1
|
Zhao C, Changhong Lin, Zhang B, Wang P, Zhang B, Yan L, Wang C, Qiu L. Study on the mechanism of miR-7562 regulating ATG5 and ATG12 genes in Penaeus monodon under Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109670. [PMID: 38838838 DOI: 10.1016/j.fsi.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the post-transcriptional regulation of genes and are pivotal in modulating immune responses in marine species, particularly during pathogen assaults. This study focused on the function of miR-7562 and its regulatory effects on autophagy against Vibrio harveyi infection in the black tiger shrimp (Penaeus monodon), an economically important aquatic species. We successfully cloned and characterized two essential autophagy-related genes (ATGs) from P. monodon, PmATG5 and PmATG12, and then identified the miRNAs potentially involved in co-regulating these genes, which were notably miR-7562, miR-8485, and miR-278. Subsequent bacterial challenge experiments and dual-luciferase reporter assays identified miR-7562 as the principal regulator of both genes, particularly by targeting the 3'UTR of each gene. By manipulating the in vivo levels of miR-7562 using mimics and antagomirs, we found significant differences in the expression of PmATG5 and PmATG12, which corresponded to alterations in autophagic activity. Notably, miR-7562 overexpression resulted in the downregulation of PmATG5 and PmATG12, leading to a subdued autophagic response. Conversely, miR-7562 knockdown elevated the expression levels of these genes, thereby enhancing autophagic activity. Our findings further revealed that during V. harveyi infection, miR-7562 continued to influence the autophagic pathway by specifically targeting the ATG5-ATG12 complex. This research not only sheds light on the miRNA-dependent mechanisms governing autophagic immunity in shrimp but also proposes miR-7562 as a promising target for therapeutic strategies intended to strengthen disease resistance within the crustacean aquaculture industry.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Changhong Lin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Bo Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China.
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Bo Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China.
| | - Lulu Yan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| |
Collapse
|
2
|
Xu Y, Guo R, Huang T, Guo C. miRNA-7145-cuedc2 axis controls hematopoiesis through JAK1/STAT3 signaling pathway. Cell Death Discov 2024; 10:209. [PMID: 38697957 PMCID: PMC11066045 DOI: 10.1038/s41420-024-01977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoiesis ensures tissue oxygenation, and remodeling as well as immune protection in vertebrates. During embryogenesis, hemangioblasts are the source of all blood cells. Gata1a and pu.1 are co-expressed in hemangioblasts before hemangioblasts are differentiated into blood cells. However, the genes that determine the differentiation of hemangioblasts into myeloid or erythroid cell lineages have not been fully uncovered. Here we showed that miRNA-7145, a miRNA with previously unknown function, was enriched in erythrocytes at the definitive wave, but not expressed in myeloid cells. Overexpression and loss-of-function analysis of miRNA-7145 revealed that miRNA-7145 functions as a strong inhibitor for myeloid progenitor cell differentiation while driving erythropoiesis during the primitive wave. Furthermore, we confirmed that cuedc2 is one of miRNA-7145 targeted-genes. Overexpression or knock-down of cuedc2 partially rescues the phenotype caused by miRNA-7145 overexpression or loss-of-function. As well, overexpression and loss-of-function analysis of cuedc2 showed that cuedc2 is required for myelopoiesis at the expense of erythropoiesis. Finally, we found that overexpression of zebrafish cuedc2 in 293 T cell inhibits the JAK1/STAT3 signaling pathway. Collectively, our results uncover a previously unknown miRNA-7145-cuedc2 axis, which regulate hematopoiesis through inhibiting the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yongsheng Xu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| | - Rui Guo
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Tao Huang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Chunming Guo
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
3
|
Ali A, Mahla SB, Reza V, Hossein A, Bahareh K, Mohammad H, Fatemeh S, Mostafa AB, Leili R. MicroRNAs: Potential prognostic and theranostic biomarkers in chronic lymphocytic leukemia. EJHAEM 2024; 5:191-205. [PMID: 38406506 PMCID: PMC10887358 DOI: 10.1002/jha2.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Small noncoding ribonucleic acids called microRNAs coordinate numerous critical physiological and biological processes such as cell division, proliferation, and death. These regulatory molecules interfere with the function of many genes by binding the 3'-UTR region of target mRNAs to inhibit their translation or even degrade them. Given that a large proportion of miRNAs behave as either tumor suppressors or oncogenes, any genetic or epigenetic aberration changeing their structure and/or function could initiate tumor formation and development. An example of such cancers is chronic lymphocytic leukemia (CLL), the most prevalent adult leukemia in Western nations, which is caused by unregulated growth and buildup of defective cells in the peripheral blood and lymphoid organs. Genetic alterations at cellular and molecular levels play an important role in the occurrence and development of CLL. In this vein, it was noted that the development of this disease is noticeably affected by changes in the expression and function of miRNAs. Many studies on miRNAs have shown that these molecules are pivotal in the prognosis of different cancers, including CLL, and their epigenetic alterations (e.g., methylation) can predict disease progression and response to treatment. Furthermore, miRNAs are involved in the development of drug resistance in CLL, and targeting these molecules can be considered a new therapeutic approach for the treatment of this disease. MiRNA screening can offer important information on the etiology and development of CLL. Considering the importance of miRNAs in gene expression regulation, their application in the diagnosis, prognosis, and treatment of CLL is reviewed in this paper.
