1
|
Pan GP, Liu YH, Qi MX, Guo YQ, Shao ZL, Liu HT, Qian YW, Guo S, Yin YL, Li P. Alizarin attenuates oxidative stress-induced mitochondrial damage in vascular dementia rats by promoting TRPM2 ubiquitination and proteasomal degradation via Smurf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156119. [PMID: 39418971 DOI: 10.1016/j.phymed.2024.156119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alizarin (AZ) is a natural anthraquinone with anti-inflammatory and moderate antioxidant properties. PURPOSE In this study, we characterized the role of AZ in a rat model of vascular dementia (VaD) and explored its underlying mechanisms. METHODS VaD was induced by bilateral common carotid artery occlusion. RESULTS We found that AZ attenuated oxidative stress and improved mitochondrial structure and function in VaD rats, which led to the improvement of their learning and memory function. Mechanistically, AZ reduced transient receptor potential melastatin 2 (TRPM2) expression and activation of the Janus-kinase and signal transducer activator of transcription (JAK-STAT) pathway in VaD rats. In particular, the reduction in the expression of TRPM2 channels was the key to the attenuation of the oxidative stress-induced mitochondrial damage, which may be achieved by increasing the expression of the E3 ubiquitin ligase, Smad-ubiquitination regulatory factor 2 (Smurf2); thereby increasing the ubiquitination and degradation levels of TRPM2. CONCLUSION Our results suggest that AZ is an effective candidate drug for ameliorating VaD and provide new insights into the current clinical treatment of VaD.
Collapse
Affiliation(s)
- Guo-Pin Pan
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan-Hua Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xu Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130000, China
| | - Ya-Qi Guo
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhen-Lei Shao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Pharmacy Department, the First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui-Ting Liu
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicien, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
2
|
Pei MQ, Xu LM, Yang YS, Chen WC, Chen XL, Fang YM, Lin S, He HF. Latest advances and clinical application prospects of resveratrol therapy for neurocognitive disorders. Brain Res 2024; 1830:148821. [PMID: 38401770 DOI: 10.1016/j.brainres.2024.148821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.
Collapse
Affiliation(s)
- Meng-Qin Pei
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Li-Ming Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Xin-Li Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Yu-Ming Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, Fujian Province, China.
| |
Collapse
|
3
|
Bao QN, Xia MZ, Xiong J, Liu YW, Li YQ, Zhang XY, Chen ZH, Yao J, Wu KX, Zhong WQ, Xu SJ, Yin ZH, Liang FR. The effect of acupuncture on oxidative stress in animal models of vascular dementia: a systematic review and meta-analysis. Syst Rev 2024; 13:59. [PMID: 38331921 PMCID: PMC10851587 DOI: 10.1186/s13643-024-02463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Growing evidence showed that acupuncture may improve cognitive function by reducing oxidative stress, key to the pathogenesis in vascular dementia (VaD), but this is yet to be systematically analysed. This study aimed to summarize and evaluate the effect of acupuncture on oxidative stress in animal models of VaD. METHOD Eight databases including PubMed, Embase, Web of Science, Cochrane library, CNKI, Wan Fang, CBM, and VIP were searched since their establishment until April 2023, for studies that reported the effect of acupuncture on oxidative stress in VaD animal models. Relevant literature was screened, and information was extracted by two reviewers. The primary outcomes were the levels of oxidative stress indicators. The methodological quality was assessed via the SYRCLE Risk of Bias Tool. Statistical analyses were performed using the RevMan and Stata software. RESULTS In total, 22 studies with 747 animals were included. The methodology of most studies had flaws or uncertainties. The meta-analysis indicated that, overall, acupuncture significantly reduced the expression of pro-oxidants including reactive oxygen species (standardized mean differences [SMDs] = -4.29, 95% confidence interval [CI]: -6.26, -2.31), malondialdehyde (SMD = -2.27, 95% CI: -3.07, -1.47), nitric oxide (SMD = -0.85, 95% CI: -1.50, -0.20), and nitric oxide synthase (SMD = -1.01, 95% CI: -1.69, -0.34) and enhanced the levels of anti-oxidants including super oxide dismutase (SMD = 2.80, 95% CI: 1.98, 3.61), glutathione peroxidase (SMD = 1.32, 95% CI: -0.11, 2.76), and catalase (SMD = 1.31, 95% CI: 0.05, 2.58) in VaD animal models. In subgroup analyses, acupuncture showed significant effects on most variables. Only partial modelling methods and treatment duration could interpret the heterogeneity of some outcomes. CONCLUSION Acupuncture may inhibit oxidative stress to improve cognitive deficits in animal models of VaD. Nevertheless, the methodological quality is unsatisfactory. More high-quality research with a rigorous design and further experimental researches and clinical trials are needed to confirm these findings. SYSTEMATIC REVIEW REGISTRATION This study was registered in PROSPERO (CRD42023411720).
