1
|
Orzelska-Górka J, Dos Santos Szewczyk K, Gawrońska-Grzywacz M, Herbet M, Lesniak A, Bielenica A, Bujalska-Zadrożny M, Biała G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals (Basel) 2023; 16:1691. [PMID: 38139817 PMCID: PMC10747003 DOI: 10.3390/ph16121691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Two polyphenols-hyperoside (HYP) and protocatechuic acid (PCA) were reported to exert antidepressant activity in rodents after acute treatment. Our previous study also showed that this activity might have been influenced by the monoaminergic system and the upregulation of the brain-derived neurotropic factor (BDNF) level. A very long-term pharmacological therapy is required for the treatment of a patient with depression. The repetitive use of antidepressants is recognized to impact the brain structures responsible for regulating both emotional and cognitive behaviors. Thus, we investigated the antidepressant, anxiolytic, and procognitive effects of HYP and PCA in mice after acute and prolonged treatment (14 days). Both polyphenols induced an anxiogenic-like effect after acute treatment, whereas an anxiolytic effect occurred after repetitive administration. PCA and HYP showed procognitive effects when they were administered acutely and chronically, but it seems that their influence on long-term memory was stronger than on short-term memory. In addition, the preset study showed that the dose of 7.5 mg/kg of PCA and HYP was effective in counteracting the effects of co-administered scopolamine in the long-term memory impairment model induced by scopolamine. Our experiments revealed the compounds have no affinity for 5-HT1A and 5-HT2A receptors, whereas a significant increase in serum serotonin level after prolonged administration of PCA and HYP at a dose of 3.75 mg/kg was observed. Thus, it supports the involvement of the serotonergic system in the polyphenol mechanisms. These findings led us to hypothesize that the polyphenols isolated from Impatiens glandulifera can hold promise in treating mental disorders with cognitive dysfunction. Consequently, extended studies are necessary to delve into their pharmacological profile.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Anna Lesniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
2
|
Okon E, Koval M, Wawruszak A, Slawinska-Brych A, Smolinska K, Shevera M, Stepulak A, Kukula-Koch W. Emodin-8- O-Glucoside-Isolation and the Screening of the Anticancer Potential against the Nervous System Tumors. Molecules 2023; 28:7366. [PMID: 37959784 PMCID: PMC10650745 DOI: 10.3390/molecules28217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2'-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Maryna Koval
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | | | - Katarzyna Smolinska
- Chronic Wounds Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Myroslav Shevera
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska Str., 010601 Kyiv, Ukraine;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Szalak R, Matysek M, Koval M, Dziedzic M, Kowalczuk-Vasilev E, Kruk-Slomka M, Koch W, Arciszewski MB, Kukula-Koch W. Magnoflorine from Berberis vulgaris Roots-Impact on Hippocampal Neurons in Mice after Short-Term Exposure. Int J Mol Sci 2023; 24:ijms24087166. [PMID: 37108329 PMCID: PMC10138352 DOI: 10.3390/ijms24087166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In search of novel potential drug candidates that could be used as treatments or prophylactics for memory impairment, an aporphine alkaloid magnoflorine (MAG) isolated from the root of Berberis vulgaris was proven to exhibit beneficial anti-amnestic properties. Its effects on immunoreactivity to parvalbumin in the mouse hippocampus were assessed together with a study on its safety and concentration in the brain and plasma. For this purpose, four experimental groups were created: the MAG10 group-treated with 10 mg MAG/kg b.w. i.p., the MAG20 group-treated with 20 mg MAG/kg b.w. i.p., the MAG50 group-treated with 50 mg MAG/kg b.w. i.p., and a control group-injected with saline i.p. at a volume corresponding to their weight. Our results indicated that the hippocampal fields CA1-CA3 were characterized by an elevated number of parvalbumin-immunoreactive neurons (PV-IR) and nerve fibers in mice at the doses of 10 and 20 mg/kg b.w. (i.p.). No significant changes to the levels of IL-1β, IL-6 or TNF-α were observed for the above two doses; however, the administration of 50 mg/kg b.w. i.p. caused a statistically significant elevation of IL-6, IL-1beta plasma levels and an insignificant raise in the TNF-alpha value. The HPLC-MS analysis showed that the alkaloid's content in the brain structures in the group treated with 50 mg/kg b.w. did not increase proportionally with the administered dose. The obtained results show that MAG is able to influence the immunoreactivity to PV-IR in hippocampal neurons and might act as a neuroprotective compound.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Maryna Koval
