1
|
de Luna AV, Fagundes TDSF, Ramos YJ, de Araújo MH, Muzitano MF, Calixto SD, Simão TLBV, de Queiroz GA, Guimarães EF, Marques AM, Moreira DDL. UHPLC-HRMS/MS Chemical Fingerprinting of the Bioactive Partition from Cultivated Piper aduncum L. Molecules 2024; 29:1690. [PMID: 38675510 PMCID: PMC11051932 DOI: 10.3390/molecules29081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Piper aduncum L. is widely distributed in tropical regions and the ethnobotanical uses of this species encompass medicinal applications for the treatment of respiratory, antimicrobial, and gynecological diseases. Chemical studies reveal a diverse array of secondary metabolites, including terpenes, flavonoids, and prenylated compounds. Extracts from P. aduncum have shown antibacterial, antifungal, and larvicidal activities. Our study explores the activity of extracts and partitions against Mycobacterium tuberculosis H37Rv, as well as the chemical diversity of the bioactive partition. This marks the first investigation of the bioactive partition of P. aduncum from agroecological cultivation. The ethyl acetate partition from the ethanolic leaf extract (PAEPL) was found to be the most active. PAEPL was subjected to column chromatography using Sephadex LH-20 and the obtained fractions were analyzed using UHPLC-HRMS/MS. The MS/MS data from the fractions were submitted to the online GNPS platform for the generation of the molecular network, which displayed 1714 nodes and 167 clusters. Compounds were identified via manual inspection and different libraries, allowing the annotation of 83 compounds, including flavonoids, benzoic acid derivatives, glycosides, free fatty acids, and glycerol-esterified fatty acids. This study provides the first chemical fingerprint of an antimycobacterial sample from P. aduncum cultivated in an agroecological system.
Collapse
Affiliation(s)
- Adélia Viviane de Luna
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute, Far-Manguinhos, Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (A.V.d.L.); (A.M.M.)
| | - Thayssa da Silva Ferreira Fagundes
- Botanical Garden Research Institute of Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (T.d.S.F.F.); (G.A.d.Q.); (E.F.G.)
- Marine Biotechnology Departament, Almirante Paulo Moreira Institute of Marine Studies, Rua Kioto, 253, Arraial do Cabo, Rio de Janeiro 28930-000, RJ, Brazil
| | - Ygor Jessé Ramos
- Farmácia da Terra Laboratory, Faculty of Pharmacy, Federal University of Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil
| | - Marlon Heggdorne de Araújo
- Laboratory of Bioatives Products, Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rua Alcides da Conceição, 159, Macaé 27933-378, RJ, Brazil; (M.H.d.A.); (M.F.M.)
| | - Michelle Frazão Muzitano
- Laboratory of Bioatives Products, Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rua Alcides da Conceição, 159, Macaé 27933-378, RJ, Brazil; (M.H.d.A.); (M.F.M.)
| | - Sanderson Dias Calixto
- Recenor Biology Laboratory, Center of Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Rua Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (S.D.C.); (T.L.B.V.S.)
| | - Thatiana Lopes Biá Ventura Simão
- Recenor Biology Laboratory, Center of Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Rua Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil; (S.D.C.); (T.L.B.V.S.)
| | - George Azevedo de Queiroz
- Botanical Garden Research Institute of Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (T.d.S.F.F.); (G.A.d.Q.); (E.F.G.)
- Pharmacy Departament, State University of Rio de janeiro, Manuel Caldeira de Alvarenga 1203 st, Campo Grande, Rio de Janeiro 23070-200, RJ, Brazil
| | - Elsie Franklin Guimarães
- Botanical Garden Research Institute of Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (T.d.S.F.F.); (G.A.d.Q.); (E.F.G.)
| | - André Mesquita Marques
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute, Far-Manguinhos, Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (A.V.d.L.); (A.M.M.)
| | - Davyson de Lima Moreira
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute, Far-Manguinhos, Fiocruz, Rua Sizenando Nabuco, 100, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (A.V.d.L.); (A.M.M.)