Collapse
Affiliation(s)
- Qiong-Nan Bao
- Department of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Man-Ze Xia
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Xiong
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi-Wei Liu
- Department of Rehabilitation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ya-Qin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Yue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng-Hong Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ke-Xin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wan-Qi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shao-Jun Xu
- Department of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| | - Zi-Han Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Fan-Rong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Ma X, Zhao J, Li S, Wang Y, Liu J, Shi Y, Liu J, Chen Y, Chen Y, Pan Q. Rab27a-dependent exosomes protect against cerebral ischemic injury by reducing endothelial oxidative stress and apoptosis. CNS Neurosci Ther 2022; 28:1596-1612. [PMID: 35770324 PMCID: PMC9437240 DOI: 10.1111/cns.13902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Multicellular crosstalk within the brain tissue has been suggested to play a critical role in maintaining cerebral vascular homeostasis. Exosomes (EXs) mediated cell–cell communication, but its role in cerebral ischemic injury is largely unknown. Rab27a is one of the major genes controlling EX release. Here, we explored the role of Rab27a in regulating brain EXs secretion, and the effects of Rab27a‐mediated EXs on ischemia evoked cerebral vascular disruption and brain injury. Methods Cerebral ischemia was induced in Rab27a knockout (Rab27a−/−) and wide type (WT) mice by transient middle cerebral artery occlusion (tMCAO). Differential gene expression analysis was performed in ischemic brain tissue by using mRNA sequencing. EXs isolated from brain tissue of Rab27a−/− and WT mice (EXWT or EXRab27a−/−) were pre‐administrated into tMCAO operated Rab27a−/− mice or oxygen and glucose deprivation (OGD) treated primary brain vascular endothelial cells (ECs). Results We demonstrated that Rab27a expression in the peri‐infarct area of brain was significantly elevated, which was associated with local elevation in EXs secretion. Rab27a deficiency dramatically decreased the level of EXs in brain tissue of normal and tMCAO‐treated mice, and Rab27a−/− mice displayed an increase in infarct volume and NDS, and a decrease in cMVD and CBF following tMCAO. Pre‐infusion of EXWT increased the brain EXs levels in the tMCAO operated Rab27a−/− mice, accompanied with an increase in cMVD and CBF, and a decrease in infarct volume, NDS, ROS production, and apoptosis. The effects of EXRab27a−/− infusion were much diminished although in a dose‐dependent manner. In OGD‐treated ECs, EXRab27a−/− showed less effectivity than EXWT in decreasing ROS overproduction and apoptosis, paralleling with down‐regulated expression of NOX2 and cleaved caspase‐3. Conclusion Our study demonstrates that Rab27a controls brain EXs secretion and functions, contributing to cerebral vascular protection from ischemic insult by preventing oxidative stress and apoptosis via down‐regulating NOX2 and cleaved caspase‐3 expression.