- Department of Pharmacognosy with the Medicinal Plants Garden, Medical University of Lublin, 1, Chodźki St., 20-093 Lublin, Poland
| | - Marcin Dziedzic
- Department of Laboratory Diagnostics, Medical University of Lublin, 1, Chodźki St., 20-093 Lublin, Poland
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, Faculty of Animal Science and Bioeconomy, University of Life Sciences, 13 Akademicka St., 20-950 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with the Medicinal Plants Garden, Medical University of Lublin, 1, Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
4
|
Bashir DJ, Manzoor S, Sarfaraj M, Afzal SM, Bashir M, Nidhi, Rastogi S, Arora I, Samim M. Magnoflorine-Loaded Chitosan Collagen Nanocapsules Ameliorate Cognitive Deficit in Scopolamine-Induced Alzheimer's Disease-like Conditions in a Rat Model by Downregulating IL-1β, IL-6, TNF-α, and Oxidative Stress and Upregulating Brain-Derived Neurotrophic Factor and DCX Expressions. ACS OMEGA 2023; 8:2227-2236. [PMID: 36687096 PMCID: PMC9850486 DOI: 10.1021/acsomega.2c06467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 08/19/2023]
Abstract
Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Sarfaraj
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shekh Mohammad Afzal
- Department
of Medical Elementology & Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, Shalimar, SKUAST Kashmir, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi
- Centre
for Translational and Clinical Research, Jamia Hamdard, New Delhi 110062, India
| | - Shweta Rastogi
- Hansraj
College, Delhi University, New Delhi, Delhi 110007, India
| | - Indu Arora
- Shaheed
Rajguru College of Applied Sciences for Women, Vasundhara Enclave, New
Delhi, Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Magnoflorine Attenuates Cerebral Ischemia-Induced Neuronal Injury via Autophagy/Sirt1/AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2131561. [PMID: 36124014 PMCID: PMC9482485 DOI: 10.1155/2022/2131561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Ischemic stroke is a common cause of permanent disability worldwide. Magnoflorine has been discovered to have good antioxidation, immune regulation, and cardiovascular system protection functions. However, whether magnoflorine treatment protects against cerebral ischemic stroke and the mechanism of such protection remains unknown. Here, we investigated the effect of magnoflorine on the development of ischemic stroke disorder in rats. A middle cerebral artery occlusion (MCAO) model followed by 24 h reperfusion after 90 min ischemia was used. The rats were treated with magnoflorine (10 mg/kg or 20 mg/kg) for 15 consecutive days. The neurological deficit scores, cerebral infarct volume, and brain water content were measured. The neuronal density was determined using Nissl and NeuN staining. The oxidative stress levels were determined using commercial kits. Immunofluorescence staining of LC3 and western blot assay for LC3 and p62 were used to assess autophagy. Magnoflorine treatment significantly reduced the cerebral infarct volume and brain water content and improved the neurological deficit scores in the rat MCAO model. In addition, magnoflorine ameliorated neuronal injury and neuron density in the cortex of rats. Magnoflorine also prevented oxidative damage following ischemia, reflected by the decrement of nitric oxide and malondialdehyde and the increase of glutathione (GSH) and GSH peroxidase. Moreover, the fluorescence intensity of LC3 and the ratio of LC3-II to LC3-I were remarkably downregulated in ischemic rat administration of magnoflorine. Finally, the expression levels of p62, sirtuin 1 (Sirt1), and phosphorylated-adenosine monophosphate-activated protein kinase (AMPK) were upregulated with magnoflorine. Magnoflorine attenuated the cerebral ischemia-induced neuronal damage, which was possibly associated with antioxidative stress, suppression of autophagy, and activation of the Sirt1/AMPK pathway in the rats.