Collapse
Affiliation(s)
- Afgar Ali
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sattarzadeh Bardsiri Mahla
- Stem Cells and Regenerative Medicine Innovation CenterKerman University of Medical SciencesKermanIran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Vahidi Reza
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Arezoomand Hossein
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical SciencesKerman University of Medical SciencesKermanIran
| | - Kashani Bahareh
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Hosseininaveh Mohammad
- Research Center for Hydatid Disease in IranKerman University of Medical SciencesKermanIran
| | - Sharifi Fatemeh
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| | - Amopour Bahnamiry Mostafa
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Rouhi Leili
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
4
|
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Sumenkova DV, Zhimulev IF. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int J Mol Sci 2023; 24:15082. [PMID: 37894763 PMCID: PMC10606460 DOI: 10.3390/ijms242015082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hodgkin's lymphomas (HL) and the majority of non-Hodgkin's lymphomas (NHL) derive from different stages of B-cell differentiation. MicroRNA (miRNA) expression profiles change during lymphopoiesis. Thus, miRNA expression analysis can be used as a reliable diagnostic tool to differentiate tumors. In addition, the identification of miRNA's role in lymphopoiesis impairment is an important fundamental task. The aim of this study was to analyze unique miRNA expression profiles in different types of B-cell lymphomas. We analyzed the expression levels of miRNA-18a, -20a, -96, -182, -183, -26b, -34a, -148b, -9, -150, -451a, -23b, -141, and -128 in lymph nodes (LNs) in the following cancer samples: HL (n = 41), diffuse large B-cell lymphoma (DLBCL) (n = 51), mantle cell lymphoma (MCL) (n = 15), follicular lymphoma (FL) (n = 12), and lymphadenopathy (LA) (n = 37), as well as bone marrow (BM) samples: HL (n = 11), DLBCL (n = 42), MCL (n = 14), FL (n = 16), and non-cancerous blood diseases (NCBD) (n = 43). The real-time RT-PCR method was used for analysis. An increase in BM expression levels of miRNA-26b, -150, and -141 in MCL (p < 0.01) and a decrease in BM levels of the miR-183-96-182 cluster and miRNA-451a in DLBCL (p < 0.01) were observed in comparison to NCBD. We also obtained data on increased LN levels of the miR-183-96-182 cluster in MCL (p < 0.01) and miRNA-18a, miRNA-96, and miRNA-9 in FL (p < 0.01), as well as decreased LN expression of miRNA-150 in DLBCL (p < 0.01), and miRNA-182, miRNA-150, and miRNA-128 in HL (p < 0.01). We showed that miRNA expression profile differs between BM and LNs depending on the type of B-cell lymphoma. This can be due to the effect of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Yana Yu. Shebunyaeva
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Dina V. Sumenkova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
5
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
6
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
7
|
Li M, Zhang D. DNA methyltransferase-1 in acute myeloid leukaemia: beyond the maintenance of DNA methylation. Ann Med 2022; 54:2011-2023. [PMID: 35838271 PMCID: PMC9291682 DOI: 10.1080/07853890.2022.2099578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is considered an essential epigenetic event during leukaemogenesis and the emergence of drug resistance, which is primarily regulated by DNA methyltransferases. DNA methyltransferase-1 (DNMT1) is one of the members of DNA methyltransferases, in charge of maintaining established methylation. Recently, DNMT1 is shown to promote malignant events of cancers through the epigenetic and non-epigenetic processes. Increasing studies in solid tumours have identified DNMT1 as a therapeutic target and a regulator of therapy resistance; however, it is unclear whether DNMT1 is a critical regulator in acute myeloid leukaemia (AML) and how it works. In this review, we summarized the recent understanding of DNMT1 in normal haematopoiesis and AML and discussed the possible functions of DNMT1 in promoting the development of AML and predicting the sensitivity of hypomethylation agents to better understand the relationship between DNMT1 and AML and to look for new hope to treat AML patients.Key messagesThe function of DNA methyltransferase-1 in acute myeloid leukaemia.DNA methyltransferase-1 predicts the sensitivity of drug and involves the emergence of drug resistance.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