Collapse
Affiliation(s)
- Xiaotang Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jia Zhao
- Emergency Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Suqing Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Jinhua Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yumeng Shi
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiehong Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyu Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
5
|
Kaur M, Sharma S. Molecular mechanisms of cognitive impairment associated with stroke. Metab Brain Dis 2022; 37:279-287. [PMID: 35029798 DOI: 10.1007/s11011-022-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Stroke is the second leading cause of death after coronary heart disease in developed countries and is the greatest cause of disability and cognitive impairment. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, hypertension, arterial fibrillation, diabetes, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke, depressive illness duration of a stroke, location, volume, intensity, and degree of neuronal degeneration, location and size of infarction after stroke, time interval after stroke other cerebral dysfunctions. The pathophysiology of stroke associated cognitive impairment is complex and recent molecular, cellular, and animal models studies have revealed that multiple cellular changes have been implicated, including altered redox state, mitochondrial dysfunction, disruption of the blood-brain barrier, perivascular spacing, glymphatic system impairment, microglia activation and amyloid-β deposition in the parenchyma of the brain. These studies have also evidenced the involvement of various transcription factors, intracellular adhesion molecules, and endogenous growth factors in the pathogenesis of cognitive impairment associated with stroke and providing scope for developing therapeutic strategies for treatment. This review summarizes the latest research findings on molecular mechanisms involved in cognitive impairment associated with stroke.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Saurabh Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
6
|
Lourenço CF, Laranjinha J. Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front Physiol 2021; 12:729201. [PMID: 34744769 PMCID: PMC8569710 DOI: 10.3389/fphys.2021.729201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (•NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, •NO is produced in neurons upon the activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of •NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of •NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the •NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of •NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on •NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the •NO bioavailability and to manage NVC dysfunction in neuropathological conditions.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Zhang F, Zhao K, Tang T, Deng Y, Zhang Y, Feng S, Feng P, Guo M, Li X, Cen J. Bisindole compound 4ae ameliorated cognitive impairment in rats with vascular dementia by anti-inflammation effect via microglia cells. Eur J Pharmacol 2021; 908:174357. [PMID: 34284012 DOI: 10.1016/j.ejphar.2021.174357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Neuroinflammation is considered as an important mechanism of vascular dementia (VaD). Our primary study showed that the bisindole analogue (2-(2-(bis(5-chloro-1H-indol-3-yl)methyl)phenoxy)aniline, compound 4ae) had great anti-inflammation in zebrafish. Rat model of permanent occlusion of the bilateral common carotid arteries (2-vessel occlusion, 2VO) was utilized to evaluate the neuroprotective effect of 4ae. Our results showed that 4ae treatment effectively reduced Iba-1 positive microglia cells in cerebral cortex and hippocampus after cerebral ischemia. Compared with the model group, neuroinflammation characterized by Interleukin (IL)-6 and tumor necrosis factor (TNF)-α, oxidative stress characterized by reactive oxygen species (ROS) and superoxide dismutase (SOD) were both improved significantly after treatment with 4ae. Moreover, 4ae treatment significantly reversed ischemia-induced ACE enhancement, while notably increased the level of ACE2. To further elucidate the role of 4ae on neuroinflammation, we investigated the effects of 4ae on lipopolysaccharide (LPS)-induced inflammation in BV2 microglia cells, a kind of innate immune cells in central nervous system. The results demonstrated that the expressions of CD11b, TNFα and IL-6 and the level of ROS were up-regulated after treatment with LPS. More importantly, 4ae was able to block the activation of BV2 by reducing ROS production and the expression of inflammatory cytokines. In addition, our results suggested that 4ae inhibited the inflammatory response mediated by microglia cells by inhibiting NF-κB. This anti-inflammatory effect on microglia may be a potential mechanism for the neuroprotective effect of 4ae in VaD.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China
| | - Keqing Zhao
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, 999077, PR China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, 999077, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China
| | - Shuo Feng
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China
| | - Pu Feng
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China
| | - Mengyuan Guo
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China
| | - Xiaohui Li
- The First Affiliated Hospital of Henan University, Kaifeng, 475000, PR China.
| | - Juan Cen
- School of Pharmacy, Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
8
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
9
|
Hosoki S, Tanaka T, Ihara M. Diagnostic and prognostic blood biomarkers in vascular dementia: From the viewpoint of ischemic stroke. Neurochem Int 2021; 146:105015. [PMID: 33781849 DOI: 10.1016/j.neuint.2021.105015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reliable quantitative blood biomarkers are important in vascular dementia (VaD) because early diagnosis and therapeutic intervention are effective in preventing progression of dementia. Although many blood biomarkers for acute ischemic stroke (AIS) or VaD have been reported, there are few reliable blood biomarkers. VaD and AIS have similar pathological conditions that are associated with small vessel disease (SVD) such as oxidative stress, inflammation, endothelial dysfunction, and neuronal injury. Therefore, it may be possible to find superior blood biomarkers of VaD among AIS blood biomarkers. Owing to recent developments, noncoding RNAs such as microRNA and long noncoding RNA, which can be analyzed using a single drop of blood, are also particularly reliable VaD markers because they stably reflect brain tissue damage. A multimarker combining several blood biomarkers or artificial intelligence technology may also be beneficial to compensate for insufficiencies of a single blood biomarker. This review describes the blood biomarkers of VaD and how they are related to blood biomarkers of AIS.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.