Collapse
|
6
|
Isoquinoline Alkaloids from Coptis chinensis Franch: Focus on Coptisine as a Potential Therapeutic Candidate against Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms231810330. [PMID: 36142236 PMCID: PMC9499618 DOI: 10.3390/ijms231810330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)—methanol (MeOH)—water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.
Collapse
|
7
|
Choudhury Barua C, Buragohain L, Rahman F, Elancheran R, Rizavi H. Zanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice. Basic Clin Neurosci 2022; 13:647-660. [PMID: 37313027 PMCID: PMC10258593 DOI: 10.32598/bcn.2022.1477.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/12/2020] [Accepted: 08/11/2022] [Indexed: 11/02/2023] Open
Abstract
Introduction The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins' synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatum (ZAHA) seeds in reducing the ER stress in mice. Methods The mice were restrained for 28 days in polystyrene tubes. ZAHA (100 and 200 mg/kg, PO) and imipramine (10 mg/kg, IP) were administered daily, 45 min before restraint from day 22 to 28. The mice were assessed by the forced swim test. Also, the antioxidant enzyme levels of Superoxide Dismutase (SOD), reduced glutathione (GSH), and lipid peroxidation (LPO) were measured in the hippocampus of mice. The expression of 78 kDa glucose-regulated protein (GRP78), 94 kDa Glucose-Regulated Protein (GRP94), and C/EBPhomologous protein (CHOP) genes was assessed by real-time PCR to explore the molecular mechanism. Results ZAHA (100 and 200 mg/kg, PO, and imipramine, IP) counteracted the stress by significantly reducing the immobility time in the force swimming test, receding oxidative stress and lipid peroxidation. The antioxidant enzyme (SOD and GSH) levels were elevated in the restraint stress group. Down-regulation of genes (GRP78, GRP94, and CHOP) compared to the chronic restraint stress group indicated stress modulating properties of the seeds in ER stress. Hesperidin, magnoflorine, melicopine, and sesamin, isolated from the active extract, were hypothesized to exert the activity. Conclusion It can be concluded that Z. alatum reverted chronic restraint stress through its antioxidant properties and down-regulation of genes involved in ER stress.
Collapse
Affiliation(s)
- Chandana Choudhury Barua
- Department of Pharmacology and Toxicology, School of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Lipika Buragohain
- Department of Pharmacology and Toxicology, School of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Farida Rahman
- Department of Pharmacology and Toxicology, School of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Ramakrishna Elancheran
- Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Hooriyah Rizavi
- Department of Psychiatry, Molecular Biology Research Building, University of Illinois, Chicago, United State
| |
Collapse
|
8
|
Bashir DJ, Manzoor S, Khan IA, Bashir M, Agarwal NB, Rastogi S, Arora I, Samim M. Nanonization of Magnoflorine-Encapsulated Novel Chitosan-Collagen Nanocapsules for Neurodegenerative Diseases: In Vitro Evaluation. ACS OMEGA 2022; 7:6472-6480. [PMID: 35252643 PMCID: PMC8892656 DOI: 10.1021/acsomega.1c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is one of the most common diseases in the aged population, characterized by the loss in the function of neuronal cells and their ultimate death. One of the common features in the progression of this type of diseases is the oxidative stress. Drugs which are currently being used have been found to show lateral side effects, which is partly due to their inefficiency to cross blood-brain barrier. Nanoencapsulation of bioactive compounds is a profound approach in this direction and has become a method of choice nowadays. This study involved the evaluation of the anti-oxidative properties of magnoflorine (MF), which is an aporphine quaternary alkaloid, and synthesis of MF-loaded chitosan-collagen nanocapsules (MF-CCNc) for its better efficacy as a potent anti-oxidant. Physiochemical characterization of the synthesized nanocapsules was done by using dynamic light scattering and transmission electron microscopy. It revealed that the synthesized nanocapsules are of small size range, as small as 12 ± 2 nm, and are more or less of spherical shape. Sustained release was shown by MF in the in vitro drug release studies. Both MF and MF-CCNc were found to have good anti-oxidant potential with IC50 < 25 μg/mL. No major cytotoxicity was shown by the synthesized nanocapsules on SH-SY5Y cells. In silico anti-acetylcholinesterase (AChE) studies were also done, and they revealed that MF can be a potent inhibitor of AChE.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Imran A. Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, SKUAST Kashmir, Shalimar, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi Bharal Agarwal
- Centre
for Translational and Clinical Research, Jamia Hamdrad, New Delhi 110062, India
| | - Shweta Rastogi
- Department
of Chemistry, Hansraj College, Delhi University, Delhi 110007, India
| | - Indu Arora
- Department
of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences
for Women, Delhi University, New Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
9
|