- Botanical Garden Research Institute of Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (T.d.S.F.F.); (G.A.d.Q.); (E.F.G.)
| |
Collapse
|
2
|
Baky MH, Kamal IM, Wessjohann LA, Farag MA. Assessment of metabolome diversity in black and white pepper in response to autoclaving using MS- and NMR-based metabolomics and in relation to its remote and direct antimicrobial effects against food-borne pathogens. RSC Adv 2024; 14:10799-10813. [PMID: 38572341 PMCID: PMC10989240 DOI: 10.1039/d4ra00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Piper nigrum L. (black and white peppercorn) is one of the most common culinary spices used worldwide. The current study aims to dissect pepper metabolome using 1H-NMR targeting of its major primary and secondary metabolites. Eighteen metabolites were identified with piperine detected in black and white pepper at 20.2 and 23.9 μg mg-1, respectively. Aroma profiling using HS-SPME coupled to GC-MS analysis and in the context of autoclave treatment led to the detection of a total of 52 volatiles with an abundance of β-caryophyllene at 82% and 59% in black and white pepper, respectively. Autoclaving of black and white pepper revealed improvement of pepper aroma as manifested by an increase in oxygenated compounds' level. In vitro remote antimicrobial activity against food-borne Gram-positive and Gram-negative bacteria revealed the highest activity against P. aeruginosa (VP-MIC 16.4 and 12.9 mg mL-1) and a direct effect against Enterobacter cloacae at ca. 11.6 mg mL-1 for both white and black pepper.
Collapse
Affiliation(s)
- Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University Badr city 11829 Cairo Egypt
| | - Islam M Kamal
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB) Weinberg 3 06120 Halle (Saale) Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University 11562 Cairo Egypt
| |
Collapse
|
3
|
Feitosa BDS, Ferreira OO, Franco CDJP, Karakoti H, Kumar R, Cascaes MM, Jawarkar RD, Mali SN, Cruz JN, de Menezes IC, de Oliveira MS, de Aguiar Andrade EH. Chemical Composition of Piper nigrum L. Cultivar Guajarina Essential Oils and Their Biological Activity. Molecules 2024; 29:947. [PMID: 38474459 DOI: 10.3390/molecules29050947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), β-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), β-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 μg mL-1) and spikes (LC50 6.44 μg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.
Collapse
Affiliation(s)
- Bruna de Souza Feitosa
- School of Chemistry, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Oberdan Oliveira Ferreira
- Graduate Program in Biodiversity and Biotechnology-Rede Bionorte, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | | | - Himani Karakoti
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Udham Singh Nagar, Uttarakhand 263145, India
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Udham Singh Nagar, Uttarakhand 263145, India
| | - Marcia Moraes Cascaes
- Graduate Program in Chemistry, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati 444603, India
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai 400706, India
| | - Jorddy Neves Cruz
- Graduate Program in Biodiversity and Biotechnology-Rede Bionorte, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | | | - Mozaniel Santana de Oliveira
- Adolpho Ducke Laboratory-Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Programa de Pós-Graduação em Ciências Biológicas-Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
| | - Eloisa Helena de Aguiar Andrade
- School of Chemistry, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
- Graduate Program in Biodiversity and Biotechnology-Rede Bionorte, Federal University of Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
- Adolpho Ducke Laboratory-Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
- Programa de Pós-Graduação em Ciências Biológicas-Botânica Tropical, Universidade Federal Rural da Amazônia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil
| |
Collapse
|
4
|
Hai CT, Van Thanh D, Xuan VT, Nam MH, Tam KT. Anticancer activity of Piper chaudocanum essential oils and essential oil-mediated silver nanoparticles. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Götz ME, Eisenreich A, Frenzel J, Sachse B, Schäfer B. Occurrence of Alkenylbenzenes in Plants: Flavours and Possibly Toxic Plant Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:2075. [PMID: 37299054 PMCID: PMC10255789 DOI: 10.3390/plants12112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites. While some of them are proven genotoxic carcinogens, other derivatives need further evaluation to clarify their toxicological properties. Furthermore, data on the occurrence of various alkenylbenzenes in plants, and especially in food products, are still limited. In this review, we tempt to give an overview of the occurrence of potentially toxic alkenylbenzenes in essential oils and extracts from plants used for flavoring purposes of foods. A focus is layed on widely known genotoxic alkenylbenzenes, such as safrole, methyleugenol, and estragole. However, essential oils and extracts that contain other alkenylbenzenes and are also often used for flavoring purposes are considered. This review may re-raise awareness of the need for quantitative occurrence data for alkenylbenzenes in certain plants but especially in final plant food supplements, processed foods, and flavored beverages as the basis for a more reliable exposure assessment of alkenylbenzenes in the future.