8
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
9
|
Zhao C, Zhao Y, Zhao J, Meng G, Huang S, Liu Y, Wang S, Qi L. Acute myeloid leukemia cell-derived extracellular vesicles carrying microRNA-548ac regulate hematopoietic function via the TRIM28/STAT3 pathway. Cancer Gene Ther 2022; 29:918-929. [PMID: 34453123 DOI: 10.1038/s41417-021-00378-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022]
Abstract
microRNAs (miRNAs or miRs) can be delivered from acute myeloid leukemia (AML) cells to hematopoietic stem cells (HSCs) to regulate hematopoietic function via extracellular vesicles (EVs). In this study, we investigated the roles played by EVs that transport miR-548ac from AML cells in normal hematopoiesis. Bioinformatics analysis demonstrated that miR-548ac was highly expressed in AML-derived EVs. The expression of miR-548ac and TRIM28 and the targeting relationship were identified, and the results demonstrated that the expression of miR-548ac was upregulated in AML cell lines and AML cell-secreted EVs compared with CD34+ HSCs. AML-derived EVs targeted CD34+ HSCs to induce decreased expression of TRIM28 and downstream activation of STAT3. Exosomal miR-548ac was transferred into CD34+ HSCs to target TRIM28. Through gain- and loss-of-function assays, it was observed that the abrogated expression of miR-548ac or STAT3 promoted colony-forming units (CFU), whereas overexpressed miR-548ac repressed CFU, which was rescued by overexpression of TRIM28. Taken together, these results indicated that miR-548ac delivered by AML cell-derived EVs inhibits hematopoiesis via TRIM28-dependent STAT3 activation.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Preventive Medicine, Jilin Medical University, Jilin, P.R. China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, China
| | - Jiaqi Zhao
- Medical Technology College of Beihua University, Jilin, P.R. China
| | - Guixian Meng
- Department of Laboratory Medicine, Jilin Medical University, Jilin, P.R. China
| | - Shuyu Huang
- Department of Laboratory Medicine, Jilin Medical University, Jilin, P.R. China
| | - Yichen Liu
- Department of Laboratory Medicine, Jilin Medical University, Jilin, P.R. China
| | - Shanshan Wang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, Jilin, China. .,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
| |
Collapse
|
10
|
Yang L, Zheng W, Lv X, Xin S, Sun Y, Xu T. microRNA-144 modulates the NF-κB pathway in miiuy croaker (Miichthys miiuy) by targeting IκBα gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104359. [PMID: 35092745 DOI: 10.1016/j.dci.2022.104359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNA) are non-coding RNAs that regulate many biochemical processes, such as cell growth, proliferation and immune responses. In this study, we investigated miR-144 as a regulator of IκBα that promotes the activation of NF-κB signaling pathway. And IκBα interact with p65 blocks nuclear translocation of NF-κB and anchors NF-κB in cytoplasmic quiescent cells in an inactive form. The seed region of miR-144 can regulate gene expression by binding to the 3' UTR of IκBα and repress IκBα expression at the post-transcriptional level. More importantly, miR-144 can promote the activation of p65 by inhibiting IκBα, thus affecting the NF-κB signaling pathway. Thus, preventing excessive inflammatory responses from causing autoimmune diseases will help to further understand the immunoregulatory mechanisms of miRNAs in fish after invasion by pathogens.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
11
|
Ma L, Yang H, Yang X. Identification and integrative analysis of
microRNAs
in myelodysplastic syndromes based on
microRNAs
expression profile. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Limin Ma
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Haiping Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Xuewen Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| |
Collapse
|
12
|