Grabarska A, Wróblewska-Łuczka P, Kukula-Koch W, Łuszczki JJ, Kalpoutzakis E, Adamczuk G, Skaltsounis AL, Stepulak A. Palmatine, a Bioactive Protoberberine Alkaloid Isolated from Berberis cretica, Inhibits the Growth of Human Estrogen Receptor-Positive Breast Cancer Cells and Acts Synergistically and Additively with Doxorubicin. Molecules 2021; 26:molecules26206253. [PMID: 34684834 PMCID: PMC8538708 DOI: 10.3390/molecules26206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Palmatine (PLT) is a natural isoquinoline alkaloid that belongs to the class of protoberberines and exhibits a wide spectrum of pharmacological and biological properties, including anti-cancer activity. The aim of our study was to isolate PLT from the roots of Berberis cretica and investigate its cytotoxic and anti-proliferative effects in vitro alone and in combination with doxorubicine (DOX) using human ER+/HER2− breast cancer cell lines. The alkaloid was purified by column chromatography filled with silica gel NP and Sephadex LH-20 resin developed in the mixture of methanol: water (50:50 v/v) that provided high-purity alkaloid for bioactivity studies. The purity of the alkaloid was confirmed by high resolution mass measurement and MS/MS fragmentation analysis in the HPLC-ESI-QTOF-MS/MS-based analysis. It was found that PLT treatment inhibited the viability and proliferation of breast cancer cells in a dose-dependent manner as demonstrated by MTT and BrdU assays. PLT showed a quite similar growth inhibition on breast cancer cells with IC50 values ranging from 5.126 to 5.805 µg/mL. In contrast, growth of normal human breast epithelial cells was not affected by PLT. The growth inhibitory activity of PLT was related to the induction of apoptosis, as determined by Annexin V/PI staining. Moreover, PLT sensitized breast cancer cells to DOX. Isobolographic analysis revealed synergistic and additive interactions between studied agents. Our studies suggest that PLT can be a potential candidate agent for preventing and treating breast cancer.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6350
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Eleftherios Kalpoutzakis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alexios Leandros Skaltsounis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
10
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou W, Sun X, Wu M. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3619-3641. [PMID: 34447243 PMCID: PMC8384151 DOI: 10.2147/dddt.s310686] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Icariin is a biologically active substance in Epimedii herba that is used for the treatment of neurologic disorders. However, a comprehensive analysis of the molecular mechanisms of icariin is lacking. In this review, we present a brief history of the use of icariin for medicinal purposes; describe the active chemical components of Epimedii herba; and examine the evidence from experimental studies that have uncovered molecular targets of icariin in different diseases. We also constructed a protein–protein interaction network and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses to predict the therapeutic actions of icariin in nervous system diseases including Alzheimer disease, Parkinson disease, ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic paraplegias. The results of our analyses can guide future studies on the application of icariin to the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Shuangqiu Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Jiarui Ma
- Provincial Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Yanqi Zeng
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210046, People's Republic of China.,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Wenjuan Zhou
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Xiaohe Sun
- First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China.,First Clinical Medical School, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Naldi M, Brusotti G, Massolini G, Andrisano V, Temporini C, Bartolini M. Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity. Molecules 2021; 26:molecules26144376. [PMID: 34299650 PMCID: PMC8307647 DOI: 10.3390/molecules26144376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
A combination of flash chromatography, solid phase extraction, high-performance liquid chromatography, and in vitro bioassays was used to isolate phytocomponents endowed with anticholinesterase activity in extract from Phyllanthus muellarianus. Phytocomponents responsible for the anti-cholinesterase activity of subfractions PMF1 and PMF4 were identified and re-assayed to confirm their activity. Magnoflorine was identified as an active phytocomponent from PMF1 while nitidine was isolated from PMF4. Magnoflorine was shown to be a selective inhibitor of human butyrylcholinesterase—hBChE (IC50 = 131 ± 9 μM and IC50 = 1120 ± 83 μM, for hBuChE and human acetylcholinesterase—hAChE, respectively), while nitidine showed comparable inhibitory potencies against both enzymes (IC50 = 6.68 ± 0.13 μM and IC50 = 5.31 ± 0.50 μM, for hBChE and hAChE, respectively). When compared with the commercial anti-Alzheimer drug galanthamine, nitidine was as potent as galanthamine against hAChE and one order of magnitude more potent against hBuChE. Furthermore, nitidine also showed significant, although weak, antiaggregating activity towards amyloid-β self-aggregation.