Collapse
Affiliation(s)
| | - Andreas Eisenreich
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (M.E.G.); (B.S.); (B.S.)
| | | | | | | |
Collapse
|
6
|
Cuadros-Siguas CF, Herrera-Calderon O, Batiha GES, Almohmadi NH, Aljarba NH, Apesteguia-Infantes JA, Loyola-Gonzales E, Tataje-Napuri FE, Kong-Chirinos JF, Almeida-Galindo JS, Chávez H, Pari-Olarte JB. Volatile Components, Antioxidant and Phytotoxic Activity of the Essential Oil of Piper acutifolium Ruiz & Pav. from Peru. Molecules 2023; 28:molecules28083348. [PMID: 37110583 PMCID: PMC10140949 DOI: 10.3390/molecules28083348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Piper acutifolium Ruiz & Pav is known as "matico" and belongs to the Piperaceae family, and in Peru it is traditionally used as an infusion or decoction to ameliorate wound healings or ulcers. In this study, the aim was to investigate the volatile components, the antioxidant profile, and the phytotoxic activity of the essential oil (EO) of P. acutifolium from Peru. To identify the phytoconstituents, the EO was injected into a Gas Chromatography-Mass Spectrometry (GC-MS) to obtain the chemical profile of the volatile components, followed by the antioxidant activity carried out by the reaction with three organic radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azinobis-(3-ethylbenzothiazoline)-6- sulfonic acid (ABTS); ferric reducing/antioxidant power (FRAP)). Finally, the phytotoxic capabilities of the EO were tested on two model plants, Lactuca sativa seeds and Allium cepa bulbs. As a result, the analysis identified α-phellandrene as its main volatile chemical at 38.18%, followed by β-myrcene (29.48%) and β-phellandrene (21.88%). Regarding the antioxidant profile, the half inhibitory concentration (IC50) in DPPH was 160.12 ± 0.30 µg/mL, for ABTS it was 138.10 ± 0.06 µg/mL and finally in FRAP it was 450.10 ± 0.05 µg/mL. The phytotoxic activity demonstrated that the EO had high activity at 5% and 10% against L. sativa seed germination, the inhibition of root length, and hypocotyl length. Additionally, in A. cepa bulbs, the inhibition root length was obtained at 10%, both comparable to glyphosate, which was used as a positive control. The molecular docking on 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) revealed that α-phellandrene had -5.8 kcal/mol, being near to glyphosate at -6.3 kcal/mol. The conclusion shows that the EO of P. acutifolium presented antioxidant and phytotoxic activity and might be useful as a bioherbicide in the future.