Laurenzana I, Trino S, Lamorte D, De Stradis A, Santodirocco M, Sgambato A, De Luca L, Caivano A. Multiple Myeloma-Derived Extracellular Vesicles Impair Normal Hematopoiesis by Acting on Hematopoietic Stem and Progenitor Cells. Front Med (Lausanne) 2022; 8:793040. [PMID: 34977093 PMCID: PMC8716627 DOI: 10.3389/fmed.2021.793040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the abnormal proliferation of clonal plasma cells (PCs) in bone marrow (BM). MM-PCs progressively occupy and likely alter BM niches where reside hematopoietic stem and progenitor cells (HSPCs) whose viability, self-renewal, proliferation, commitment, and differentiation are essential for normal hematopoiesis. Extracellular vesicles (EVs) are particles released by normal and neoplastic cells, such as MM cells. They are important cell-to-cell communicators able to modify the phenotype, genotype, and the fate of the recipient cells. Investigation of mechanisms and mediators underlying HSPC-MM-PC crosstalk is warranted to better understand the MM hematopoietic impairment and for the identification of novel therapeutic strategies against this incurable malignancy. This study is aimed to evaluate whether EVs released by MM-PCs interact with HSPCs, what effects they exert, and the underlying mechanisms involved. Therefore, we investigated the viability, cell cycle, phenotype, clonogenicity, and microRNA profile of HSPCs exposed to MM cell line-released EVs (MM-EVs). Our data showed that: (i) MM cells released a heterogeneous population of EVs; (ii) MM-EVs caused a dose-dependent reduction of HSPCs viability; (iii) MM-EVs caused a redistribution of the HSPC pool characterized by a significant increase in the frequency of stem and early precursors accompanied by a reduction of late precursor cells, such as common myeloid progenitors (CMPs), megakaryocyte erythroid progenitors (MEPs), B and NK progenitors, and a slight increase of granulocyte macrophage progenitors (GMPs); (iv) MM-EVs caused an increase of stem and early precursors in S phase with a decreased number of cells in G0/G1 phase in a dose-dependent manner; (v) MM-EVs reduced the HSPC colony formation; and (vi) MM-EVs caused an increased expression level of C-X-C motif chemokine receptor type 4 (CXCR4) and activation of miRNAs. In conclusion, MM cells through the release of EVs, by acting directly on normal HSPCs, negatively dysregulate normal hematopoiesis, and this could have important therapeutic implications.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia CBB, Casa Sollievo Della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
13
|
Corrao G, Zaffaroni M, Bergamaschi L, Augugliaro M, Volpe S, Pepa M, Bonizzi G, Pece S, Amodio N, Mistretta FA, Luzzago S, Musi G, Alessi S, La Fauci FM, Tordonato C, Tosoni D, Cattani F, Gandini S, Petralia G, Pravettoni G, De Cobelli O, Viale G, Orecchia R, Marvaso G, Jereczek-Fossa BA. Exploring miRNA Signature and Other Potential Biomarkers for Oligometastatic Prostate Cancer Characterization: The Biological Challenge behind Clinical Practice. A Narrative Review. Cancers (Basel) 2021; 13:cancers13133278. [PMID: 34208918 PMCID: PMC8267686 DOI: 10.3390/cancers13133278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The oligometastatic prostate cancer state is defined as the presence of a number of lesions ≤ 5 and has been significantly correlated with better survival if compared to a number of metastases > 5. In particular, patients in an oligometastatic setting could benefit from a metastates directed therapy, which could control the disease delaying the start of systemic therapies. For this reason, the selection of true-oligometastatic patients who could benefit from such approach is particularly important in this setting. The aim of the present narrative review is to report the current state of the art on the liquid biopsy-derived analytes and their reliability as biomarkers in the clinics for the identification of true-oligometastatic patients. This kind of molecular profiling could refine current developments in the era of precision oncology allowing patients’ stratification and leading to more refined therapeutic strategies. Abstract In recent years, a growing interest has been directed towards oligometastatic prostate cancer (OMPC), as patients with three to five metastatic lesions have shown a significantly better survival as compared with those harboring a higher number of lesions. The efficacy of local ablative treatments directed on metastatic lesions (metastases-directed treatments) was extensively investigated, with the aim of preventing further disease progression and delaying the start of systemic androgen deprivation therapies. Definitive diagnosis of prostate cancer is traditionally based on histopathological analysis. Nevertheless, a bioptic sample—static in nature—inevitably fails to reflect the dynamics of the tumor and its biological response due to the dynamic selective pressure of cancer therapies, which can profoundly influence spatio-temporal heterogeneity. Furthermore, even with new imaging technologies allowing an increasingly early detection, the diagnosis of oligometastasis is currently based exclusively on radiological investigations. Given these premises, the