Collapse
Affiliation(s)
- Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
- Centre for Applied Biomedical Research—CRBA, University of Bologna, St. Orsola Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.B.); (G.M.); (C.T.)
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.B.); (G.M.); (C.T.)
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.B.); (G.M.); (C.T.)
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-(051)-2099704
| |
Collapse
|
12
|
Szalak R, Kukula-Koch W, Matysek M, Kruk-Słomka M, Koch W, Czernicka L, Khurelbat D, Biała G, Arciszewski MB. Effect of Berberine Isolated from Barberry Species by Centrifugal Partition Chromatography on Memory and the Expression of Parvalbumin in the Mouse Hippocampus Proper. Int J Mol Sci 2021; 22:ijms22094487. [PMID: 33925781 PMCID: PMC8123463 DOI: 10.3390/ijms22094487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases associated with memory disturbances are important health issues occurring due to a prolonged life span. This article presents the results of a study targeting the emergence of a drug candidate with antiamnesic properties. The effect of berberine (BBR), an isoquinoline alkaloid isolated from the overground parts of Berberis sibirica Pall., on memory and expression of parvalbumin in the mouse hippocampus proper were determined. High-purity BBR was isolated by centrifugal partition chromatography from a methanolic extract from B. sibirica by using a methyl-tert-butyl ether and water (1:1 v/v) solvent system with 10 mmol/L of triethylamine and hydrochloric acid. In an in vivo study, we assessed the influence of the chronic administration of BBR on different stages of memory-related responses in mice. Our results indicated that the chronic administration of BBR in a higher dose (5 mg/kg) improves long-term memory acquisition in mice, as determined in the passive avoidance test. The hippocampal CA1–CA3 fields showed an increased number of parvalbumin-immunoreactive neurons (PV-IR) and nerve fibers as compared to the control. No significant changes in the dentate gyrus were observed between the groups. The HPLC-ESI-QTOF-MS/MS analysis of the biological material revealed the content of BBR as 363.4 ± 15.0 ng (4.11% of RSD) per brain, 15.06 ± 0.89 ng (5.91% of RSD) per hippocampus, and 54.45 ± 1.40 (4.05% of RSD) ng in 100 µL plasma. The study showed that BBR could be a factor influencing the expression of PV in hippocampal neurons. We speculate that BBR may modulate the level of Ca2+ in neurons and thus potentially act as a neuroprotective factor against neuronal damages.
Collapse
Affiliation(s)
- Radosław Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
- Correspondence: (R.S.); (W.K.-K.)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University in Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
- Correspondence: (R.S.); (W.K.-K.)
| | - Małgorzata Matysek
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
| | - Marta Kruk-Słomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (M.K.-S.); (G.B.)
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (W.K.); (L.C.)
| | - Lidia Czernicka
- Chair and Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (W.K.); (L.C.)
| | - Daariimaa Khurelbat
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Mongolian National University of Medical Sciences, Zorig Str., Ulaanbaatar 14210, Mongolia;
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (M.K.-S.); (G.B.)