Collapse
Affiliation(s)
- Carmela Fiorella Cuadros-Siguas
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - José Alfonso Apesteguia-Infantes
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Eddie Loyola-Gonzales
- Department of Pharmaceutical Science, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Freddy Emilio Tataje-Napuri
- Departamento de Ciencias Comunitarias, Facultad de Odontología, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - José Francisco Kong-Chirinos
- Department of Surgical Clinical Sciences, Faculty of Human Medicine, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | | | - Haydee Chávez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Josefa Bertha Pari-Olarte
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| |
Collapse
|
7
|
Garcia AR, Amaral ACF, Maria ACB, Paz MM, Amorim MMB, Chaves FCM, Vermelho AB, Nico D, Rodrigues IA. Antileishmanial Screening, Cytotoxicity, and Chemical Composition of Essential Oils: A Special Focus on Piper callosum Essential Oil. Chem Biodivers 2023; 20:e202200689. [PMID: 36565272 DOI: 10.1002/cbdv.202200689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Leishmania amazonensis is the etiological agent of tegumentary leishmaniasis, a disease characterized by the emergence of cutaneous and mucocutaneous ulcerated lesions that can evolve into severe destruction of skin tissue. Treatment of the disease is often accompanied by high toxicity and variable efficacy. Essential oils stand out for having diverse pharmacological properties. Here, we screened a panel of fourteen essential oils for their anti-L. amazonensis activity, cytotoxicity, and chemical profile. Lippia sidoides (LSEO) and Piper callosum (PCEO) oils displayed the best anti-promastigote and anti-amastigote activities with IC50 of 31 and 21 μg/ml, respectively. PCEO was the safest oil with a desirable selectivity index >10. In addition, PCEO showed no cytotoxicity against the VERO line and erythrocytes. PCEO-treated amastigotes displayed mitochondrial membrane depolarization and high levels of intracellular ROS. Safrole (54.72 %) was the main component of PCEO. The results described here highlight the use of essential oils to combat tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Andreza R Garcia
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Ana Claudia F Amaral
- Laboratório de Produtos Naturais e Derivados, Departamento de Produtos Naturais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, 22775-903, Brazil
| | - Ana Clara B Maria
- Laboratório de Produtos Naturais e Derivados, Departamento de Produtos Naturais, Farmanguinhos, FIOCRUZ, Rio de Janeiro, 22775-903, Brazil
| | - Mariana M Paz
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana M B Amorim
- Instituto Municipal de Vigilância Sanitária, Vigilância de Zoonoses e de Inspeção Agropecuária, Rio de Janeiro, 22290-240, Brazil
| | | | - Alane B Vermelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Igor A Rodrigues
- Programa de Pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
8
|
Maia MA, Jurcevic JD, Malheiros A, Cazarin CA, Dalmagro AP, do Espírito Santo C, Mota da Silva L, Maria de Souza M. Neuropharmacology Potential of the Hydroalcoholic Extract from the Leaves of Piper cernuum: Anxiolytic, Hypnotic, and Antidepressant-Like Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1183809. [PMID: 37078066 PMCID: PMC10110373 DOI: 10.1155/2023/1183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 04/21/2023]
Abstract
Aim The use of medicinal plants in the treatment of mental illnesses is a reality that accompanies the history of civilizations, and the Piper genus exhibits many species with pharmacologically proven central effects. Then, this study evaluated the neuropharmacological effects of the hydroalcoholic extract from Piper cernuum (HEPC) leaves to validate its uses in folk medicine. Materials and Methods Primarily Swiss mice (female, 25-30 g) were pretreated with HEPC (50-150 mg/kg, p.o.), vehicle, or the positive control, and submitted to open-field test (OFT), inhibitory avoidance test (IAT), tail suspension test (TST), and forced swim test (FST). Also, mice were exposed to pentylenetetrazol- and strychnine-induced seizure assay, pentobarbital-induced hypnosis test, and elevated plus-maze (EPM). The GABA levels and MAO-A activity were measured in the animal's brain after 15 days of HEPC administration (150 mg/kg, p.o.). Results Mice pretreated with HEPC (100 and 150 mg/kg) and exposed to pentobarbital presented decreased sleep latency and increased sleep duration (HEPC 150 mg/kg). In EPM, the HEPC (150 mg/kg) increased the frequency of entry and the time of exploration of mice in the open arms. The antidepressant-like properties of HEPC were demonstrated by the decrease in the mice's immobility time when tested in FST and TST. The extract did not show anticonvulsant activity, in addition to not improving the memory parameters of animals (IAT) or interfering with their locomotor activity (OFT). Besides, HEPC administration decreased the MAO-A activity and increased the GABA levels in the animal's brain. Conclusion HEPC induces sedative-hypnotic, anxiolytic-, and antidepressant-like effects. These neuropharmacological effects of HEPC could be, at least in part, related to the modulation of the GABAergic system and/or MAO-A activity.