development of minimally-invasive liquid biopsies was recently promoted and implemented as predictive biomarkers both for clinical decision-making at pre-treatment (baseline assessment) and for monitoring treatment response during the clinical course of the disease. Through liquid biopsy, different biomarkers, commonly extracted from blood, urine or saliva, can be characterized and implemented in clinical routine to select targeted therapies and assess treatment response. Moreover, this approach has the potential to act as a tissue substitute and to accelerate the identification of novel and consistent predictive analytes cost-efficiently. However, the utility of tumor profiling is currently limited in OMPC due to the lack of clinically validated predictive biomarkers. In this scenario, different ongoing trials, such as the RADIOSA trial, might provide additional insights into the biology of the oligometastatic state and on the identification of novel biomarkers for the outlining of true oligometastatic patients, paving the way towards a wider ideal approach of personalized medicine. The aim of the present narrative review is to report the current state of the art on the solidity of liquid biopsy-related analytes such as CTCs, cfDNA, miRNA and epi-miRNA, and to provide a benchmark for their further clinical implementation. Arguably, this kind of molecular profiling could refine current developments in the era of precision oncology and lead to more refined therapeutic strategies in this subset of oligometastatic patients.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Augugliaro
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Correspondence:
| | - Stefania Volpe
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Matteo Pepa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
| | - Giuseppina Bonizzi
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Salvatore Pece
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | | | - Stefano Luzzago
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Sarah Alessi
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Francesco Maria La Fauci
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Chiara Tordonato
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Daniela Tosoni
- Novel Diagnostics Program, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Federica Cattani
- Unit of Medical Physics IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.M.L.F.); (F.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Division of Radiology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Urology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (F.A.M.); (S.L.)
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
- Department of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.C.); (M.Z.); (L.B.); (S.V.); (M.P.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy; (S.P.); (G.M.); (C.T.); (G.P.); (G.P.); (O.D.C.); (G.V.)
| |
Collapse
|
14
|
Hu M, Lu Y, Zeng H, Zhang Z, Chen S, Qi Y, Xu Y, Chen F, Tang Y, Chen M, Du C, Shen M, Wang F, Su Y, Wang S, Wang J. MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 2021; 106:412-423. [PMID: 31974197 PMCID: PMC7849563 DOI: 10.3324/haematol.2019.236927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term hematopoietic output is dependent on hematopoietic stem cell (HSC) homeostasis which is maintained by a complex molecular network in which microRNA play crucial roles, although the underlying molecular basis has not been fully elucidated. Here we show that microRNA-21 (miR-21) is enriched in murine HSC, and that mice with conditional knockout of miR-21 exhibit an obvious perturbation in hematopoiesis. Moreover, significant loss of HSC quiescence and long-term reconstituting ability are observed in the absence of miR-21. Further studies revealed that miR-21 deficiency markedly decreases the nuclear factor kappa B (NF-B) pathway, accompanied by increased expression of PDCD4, a direct target of miR-21, in HSC. Interestingly, overexpression of PDCD4 in wild-type HSC generates similar phenotypes as those of miR-21-deficient HSC. More importantly, knockdown of PDCD4 can significantly rescue the attenuation of NF-B activity, thereby improving the defects in miR-21-null HSC. On the other hand, we found that miR-21 is capable of preventing HSC from ionizing radiation- induced DNA damage via activation of the NF-B pathway. Collectively, our data demonstrate that miR-21 is involved in maintaining HSC homeostasis and function, at least in part, by regulating the PDCD4-mediated NF-B pathway and provide a new insight into radioprotection of HSC.