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka Str., 20-950 Lublin, Poland; (M.M.); (M.B.A.)
| |
Collapse
|
13
|
Magnoflorine-Isolation and the Anticancer Potential against NCI-H1299 Lung, MDA-MB-468 Breast, T98G Glioma, and TE671 Rhabdomyosarcoma Cancer Cells. Biomolecules 2020; 10:biom10111532. [PMID: 33182753 PMCID: PMC7696229 DOI: 10.3390/biom10111532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Magnoflorine (MGN) is a quaternary aporphine alkaloid that exhibits numerous therapeutic properties, including neuropsychopharmacological, anti-anxiety, immunomodulatory, anti-inflammatory, antioxidant, or antifungal activities. The aim of the present study was an investigation of the influence of MGN on viability, proliferation, induction of apoptosis, and cell cycle arrest in NCI-H1299 lung, MDA-MB-468 breast, T98G glioma, and TE671 rhabdomyosarcoma cancer cells. MGN was isolated from the roots of Berberis cretica L. by counter-current partition chromatography (CPC). Cell viability and proliferation assessments were performed by means of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and 5-bromo-2ʹ-deoxyuridine (BrDU) assays, respectively. The induction of apoptosis and cell cycle progression was measured using fluorescence-activated cell sorting analysis. MGN in high doses inhibits proliferation, induces apoptosis, and inhibits cell cycle in S/G2 phases in a dose-dependent manner. MGN seems to be a promising anti-cancer compound in therapy of some types of lung, breast, glioma, and rhabdomyosarcoma cancers, for which current standard therapies are limited or have severe strong side effects.
Collapse
|
14
|
Gawel K, Kukula-Koch W, Nieoczym D, Stepnik K, van der Ent W, Banono NS, Tarabasz D, Turski WA, Esguerra CV. The Influence of Palmatine Isolated from Berberis sibirica Radix on Pentylenetetrazole-Induced Seizures in Zebrafish. Cells 2020; 9:cells9051233. [PMID: 32429356 PMCID: PMC7290958 DOI: 10.3390/cells9051233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Palmatine (PALM) and berberine (BERB) are widely identified isoquinoline alkaloids among the representatives of the Berberidaceae botanical family. The antiseizure activity of BERB was shown previously in experimental epilepsy models. We assessed the effect of PALM in a pentylenetetrazole (PTZ)-induced seizure assay in zebrafish, with BERB as an active reference compound. Both alkaloids were isolated from the methanolic root extract of Berberis sibirica by counter-current chromatography, and their ability to cross the blood–brain barrier was determined via quantitative structure–activity relationship assay. PALM exerted antiseizure activity, as confirmed by electroencephalographic analysis, and decreased c-fos and bdnf levels in PTZ-treated larvae. In a behavioral assay, PALM dose-dependently decreased PTZ-induced hyperlocomotion. The combination of PALM and BERB in ED16 doses revealed hyperadditive activity towards PTZ-induced hyperlocomotion. Notably, we have indicated that both alkaloids may exert their anticonvulsant activity through different mechanisms of action. Additionally, the combination of both alkaloids in a 1:2.17 ratio (PALM: BERB) mimicked the activity of the pure extract, which indicates that these two active compounds are responsible for its anticonvulsive activity. In conclusion, our study reveals for the first time the anticonvulsant activity of PALM and suggests the combination of PALM and BERB may have higher therapeutic value than separate usage of these compounds.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6454
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland;
| | - Katarzyna Stepnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Wietske van der Ent
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| | - Dominik Tarabasz
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki Str. 1, 20-093 Lublin, Poland; (W.K.-K.); (D.T.)
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Faculty of Medicine, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway; (W.v.d.E.); (N.S.B.); (C.V.E.)
| |
Collapse
|
15
|
Okon E, Kukula-Koch W, Jarzab A, Halasa M, Stepulak A, Wawruszak A. Advances in Chemistry and Bioactivity of Magnoflorine and Magnoflorine-Containing Extracts. Int J Mol Sci 2020; 21:ijms21041330. [PMID: 32079131 PMCID: PMC7072879 DOI: 10.3390/ijms21041330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
The review collects together some recent information on the identity and pharmacological properties of magnoflorine, a quaternary aporphine alkaloid, that is widely distributed within the representatives of several botanical families like Berberidaceae, Magnoliaceae, Papaveraceae, or Menispermaceae. Several findings published in the scientific publications mention its application in the treatment of a wide spectrum of diseases including inflammatory ones, allergies, hypertension, osteoporosis, bacterial, viral and fungal infections, and some civilization diseases like cancer, obesity, diabetes, dementia, or depression. The pharmacokinetics and perspectives on its introduction to therapeutic strategies will also be discussed.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland
- Correspondence: (W.K.-K.); (A.W.); Tel.: +48-81448-6350 (W.K.-K.); +48-81448-7087 (A.W.)