| |
Collapse
|
10
|
Prakash R, Mishra RK, Ahmad A, Khan MA, Khan R, Raza SS. Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111700. [PMID: 33545859 DOI: 10.1016/j.msec.2020.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Stroke remains the leading cause of morbidity and mortality. Stem cell-based therapy offers promising hope for survivors and their families. Despite the clinical translation of stem cell-based therapies in stroke patients for almost two decades, results of these randomized controlled trials are not very optimistic. In these lines, an amalgamation of nanocarriers based drug delivery with stem cells holds great promise in enhancing stroke recovery. In the present study, we treated oxygen-glucose deprivation (OGD) exposed dental pulp stem cells (DPSCs) and mesenchymal stem cells (MSCs) with sivelestat-loaded nanostructured lipid carriers (NLCs). Various physicochemical limitations associated with sivelestat drug applications and its recent inefficacy in the clinical trials necessitates the development of novel delivery approaches for sivelestat. Therefore, to improve its efficacy on the survival of DPSCs and MSCs cell types under OGD insult, the current NLCs were formulated and characterized. Resulting NLCs exhibited a hydrodynamic diameter of 160-180 nm by DLS technique and possessed good PDI values of 0.2-0.3. Their shape, size and surface morphology were corroborated with microscopic techniques like TEM, SEM, and AFM. FTIR and UV-Vis techniques confirmed nanocarrier's loading capacity, encapsulation efficiency of sivelestat, and drug release profile. Oxidative stress in DPSCs and MSCs was assessed by DHE and DCFDA staining, and cell viability was assessed by Trypan blue exclusion test and MTT assay. Results indicated that sivelestat-loaded NLCs protected the loss of cell membrane integrity and restored cell morphology. Furthermore, NLCs successfully defended human DPSCs and MSCs against OGD-induced oxidative and inflammatory stress. In conclusion, modulation of oxidative and inflammatory stress by treatment with sivelestat-loaded NLCs in DPSCs and MSCs provides a novel strategy to rescue stem cells during ischemic stroke.
Collapse
Affiliation(s)
- Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India; Department of Stem Cell Biology and Regenerative Medicine, Era University, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
11
|
Gong P, Chen YQ, Lin AH, Zhang HB, Zhang Y, Ye RD, Yu Y. p47 phox deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. ALZHEIMERS RESEARCH & THERAPY 2020; 12:146. [PMID: 33183342 PMCID: PMC7659091 DOI: 10.1186/s13195-020-00714-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023]
Abstract
Background Alzheimer’s disease (AD) is characterized by progressive memory loss and cognitive impairment. The aggregation of amyloid β (Aβ) and hyperphosphorylated tau protein are two major pathological features of AD. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) has been indicated in Aβ pathology; however, whether and how it affects tau pathology are not yet clear. Methods The role of NOX2 in cognitive function, amyloid plaque formation, and tau hyperphosphorylation were examined in APP/PS1 transgenic mice mated with p47phox-deficient mice (with deletion of the gene of neutrophil cytosolic factor 1, Ncf1) and/or in p47phox-deficient mice receiving intracerebroventricular (ICV) injection of streptozotocin (STZ). The cognitive and non-cognitive functions in these mice were assessed by Morris water maze, Rotarod test, open field, and elevated plus maze. Aβ levels, amyloid plaques, p47phox expression, and astrocyte activation were evaluated using immunofluorescence staining, ELISA, and/or Western blotting. Cultured primary neuronal cells were treated with okadaic acid or conditioned media (CM) from high glucose-stimulated primary astrocytes. The alteration in tau pathology was determined using Western blotting and immunofluorescence staining. Results Deletion of the gene coding for p47phox, the organizer subunit of NOX2, significantly attenuated cognitive impairment and tau pathology in these mice. p47phox deficiency decreased the activation of astrocytes but had no effect on Aβ levels and amyloid plaque formation in the brains of aged APP/PS1 mice, which displayed markedly increased expression of p47phox in neurons and astrocytes. Cell culture studies found that neuronal p47phox deletion attenuated okadaic acid-induced tau hyperphosphorylation at specific sites in primary cultures of neurons. CM from high glucose-treated WT astrocytes increased tau hyperphosphorylation in primary neurons, whereas this effect was absent from p47phox-deficient astrocytes. Conclusions These results suggest that p47phox is associated with cognitive function and tau pathology in AD. p47phox expressed in neurons contributes to tau hyperphosphorylation directly, while p47phox in astrocytes affect tau hyperphosphorylation by activating astrocytes indirectly. Our results provide new insights into the role of NOX2 in AD and indicate that targeted inhibition of p47phox may be a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Ping Gong