Collapse
Affiliation(s)
- Mengjia Hu
- Third Military Medical University, Chongqing, China
| | - Yukai Lu
- Third Military Medical University, Chongqing, China
| | - Hao Zeng
- Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- Third Military Medical University, Chongqing, China
| | - Shilei Chen
- Third Military Medical University, Chongqing, China
| | - Yan Qi
- Third Military Medical University, Chongqing, China
| | - Yang Xu
- Third Military Medical University, Chongqing, China
| | - Fang Chen
- Third Military Medical University, Chongqing, China
| | - Yong Tang
- Third Military Medical University, Chongqing, China
| | - Mo Chen
- Third Military Medical University, Chongqing, China
| | - Changhong Du
- Third Military Medical University, Chongqing, China
| | | | | | - Yongping Su
- Third Military Medical University, Chongqing, China
| | - Song Wang
- Third Military Medical University, Chongqing, China
| | - Junping Wang
- Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
The miRNA Profile in Non-Hodgkin's Lymphoma Patients with Secondary Myelodysplasia. Cells 2020; 9:cells9102318. [PMID: 33086588 PMCID: PMC7656297 DOI: 10.3390/cells9102318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes are a group of clonal diseases of hematopoietic stem cells and are characterized by multilineage dysplasia, ineffective hematopoiesis, peripheral blood cytopenias, genetic instability and a risk of transformation to acute myeloid leukemia. Some patients with non-Hodgkin lymphomas (NHLs) may have developed secondary myelodysplasia before therapy. Bone marrow (BM) hematopoiesis is regulated by a spectrum of epigenetic factors, among which microRNAs (miRNAs) are special. The aim of this work is to profile miRNA expression in BM cells in untreated NHL patients with secondary myelodysplasia. A comparative analysis of miRNA expression levels between the NHL and non-cancer blood disorders samples revealed that let-7a-5p was upregulated, and miR-26a-5p, miR-199b-5p, miR-145-5p and miR-150-5p were downregulated in NHL with myelodysplasia (p < 0.05). We for the first time developed a profile of miRNA expression in BM samples in untreated NHL patients with secondary myelodysplasia. It can be assumed that the differential diagnosis for blood cancers and secondary BM conditions based on miRNA expression profiles will improve the accuracy and relevance of the early diagnosis of cancerous and precancerous lesions in BM.
Collapse
|
16
|
Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient Outcome. Cells 2020; 9:cells9040794. [PMID: 32224889 PMCID: PMC7226126 DOI: 10.3390/cells9040794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers. We performed small RNA-seq in paired samples of total plasma and plasma-derived extracellular vesicles (EVs) obtained from 42 patients and 17 healthy controls and analyzed the data with respect to the stage of the disease, patient survival, response to azacitidine, mutational status, and RNA editing. Significantly higher amounts of RNA material and a striking imbalance in RNA content between plasma and EVs (more than 400 significantly deregulated sncRNAs) were found in MDS patients compared to healthy controls. Moreover, the RNA content of EV cargo was more homogeneous than that of total plasma, and different RNAs were deregulated in these two types of material. Differential expression analyses identified that many hematopoiesis-related miRNAs (e.g., miR-34a, miR-125a, and miR-150) were significantly increased in MDS and that miRNAs clustered on 14q32 were specifically increased in early MDS. Only low numbers of circulating sncRNAs were significantly associated with somatic mutations in the SF3B1 or DNMT3A genes. Survival analysis defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p measured in EVs) as the most significantly associated with overall survival (HR = 5.866, p < 0.001). In total plasma, we identified five circulating miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) whose combined expression levels could predict the response to azacitidine treatment. In conclusion, our data demonstrate that circulating sncRNAs show specific patterns in MDS and that their expression changes during disease progression, providing a rationale for the potential clinical usefulness of circulating sncRNAs in MDS prognosis. However, monitoring sncRNA levels in total plasma or in the EV fraction does not reflect one another, instead, they seem to represent distinctive snapshots of the disease and the data should be interpreted circumspectly with respect to the type of material analyzed.