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1 St., 20-093 Lublin, Poland; (E.O.); (A.J.); (M.H.); (A.S.)
- Correspondence: (W.K.-K.); (A.W.); Tel.: +48-81448-6350 (W.K.-K.); +48-81448-7087 (A.W.)
| |
Collapse
|
16
|
Xu T, Kuang T, Du H, Li Q, Feng T, Zhang Y, Fan G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol Res 2020; 152:104632. [DOI: 10.1016/j.phrs.2020.104632] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022]
|
17
|
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:449-489. [PMID: 32336965 PMCID: PMC7180683 DOI: 10.1007/s11101-020-09673-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
ABSTRACT Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as "Fen Fang Ji". It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Haitao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
18
|
Peana AT, Bassareo V, Acquas E. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection. Neurotox Res 2019; 36:653-668. [DOI: 10.1007/s12640-019-00051-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
|
19
|
Immunoregulatory natural compounds in stress-induced depression: An alternative or an adjunct to conventional antidepressant therapy? Food Chem Toxicol 2019; 127:81-88. [PMID: 30858105 DOI: 10.1016/j.fct.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
The interplay of chronic stress, neuroinflammation and altered immune reactivity has been shown to be important for the pathophysiology of brain disorders such as schizophrenia, depressive disorders and post-traumatic stress disorder. This immuno-inflammatory theory has been extensively studied in the past three decades leading to the formation of the integrative discipline of psychoneuroimmunology. Targeting of the central nervous system by conventional pharmacotherapeutic methods is mainly through modulation of neuroendocrine systems such as the dopaminergic, GABA-ergic, adrenergic and serotoninergic systems. In recent years an increasing number of both experimental and clinical studies have shown that antidepressants can affect the immune system by reducing the production of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, due to the serious adverse effects accompanying the chronic administration of psychoactive drugs there is a continuous need to produce novel therapeutics that are both potent and safe. The present review aims to summarize the current knowledge in the field of psychoneuroimmunology and to delineate the main interactions between stress, inflammation, immunity and the brain. Additionally, this paper explores the use of plant-derived molecules that display a strong anti-stress effect and simultaneously modulate the immune response as an alternative or adjuvant to classical antidepressant drugs.
Collapse
|
20
|
Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Exp Mol Med 2019; 51:1-18. [PMID: 30755593 PMCID: PMC6372667 DOI: 10.1038/s12276-019-0205-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
We extracted 15 pterosin derivatives from Pteridium aquilinum that inhibited β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and cholinesterases involved in the pathogenesis of Alzheimer's disease (AD). (2R)-Pterosin B inhibited BACE1, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with an IC50 of 29.6, 16.2 and 48.1 µM, respectively. The Ki values and binding energies (kcal/mol) between pterosins and BACE1, AChE, and BChE corresponded to the respective IC50 values. (2R)-Pterosin B was a noncompetitive inhibitor against human BACE1 and BChE as well as a mixed-type inhibitor against AChE, binding to the active sites of the corresponding enzymes. Molecular docking simulation of mixed-type and noncompetitive inhibitors for BACE1, AChE, and BChE indicated novel binding site-directed inhibition of the enzymes by pterosins and the structure-activity relationship. (2R)-Pterosin B exhibited a strong BBB permeability with an effective permeability (Pe) of 60.3×10-6 cm/s on PAMPA-BBB. (2R)-Pterosin B and (2R,3 R)-pteroside C significantly decreased the secretion of Aβ peptides from neuroblastoma cells that overexpressed human β-amyloid precursor protein at 500 μM. Conclusively, our study suggested that several pterosins are potential scaffolds for multitarget-directed ligands (MTDLs) for AD therapeutics.
Collapse
|
21
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|