Collapse
Affiliation(s)
- Marcel Andrigo Maia
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | | | - Angela Malheiros
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila André Cazarin
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Camila do Espírito Santo
- Nucleus of Chemical-PharmaceuticalResearch-NIQFAR, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| | - Márcia Maria de Souza
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, SC, Brazil
| |
Collapse
|
9
|
Perigo CV, Haber LL, Facanali R, Vieira MAR, Torres RB, Bernacci LC, Guimarães EF, Baitello JB, Sobral MEG, Quecini V, Marques MOM. Essential Oils of Aromatic Plant Species from the Atlantic Rainforest Exhibit Extensive Chemical Diversity and Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11121844. [PMID: 36551501 PMCID: PMC9774909 DOI: 10.3390/antibiotics11121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial resistance, caused by the overuse or inadequate application of antibiotics, is a worldwide crisis, increasing the risk of treatment failure and healthcare costs. Plant essential oils (EOs) consist of hydrophobic metabolites with antimicrobial activity. The antimicrobial potential of the chemical diversity of plants from the Atlantic Rainforest remains scarcely characterized. In the current work, we determined the metabolite profile of the EOs from aromatic plants from nine locations and accessed their antimicrobial and biocidal activity by agar diffusion assays, minimum inhibitory concentration, time-kill and cell-component leakage assays. The pharmacokinetic properties of the EO compounds were investigated by in silico tools. More than a hundred metabolites were identified, mainly consisting of sesqui and monoterpenes. Individual plants and botanical families exhibited extensive chemical variations in their EO composition. Probabilistic models demonstrated that qualitative and quantitative differences contribute to chemical diversity, depending on the botanical family. The EOs exhibited antimicrobial biocidal activity against pathogenic bacteria, fungi and multiple predicted pharmacological targets. Our results demonstrate the antimicrobial potential of EOs from rainforest plants, indicate novel macromolecular targets, and contribute to highlighting the chemical diversity of native species.
