone formation in microenvironments enriched for perivascular MSC/osteoprogenitors and high osteogenic potential. This arises from the differentiation of perivascular osterix-positive MSC/osteoprogenitors into osteoblasts at sites that are innately osteogenic. Collectively, our data demonstrate that ZOL affects multiple cell types in bone and has differential effects depending on the level of bone turnover.-Hughes, R., Chen, X., Hunter, K. D., Hobbs, J. K., Holen, I., Brown, N. J. Bone marrow osteoprogenitors are depleted whereas osteoblasts are expanded independent of the osteogenic vasculature in response to zoledronic acid.
Collapse
Affiliation(s)
- Russell Hughes
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| | - Xinyue Chen
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- School of Clinical Dentistry, University of Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Ingunn Holen
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J. Brown
- Department of Oncology and Metabolism, Experimental Cancer Medicine Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Increased Gene Expression of RUNX2 and SOX9 in Mesenchymal Circulating Progenitors Is Associated with Autophagy during Physical Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8426259. [PMID: 31737174 PMCID: PMC6815530 DOI: 10.1155/2019/8426259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Lack of physical exercise is considered an important risk factor for chronic diseases. On the contrary, physical exercise reduces the morbidity rates of obesity, diabetes, bone disease, and hypertension. In order to gain novel molecular and cellular clues, we analyzed the effects of physical exercise on differentiation of mesenchymal circulating progenitor cells (M-CPCs) obtained from runners. We also investigated autophagy and telomerase-related gene expression to evaluate the involvement of specific cellular functions in the differentiation process. We performed cellular and molecular analyses in M-CPCs, obtained by a depletion method, of 22 subjects before (PRE RUN) and after (POST RUN) a half marathon performance. In order to prove our findings, we performed also in vitro analyses by testing the effects of runners' sera on a human bone marrow-derived mesenchymal stem (hBM-MSC) cell line. PCR array analyses of PRE RUN versus POST RUN M-CPC total RNAs put in evidence several genes which appeared to be modulated by physical activity. Our results showed that physical exercise promotes differentiation. Osteogenesis-related genes as RUNX2, MSX1, and SPP1 appeared to be upregulated after the run; data showed also increased levels of BMP2 and BMP6 expressions. SOX9, COL2A1, and COMP gene enhanced expression suggested the induction of chondrocytic differentiation as well. The expression of telomerase-associated genes and of two autophagy-related genes, ATG3 and ULK1, was also affected and correlated positively with MSC differentiation. These data highlight an attractive cellular scenario, outlining the role of autophagic response to physical exercise and suggesting new insights into the benefits of physical exercise in counteracting chronic degenerative conditions.
Collapse
|
13
|
Marofi F, Hassanzadeh A, Solali S, Vahedi G, Mousavi Ardehaie R, Salarinasab S, Aliparasti MR, Ghaebi M, Farshdousti Hagh M. Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes. J Cell Physiol 2019; 234:15108-15122. [PMID: 30652308 DOI: 10.1002/jcp.28152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/08/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Mousavi Ardehaie
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Reza Aliparasti
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Effects of Oral Anticoagulant Therapy on Gene Expression in Crosstalk between Osteogenic Progenitor Cells and Endothelial Cells. J Clin Med 2019; 8:jcm8030329. [PMID: 30857168 PMCID: PMC6462930 DOI: 10.3390/jcm8030329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Direct oral anti-coagulants (DOACs) are employed in clinical practice for the prevention and treatment of recurrent venous thromboembolism and for the prevention of stroke in non-valvular atrial fibrillation. DOACs directly and reversibly inhibit activated factor X or thrombin and can interfere with other pathophysiological processes such as inflammation, lipid metabolism, and bone turnover. We aimed to evaluate the possible effects of DOACs on osteogenesis and angiogenesis. We treated 34 patients affected by cardiovascular disorders with DOACs; biochemical and molecular analyses were performed before and after three months of treatment. Circulating progenitors (CPs; CD34−, CD45−, CD14−, CD73+, CD105+), which share typical bone marrow stem cell (MSCs) features, were harvested from peripheral blood of the study subjects to monitor the expression of osteogenesis-related genes RUNX2 and SPARC. Human umbilical vein endothelial cells (HUVECs) were used to probe angiogenesis-related VEGF, CD31, and CD105 gene expression. We performed co-culture experiments using a commercial human mesenchymal stem cells line (hMSCs) obtained from bone marrow and HUVECs. Clinical parameters related to bone metabolism, coagulation, renal and liver function, and the lipid profile were evaluated. Values of the C-terminal telopeptide type I collagen (CTX) increased after the treatment. We found a significant increase in osteogenesis marker gene expression in CPs after three months of anticoagulant therapy. An increase in the RUNX2 expression determinant alone was detected instead in hMSCs co-cultured with HUVECs in the presence of treated patients’ sera. The VEGF, CD31, and CD105 marker genes appeared to be significantly upregulated in HUVECs co-cultured with hMSCs in the presence of treated patients’ sera. Under these conditions, new vessel formation increased as well. Our results highlight an unexpected influence of DOAC therapy on osteogenic commitment and vascular endothelial function promotion.