Collapse
|
17
|
Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2019; 145:102860. [PMID: 31874447 DOI: 10.1016/j.critrevonc.2019.102860] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid-organ cancer in males. The PSA testing may cause overdiagnosis and overtreatment for PCa patients. There is an urgent need for new biomarkers with greater discriminative precision for diagnosis and risk-stratification, to select for prostate biopsy and treatment of PCa. Liquid biopsy is a promising field with the potential to provide comprehensive information on the genetic landscape at diagnosis and to track genomic evolution over time in order to tailor the therapeutic choices at all stages of PCa. Exosomes, containing RNAs, DNAs and proteins, have been shown to be involved in tumour progression and a rich potential source of tumour biomarkers, especially for profiling analysis of their miRNAs content. In this review, we summarise the exosomal miRNAs in PCa diagnosis, prognosis and management, and further discuss their possible technical challenges associated with isolating PCa-specific exosomes.
Collapse
Affiliation(s)
- Jingpu Wang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Department of Urology, St. George Hospital, Kogarah, NSW, Australia; Prostate Clinical Research Group, Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Mei M, Zhang M. Non-coding RNAs in Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:515. [PMID: 31263681 PMCID: PMC6584837 DOI: 10.3389/fonc.2019.00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of non-Hodgkin's lymphoma that is associated with a poor outcome. Non-coding RNAs (ncRNAs), which account for 98% of human RNAs, lack the function of encoding proteins but instead have the important function of regulating gene expression, including transcription, translation, RNA splicing, editing, and turnover. However, the roles and mechanisms of aberrantly expressed ncRNAs in NKTCL are not fully clear. Aberrant expressions of microRNA (miRNAs) affect the PI3K/AKT signaling pathways (miRNA-21, miRNA-155, miRNA-150, miRNA-142, miRNA-494), NF-κB (miRNA-146a, miRNA-155) and cell cycle signaling pathways to regulate cell function. Moreover, Epstein-Barr virus (EBV) encoded miRNAs and EBV oncoprotein LMP-1 regulated the expression of cellular genes that induce invasion, metastasis, cell cycle progression and cellular transformation. In addition, NKTCL-associated Long non-coding RNA (lncRNA) ZFAS1 regulated certain pathways and lncRNA MALAT1 acted as a predictive marker. This review article provides an overview of ncRNAs associated with NKTCL, summarizes the function of significantly differentially expressed hotspot non-coding RNAs that contribute to the pathogenesis, diagnoses, treatment and prognosis of NKTCL and discusses the relevance of these ncRNAs to clinical practice.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Malpeli G, Barbi S, Tosadori G, Greco C, Zupo S, Pedron S, Brunelli M, Bertolaso A, Scupoli MT, Krampera M, Kamga PT, Croce CM, Calin GA, Scarpa A, Zamò A. MYC-related microRNAs signatures in non-Hodgkin B-cell lymphomas and their relationships with core cellular pathways. Oncotarget 2018; 9:29753-29771. [PMID: 30038718 PMCID: PMC6049865 DOI: 10.18632/oncotarget.25707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
In order to investigate the role of microRNAs in the pathogenesis of different B-cell lymhoma subtypes, we have applied an array-based assay to a series of 76 mixed non-Hodgkin B-cell lymphomas, including Burkitt's lymphoma (BL), diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, mantle cell lymphoma (MCL) and follicular lymphoma. Lymphomas clustered according to histological subtypes, driven by two miRNA clusters (the miR-29 family and the miR-17-92 cluster). Since the two miRNA clusters are known to be MYC-regulated, we investigated whether this would be supported in MYC-driven experimental models, and found that this signature separated BL cell lines and a MYC-translocated MCL cell lines from normal germinal center B-cells and other B-cell populations. Similar results were also reproduced in tissue samples comparing BL and reactive lymph node samples. The same series was then quantitatively analyzed for MYC expression by immunohistochemistry and MYC protein levels were compared with corresponding miRNA signatures. A specific metric was developed to summarize the levels of MYC-related microRNAs and the corresponding protein levels. We found that MYC-related signatures are directly related to MYC protein expression across the whole spectrum of B-cells and B-cell lymphoma, suggesting that the MYC-responsive machinery shows predominantly quantitative, rather than qualitative, modifications in B-cell lymphoma. Novel MYC-related miRNAs were also discovered by this approach. Finally, network analysis found that in BL MYC-related differentially expressed miRNAs could control, either positively or negatively, a limited number of hub proteins, including BCL2, CDK6, MYB, ZEB1, CTNNB1, BAX and XBP1.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriele Tosadori
- Center for BioMedical Computing, University of Verona, Verona, Italy
| | - Corinna Greco