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan-Qing Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ai-Hua Lin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hai-Bo Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Yang Yu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|
13
|
Alomari MA, Alzoubi KH, Khabour OF. Differences in oxidative stress profile in adolescents smoking waterpipe versus cigarettes: The Irbid TRY Project. Physiol Rep 2020. [PMCID: PMC7484827 DOI: 10.14814/phy2.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mahmoud A. Alomari
- Department of Physical Education Qatar University Doha Qatar
- Division of Physical Therapy Department of Rehabilitation Sciences Jordan University of Science and Technology Irbid Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Jordan University of Science and Technology Irbid Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
14
|
Cao X, Wu L, Zhang J, Dolg M. Density Functional Studies of Coenzyme NADPH and Its Oxidized Form NADP + : Structures, UV-Vis Spectra, and the Oxidation Mechanism of NADPH. J Comput Chem 2019; 41:305-316. [PMID: 31713255 DOI: 10.1002/jcc.26103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Density functional theory has been used to study the biologically important coenzyme NADPH and its oxidized form NADP+ . It was found that free NADPH prefers a compact structure in gas phase and exists in more extended geometries in aqueous solution. Ultraviolet-visible absorption spectra in aqueous solution were calculated for NADPH with an explicit treatment of 100 surrounding water molecules in combination with the COSMO solvation model for bulk hydration effects. The obtained spectra using the B3LYP hybrid density functional agree quite well with experimental data. The changes of Gibbs free energies ΔG in reactions of NADPH with O2 observed experimentally in cardiovascular and in chemical systems, that is, NADPH + 2 3 O2 → NADP+ + 2 O2 - + H+ and NADPH + 1 O2 + H+ → NADP+ + H2 O2 , respectively, were calculated. The NADPH oxidation reaction in the cardiovascular system cannot proceed without activation since the obtained ΔG is positive. The reaction of NADPH in the chemical system with singlet oxygen was found to proceed in two ways, each consisting of two steps, that is, NADPH firstly reacts with 1 O2 barrierlessly to form NADP+ and HO2 - , from which H2 O2 is formed in a spontaneous reaction with H+ , or 1 O2 and H+ initially form 1 HO2 + , which further reacts with NADPH to yield NADP+ and H2 O2 . © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoyan Cao
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany
| | - Liangliang Wu
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing, 10087, China
| | - Jun Zhang
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801-3364
| | - Michael Dolg
- Institute for Theoretical Chemistry, University of Cologne, Greinstr. 4, D-50939, Cologne, Germany
| |
Collapse
|
15
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
The Combined Extract of Black Sticky Rice and Dill Improves Poststroke Cognitive Impairment in Metabolic Syndrome Condition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9089035. [PMID: 30937145 PMCID: PMC6413387 DOI: 10.1155/2019/9089035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Despite the increase in cognitive deficit following stroke in metabolic syndrome (MetS) condition, the therapeutic strategy is still limited. Since oxidative stress and neuroinflammation play the crucial roles on the pathophysiology of aforementioned conditions, the cognitive enhancing effect of the combined extract of Oryza sativa and Anethum graveolens was considered based on their antioxidant, anti-inflammation, and neuroprotective effects together with the synergistic effect concept. Male Wistar rats weighing 180-220 g were induced metabolic syndrome-like condition by using a high-carbohydrate high-fat diet (HCHF diet). Then, reperfusion injury following cerebral ischemia was induced by the occlusion of right middle cerebral artery and treated with the combined extract of O. sativa and A. graveolens (OA extract) at doses of 0.5, 5, and 50 mg/kg BW once daily for 21 days. Spatial memory was assessed every 7 days throughout the experimental period. At the end of the study, neuron and glial fibrillary acidic protein- (GFAP-) positive cell densities, the oxidative stress status, AChE, and the expression of proinflammatory cytokines (TNF-α, IL-6) in the hippocampus were determined. The results showed that OA extract at all doses used in this study significantly improved memory together with the reductions of MDA, TNF-α, IL-6, AChE, and density of GFAP-positive cell but increased neuron density in the hippocampus. Taken together, OA is the potential cognitive enhancer in memory impairment following stroke in MetS condition. The possible underlying mechanism may occur partly via the reductions of oxidative stress status, GFAP-positive cell density, and neuroinflammatory cytokines such as TNF-α and IL-6 together with the suppression of AChE activity in the hippocampus. This study suggests that OA is the potential functional ingredient to improve the cognitive enhancer. However, further clinical research is required.