Collapse
|
15
|
Wang Q, Liu J, Guo T, Liu D, Pan J. Epidermal Growth Factor Reverses the Inhibitory Effects of the Bisphosphonate, Zoledronic Acid, on Human Oral Keratinocytes and Human Vascular Endothelial Cells In Vitro via the Epidermal Growth Factor Receptor (EGFR)/Akt/Phosphoinositide 3-Kinase (PI3K) Signaling Pathway. Med Sci Monit 2019; 25:700-710. [PMID: 30675875 PMCID: PMC6357820 DOI: 10.12659/msm.911579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Medication-related osteonecrosis of the jaw (MRONJ) is due to the direct effects of drug toxicity and the effects on angiogenesis. The aims of this study were to evaluate the effects of treatment with the bisphosphonate, zoledronic acid, on human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs) in vitro, and whether epidermal growth factor (EGF) could alter these effects. Material/Methods HOKs and HUVECs were incubated with zoledronic acid or EGF. Cell viability was assessed by the cell counting kit-8 (CCK-8), cell apoptosis was studied using Annexin-V conjugated to fluorescein isothiocyanate (FITC). Angiogenesis was studied by observing HUVEC tube formation and cell migrations using a transwell assay. A scratch wound assay investigated cell migration of HOKs. Western blot measured expression levels of phosphorylated epidermal growth factor receptor (EGFR), Akt, phosphoinositide 3-kinase (PI3K), the mechanistic target of rapamycin (mTOR), and endothelial nitric oxide synthase (eNOS). Results Zoledronic acid treatment (5 μmol/L) significantly inhibited cell viability and cell migration of HOKs and HUVECs and angiogenesis of HUVECS (P<0.05); EGF partially reversed these effects (P<0.05). Zoledronic acid treatment of HOKs and HUVECs had no significant effects on apoptosis (P>0.05), but significantly reduced expression levels of p-EGFR, p-Akt, p-PI3K, p-mTOR), and p-eNOS (P<0.05); EGF partially reversed these effects and increased the expression levels (P<0.05). Conclusions EGF partially reversed the effects of the bisphosphonate, zoledronic acid, on HOKs and HUVECs in vitro via the EGFR/Akt/PI3K signaling pathway. Further studies are required to determine the effects of EGF on MRONJ including bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jiyuan Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Ting Guo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Dazhong Liu
- Xindu District Peoples' Hospital of Chengdu, Chengdu, Sichuan, China (mainland)
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
16
|
Valenti MT, Mottes M, Biotti A, Perduca M, Pisani A, Bovi M, Deiana M, Cheri S, Dalle Carbonare L. Clodronate as a Therapeutic Strategy against Osteoarthritis. Int J Mol Sci 2017; 18:ijms18122696. [PMID: 29236045 PMCID: PMC5751297 DOI: 10.3390/ijms18122696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent musculoskeletal pathology, is mainly characterized by the progressive degradation of articular cartilage due to an imbalance between anabolic and catabolic processes. Consequently, OA has been associated with defects in the chondrocitic differentiation of progenitor stem cells (PSCs). In addition, SOX9 is the transcription factor responsible for PSCs chondrogenic commitment. To evaluate the effects of the non-amino bisphosphonate clodronate in OA patients we investigated SOX9 gene expression in circulating progenitor cells (CPCs) and in an in vitro OA model. We evaluated pain intensity, mental and physical performance in OA patients, as well as serum biomarkers related to bone metabolism. In addition, in order to improve therapeutic strategies, we assayed nanoparticle-embedded clodronate (NPs-clo) in an in vitro model of chondrogenic differentiation. Our data showed upregulation of SOX9 gene expression upon treatment, suggesting an increase in chondrocytic commitment. Clodronate also reduced osteoarticular pain and improved mental and physical performance in patients. Furthermore, NPs-clo stimulated SOX9 expression more efficaciously than clodronate alone. Clodronate may therefore be considered a good therapeutic tool against OA; its formulation in nanoparticles may represent a promising challenge to counteract cartilage degeneration.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Internal Medicine, Section D, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
| | - Alessandro Biotti
- Internal Medicine, Section D, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Arianna Pisani
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Michele Bovi
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| | - Michela Deiana
- Internal Medicine, Section D, Department of Medicine, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
| | - Samuele Cheri
- Internal Medicine, Section D, Department of Medicine, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
| | - Luca Dalle Carbonare
- Internal Medicine, Section D, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
17
|
Bowden SA, Mahan JD. Zoledronic acid in pediatric metabolic bone disorders. Transl Pediatr 2017; 6:256-268. [PMID: 29184807 PMCID: PMC5682380 DOI: 10.21037/tp.2017.09.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/19/2017] [Indexed: 01/06/2023] Open
Abstract
Zoledronic acid (ZA), a highly potent intravenous bisphosphonate (BP), has been increasingly used in children with primary and secondary osteoporosis due to its convenience of shorter infusion time and less frequent dosing compared to pamidronate. Many studies have also demonstrated beneficial effects of ZA in other conditions such as hypercalcemia of malignancy, fibrous dysplasia (FD), chemotherapy-related osteonecrosis (ON) and metastatic bone disease. This review summarizes pharmacologic properties, mechanism of action, dosing regimen, and therapeutic outcomes of ZA in a variety of metabolic bone disorders in children. Several potential novel uses of ZA are also discussed. Safety concerns and adverse effects are also highlighted.
Collapse
Affiliation(s)
- Sasigarn A. Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children’s Hospital/the Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John D. Mahan
- Division of Nephrology, Department of Pediatrics, Nationwide Children’s Hospital/the Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|