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Simonetta Zupo
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertolaso
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Center for BioMedical Computing, University of Verona, Verona, Italy
| | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
21
|
Papageorgiou SG, Diamantopoulos MA, Kontos CK, Bouchla A, Vasilatou D, Bazani E, Scorilas A, Pappa V. MicroRNA-92a-3p overexpression in peripheral blood mononuclear cells is an independent predictor of prolonged overall survival of patients with chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:658-667. [PMID: 29911923 DOI: 10.1080/10428194.2018.1461861] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNA-92a-3p (miR-92a-3p) derives from the oncogenic miR-17/92 cluster and its highly homologous miR-106a/363 cluster. miR-92a-3p regulates the expression of key transcription factors such as HIF1 and inhibits SOCS1 to enhance the anti-apoptotic STAT3/IL6 signaling pathway. In this study, we assessed the putative usefulness of miR-92a-3p as a prognostic and/or diagnostic biomarker in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was extracted from mononuclear cells isolated from the peripheral blood of 88 CLL patients and 36 non-leukemic blood donors, was polyadenylated and reversely transcribed. miR-92a-3p expression was quantified using an accurate qPCR method. miR-92a-3p levels were significantly lower in peripheral blood mononuclear cells of CLL patients. Overall survival (OS) analysis revealed that high miR-92a-3p expression predicts significantly prolonged OS of CLL patients. Interestingly, miR-92a-3p overexpression remains a significant prognosticator in subgroups of CLL patients with distinct prognosis. In conclusion, miR-92a-3p overexpression is a potential surrogate biomarker of favorable outcome of CLL patients.
Collapse
Affiliation(s)
- Sotirios G Papageorgiou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Marios A Diamantopoulos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Christos K Kontos
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Anthi Bouchla
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Diamantina Vasilatou
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Efthymia Bazani
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| | - Andreas Scorilas
- b Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Vasiliki Pappa
- a Second Department of Internal Medicine and Research Unit , University General Hospital "Attikon" , Athens , Greece
| |
Collapse
|
22
|
Garcillán B, Figgett WA, Infantino S, Lim EX, Mackay F. Molecular control of B-cell homeostasis in health and malignancy. Immunol Cell Biol 2018; 96:453-462. [PMID: 29499091 DOI: 10.1111/imcb.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Altered B-cell homeostasis underlies a wide range of pathologies, from cancers to autoimmunity and immunodeficiency. The molecular safeguards against those disorders, which also allow effective immune responses, are therefore particularly critical. Here, we review recent findings detailing the fine control of B-cell homeostasis, during B-cell development, maturation in the periphery and during activation and differentiation into antibody-producing cells.
Collapse
Affiliation(s)
- Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - William A Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ee Xin Lim
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fabienne Mackay
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Guo L, Li W, Hu L, Zhou H, Zheng L, Yu L, Liang W. Diagnostic value of circulating microRNAs for liver cirrhosis: a meta-analysis. Oncotarget 2018; 9:5397-5405. [PMID: 29435187 PMCID: PMC5797058 DOI: 10.18632/oncotarget.23332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating microRNAs are potential biomarkers for various diseases including liver cirrhosis. We designed a meta-analysis to evaluate the diagnostic value of circulating microRNAs for liver cirrhosis patients. Eligible studies were identified by searching PubMed, Embase, and the Cochrane Library up to July 1, 2017. The diagnostic sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the receiver operating characteristic (AUROC) curve were analyzed using a random or fixed effects models based on the between-study heterogeneities. Thirteen studies from 7 articles with 627 patients and 418 healthy controls were included in this meta-analysis. All studies had high quality assessment scores. The pooled sensitivity, specificity, PLR, NLR, DOR and AUROC were 0.83 (95% CI: 0.80-0.86), 0.89 (95% CI: 0.86-0.92), 6.41 (95% CI: 3.93-10.44), 0.22 (95% CI: 0.14-0.33), 35.18 (95% CI: 15.90-77.81) and 0.93 (95% CI: 0.91-0.95), respectively. In conclusion, circulating microRNAs may serve as potential noninvasive biomarkers of liver cirrhosis.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Weiyan Li
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Huanhuan Zhou
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Zheng
- Institute of Cancer Research, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lifei Yu
- Department of Infectious Diseases, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| |
Collapse
|