Collapse
|
17
|
Sakurada R, Odagiri K, Hakamata A, Kamiya C, Wei J, Watanabe H. Calcium Release from Endoplasmic Reticulum Involves Calmodulin-Mediated NADPH Oxidase-Derived Reactive Oxygen Species Production in Endothelial Cells. Int J Mol Sci 2019; 20:ijms20071644. [PMID: 30987055 PMCID: PMC6480165 DOI: 10.3390/ijms20071644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Previous studies demonstrated that calcium/calmodulin (Ca2+/CaM) activates nicotinamide adenine dinucleotide phosphate oxidases (NOX). In endothelial cells, the elevation of intracellular Ca2+ level consists of two components: Ca2+ mobilization from the endoplasmic reticulum (ER) and the subsequent store-operated Ca2+ entry. However, little is known about which component of Ca2+ increase is required to activate NOX in endothelial cells. Here, we investigated the mechanism that regulates NOX-derived reactive oxygen species (ROS) production via a Ca2+/CaM-dependent pathway. Methods: We measured ROS production using a fluorescent indicator in endothelial cells and performed phosphorylation assays. Results: Bradykinin (BK) increased NOX-derived cytosolic ROS. When cells were exposed to BK with either a nominal Ca2+-free or 1 mM of extracellular Ca2+ concentration modified Tyrode’s solution, no difference in BK-induced ROS production was observed; however, chelating of cytosolic Ca2+ by BAPTA/AM or the depletion of ER Ca2+ contents by thapsigargin eliminated BK-induced ROS production. BK-induced ROS production was inhibited by a CaM inhibitor; however, a Ca2+/CaM-dependent protein kinase II (CaMKII) inhibitor did not affect BK-induced ROS production. Furthermore, BK stimulation did not increase phosphorylation of NOX2, NOX4, and NOX5. Conclusions: BK-induced NOX-derived ROS production was mediated via a Ca2+/CaM-dependent pathway; however, it was independent from NOX phosphorylation. This was strictly regulated by ER Ca2+ contents.
Collapse
Affiliation(s)
- Ryugo Sakurada
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Keiichi Odagiri
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Akio Hakamata
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Chiaki Kamiya
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Jiazhang Wei
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| |
Collapse
|
18
|
The Role of NOX4 in Parkinson's Disease with Dementia. Int J Mol Sci 2019; 20:ijms20030696. [PMID: 30736297 PMCID: PMC6386874 DOI: 10.3390/ijms20030696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/04/2023] Open
Abstract
The neuropathology of Parkinson's disease with dementia (PDD) has been reported to involve heterogeneous and various disease mechanisms. Alpha-synuclein (α-syn) and amyloid beta (Aβ) pathology are associated with the cognitive status of PDD, and NADPH oxidase (NOX) is known to affect a variety of cognitive functions. We investigated the effects of NOX on cognitive impairment and on α-syn and Aβ expression and aggregation in PDD. In the 6-hydroxydopamine (6-OHDA)-injected mouse model, cognitive and motor function, and the levels of α-syn, Aβ, and oligomer A11 after inhibition of NOX4 expression in the hippocampal dentate gyrus (DG) were measured by the Morris water maze, novel object recognition, rotation, and rotarod tests, as well as immunoblotting and immunohistochemistry. After 6-OHDA administration, the death of nigrostriatal dopamine neurons and the expression of α-syn and NOX1 in the substantia nigra were increased, and phosphorylated α-syn, Aβ, oligomer A11, and NOX4 were upregulated in the hippocampus. 6-OHDA dose-dependent cognitive impairment was observed, and the increased cognitive impairment, Aβ expression, and oligomer A11 production in 6-OHDA-treated mice were suppressed by NOX4 knockdown in the hippocampal DG. Our results suggest that increased expression of NOX4 in the hippocampal DG in the 6-OHDA-treated mouse induces Aβ expression and oligomer A11 production, thereby reducing cognitive function.