Collapse
Affiliation(s)
| | - Lenita L. Haber
- Vegetables Research Center, Brazilian Agricultural Research Corporation, Brasília 70351-970, Brazil
| | | | | | | | | | - Elsie F. Guimarães
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - João B. Baitello
- Instituto Florestal do Estado de São Paulo, São Paulo 02377-000, Brazil
| | - Marcos E. G. Sobral
- Natural Sciences Department, Campus Dom Bosco, Universidade Federal de São João del-Rei, São João del Reio 36301-160, Brazil
| | - Vera Quecini
- Grape and Wine Research Center, Brazilian Agricultural Research Corporation, Bento Gonçalves 95701-008, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| | - Marcia Ortiz M. Marques
- Instituto Agronômico, Campinas 13075-630, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| |
Collapse
|
10
|
Ruiz-Vásquez L, Ruiz Mesia L, Caballero Ceferino HD, Ruiz Mesia W, Andrés MF, Díaz CE, Gonzalez-Coloma A. Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141793. [PMID: 35890427 PMCID: PMC9324010 DOI: 10.3390/plants11141793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
The chemical composition of essential oils (EOs) from ten Peruvian Piper species (Piper coruscans, Pc; P. tuberculatum, Pt; P. casapiense, Pcs; P. obliquum, Po; P. dumosum, Pd; P. anonifolium, Pa; P. reticulatum, Pr; P. soledadense, Ps; P. sancti-felicis, Psf and P. mituense, Pm) has been studied, along with their antifungal and phytotoxic activities. These EOs contained β-bisabolene/nerolidol (Pc), β-bisabolene/δ-cadinene/caryophyllene (Pt), caryophyllene oxide (Pcs), bicyclogermacrene/10-epi-Elemol (Po), bicyclogermacrene/germacrene-D/apiol (Pd), caryophyllene/germacrene-D (Pa), germacrene-D (Pr), limonene/apiol (Ps), apiol (Psf), and apiol/bicyclogermacrene (Pm) as major components, and some are described here for the first time (Ps, Pcs, Pm). A composition-based dendrogram of these Piper species showed four major groups (G1: Pc and Pt, G2: Pcs, Po, Pd, Pa, and Pr, G3: Ps, and G4: Psf and Pm). The spore germination effects (Aspergillus niger, Botrytis cinerea, and Alternaria alternate) and phytotoxicity (Lolium perenne and Lactuca sativa) of these EOs were studied. Most of these Piper essential oils showed important activity against phytopathogenic fungi (except G1), especially against B. cinerea. Similarly, most of the essential oils were phytotoxic against L. perenne (except G1), with P. sancti-felicis (G4), P. casapiense (G2), and P. reticulatum (G2) being the most effective. Caryophyllene oxide, β-caryophyllene, β-pinene, limonene, α-humulene, and apiol were evaluated against B. cinerea, with the most effective compounds being β-pinene, apiol, and limonene. This work demonstrates the species-dependent potential of essential oils from Peruvian Piper species as fungicidal and herbicidal agents.
Collapse
Affiliation(s)
- Liliana Ruiz-Vásquez
- Laboratorio de Productos Naturales Antiparasitarios de la Amazonia, Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos 16002, Peru; (L.R.M.); (H.D.C.C.); (W.R.M.)
- Facultad de Farmacia y Bioquímica, Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos 16000, Peru
- Correspondence: (L.R.-V.); (A.G.-C.); Tel.: +51-966-102-718 (L.R.-V.); +34-917-452-500 (A.G.-C.)
| | - Lastenia Ruiz Mesia
- Laboratorio de Productos Naturales Antiparasitarios de la Amazonia, Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos 16002, Peru; (L.R.M.); (H.D.C.C.); (W.R.M.)
| | - Henrry Denny Caballero Ceferino
- Laboratorio de Productos Naturales Antiparasitarios de la Amazonia, Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos 16002, Peru; (L.R.M.); (H.D.C.C.); (W.R.M.)
| | - Wilfredo Ruiz Mesia
- Laboratorio de Productos Naturales Antiparasitarios de la Amazonia, Centro de Investigación de Recursos Naturales, Universidad Nacional de la Amazonia Peruana (UNAP), Iquitos 16002, Peru; (L.R.M.); (H.D.C.C.); (W.R.M.)
| | | | - Carmen Elisa Díaz
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206 La Laguna, Spain;
| | - Azucena Gonzalez-Coloma
- Instituto de Ciencias Agrarias, CSIC, 28006 Madrid, Spain;
- Correspondence: (L.R.-V.); (A.G.-C.); Tel.: +51-966-102-718 (L.R.-V.); +34-917-452-500 (A.G.-C.)