Collapse
|
19
|
Li J, Wu N, Chen X, Chen H, Yang X, Liu C. Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets 2019; 11:152-164. [PMID: 31750757 PMCID: PMC6930025 DOI: 10.1080/19382014.2019.1690944] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Curcumin possesses medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2 DM). It has been proposed that pancreatic beta cell dysfunction in T2 DM is promoted by oxidative stress caused by NADPH oxidase over-activity. The aim of the present study was to evaluate the efficacy of curcumin as a protective agent against high glucose/palmitate (HP)-induced islet cell damage and in streptozotocin (STZ)-induced DM rats. INS-1 cells were exposed to HP with or without curcumin. Cell proliferation, islet cell morphological changes, reactive oxygen species production, superoxide dismutase and catalase activity, insulin levels, NADPH oxidase subunit expression, and the expression of apoptotic factors by INS-1 cells were observed. Our results show that curcumin can effectively inhibit the impairment of cell proliferation and activated oxidative stress, increase insulin levels, and reduce the high expression of NADPH oxidase subunits and apoptotic factors induced by HP in INS-1 cells. The STZ-induced DM rat model was also used to determine whether curcumin can protect islets in vivo. Our results show that curcumin significantly reduced pathological damage and increased insulin levels of islets in STZ-induced DM rats. Curcumin also successfully inhibited the high expression of NADPH oxidase subunits and apoptotic factors in STZ-induced DM rats. These results suggest that curcumin is able to attenuate HP-induced oxidative stress in islet cells and protect these cells from apoptosis by modulating the NADPH pathway. In view of its efficiency, curcumin has potential for translation applications in protecting islets from glucolipotoxicity.
Collapse
Affiliation(s)
- Jing Li
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Ninghua Wu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiao Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiaosong Yang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- Xiaosong Yang Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- CONTACT Chao Liu
| |
Collapse
|
20
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
21
|
Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants (Basel) 2018; 7:antiox7100130. [PMID: 30274229 PMCID: PMC6210377 DOI: 10.3390/antiox7100130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of evidence suggests that transient or physiological reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases act as a redox signal to re-establish homeostasis. The capacity to re-establish homeostasis progressively declines during aging but is maintained in long-lived animals to promote healthy aging. In the model organism Caenorhabditis elegans, ROS generated by dual oxidases (Duox) are important for extracellular matrix integrity, pathogen defense, oxidative stress resistance, and longevity. The Duox enzymatic activity is tightly regulated and under cellular control. Developmental molting cycles, pathogen infections, toxins, mitochondrial-derived ROS, drugs, and small GTPases (e.g., RHO-1) can activate Duox (BLI-3) to generate ROS, whereas NADPH oxidase inhibitors and negative regulators, such as MEMO-1, can inhibit Duox from generating ROS. Three mechanisms-of-action have been discovered for the Duox/BLI-3-generated ROS: (1) enzymatic activity to catalyze crosslinking of free tyrosine ethyl ester in collagen bundles to stabilize extracellular matrices, (2) high ROS bursts/levels to kill pathogens, and (3) redox signaling activating downstream kinase cascades to transcription factors orchestrating oxidative stress and immunity responses to re-establish homeostasis. Although Duox function at the cell surface is well established, recent genetic and biochemical data also suggests a novel role for Duoxs at the endoplasmic reticulum membrane to control redox signaling. Evidence underlying these mechanisms initiated by ROS from NADPH oxidases, and their relevance for human aging, are discussed in this review. Appropriately controlling NADPH oxidase activity for local and physiological redox signaling to maintain cellular homeostasis might be a therapeutic strategy to promote healthy aging.
Collapse
|