| |
Collapse
|
11
|
Vinusri S, Gnanam R, Caroline R, Santhanakrishnan VP, Kandavelmani A. Anticancer Potential of Hydroxychavicol Derived from Piper betle L: An in Silico and Cytotoxicity Study. Nutr Cancer 2022; 74:3701-3713. [PMID: 35703834 DOI: 10.1080/01635581.2022.2085310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Piper betle L. is a popular medicinal plant in Asia, and extracts of the plant leaf are used for several therapeutics. It is known for its rich source of phenolic compounds, including hydroxychavicol. Hydroxychavicol is an allylbenzene that has gained much attention due to its anticancer properties. The current study quantified and purified hydroxychavicol from P. betle L. and predicted its anticancer competence through in silico and cytotoxicity studies. Leaf samples of 22 P. betle L. accessions from different locations of Tamil Nadu, India, were analyzed using reverse phase-high performance liquid chromatography for quantification of hydroxychavicol. The highest quantity of hydroxychavicol was obtained from the accession BV22 (89.2%). Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of hydroxychavicol using SwissADME satisfied the physicochemical property guidelines of Lipinski's Rule of Five, ensuring its drug-likeness behavior. Molecular docking studies confirmed the interaction of hydroxychavicol with all 16 tested cancer targets. In Vitro MTT assay of hydroxychavicol in bone cancer cell lines (MG63) also demonstrated the anticancer competency, indicating the requirement to formulate the molecule as a drug in treating various types of cancers.
Collapse
Affiliation(s)
- S Vinusri
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Gnanam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Caroline
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - V P Santhanakrishnan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - A Kandavelmani
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
12
|
Bailly C. A world tour in the name of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154080. [PMID: 35405614 DOI: 10.1016/j.phymed.2022.154080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Names of natural products (NP) are usually given depending on the species of origin, be it a plant, a marine organism or a microbial species. In some cases, names have been given with reference to people, animals, music, foods or places. Many NP refer to countries, cities or specific places such as mountains, deserts, seas and oceans. PURPOSE On the basis of NP names, a world tour has been imagined referring to more than one hundred NP with names evocative of over 50 countries and regions. RESULTS The world tour goes from UK (britannin) to Italy (vaticanol) in Europe, from Uganda (ugandoside) to Senegal (senegalene, senegalenines) in Africa, from Brazil (brasilin) to Chile (santiaguine) in South America, from Utah (utahin) to Florida (floridanolide) in the US. It includes Central America (mexicanin, panamine) and the Caribbean islands (jamaicin, bahamaolides). It also crosses Alaska (alaskene) and Canada (quebecol, canadaline). The tour continues throughout Asia, from Thailand (thailandine) to China (Chinaldine) and Pakistan (pakistanamine), to finally reaches Oceania with Australia (australigenin) and Vanuatu (vanuatine), among other countries. This virtual journey, without bordure or wall, brings us to the highest mountains (himalayamine), the deepest oceans (pacificins) and the largest deserts (desertomycin). CONCLUSION In the current period of COVID-19 pandemia, with restricted opportunities for international travels, this NP name-based virtual journey offers a world tour to learn more from nature and to inspire scientists to contribute to the field of NP discovery and drug design. There are also limitations associated with the use of trivial names for NP. NP names can be further exploited for teaching and learning.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
13
|
Liu L, Wang X, Lai Y, He G, Wen S, He H, Li Z, Zhang B, Zhang D. Transcriptomic analysis reveals the significant effects of fertilization on the biosynthesis of sesquiterpenes in Phoebe bournei. Genomics 2022; 114:110375. [PMID: 35490893 DOI: 10.1016/j.ygeno.2022.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023]
Abstract
Phoebe bournei is a potential medicinal plant. Its essential oils (Eos) are mainly composed of sesquiterpenes that has potential activities of anti-bacteria and anti-tumors. In this study, we evaluated the effects of compost and compound fertilizer on the total amount and main components of Eos in P. bournei, we also studied the molecular mechanism undergoing this process by deep sequencing the genes involved in the biosynthesis of sesquiterpenes. Fertilization enhanced the total amount of main components in Eos from both leaves and twigs. Bicyclogermacrene, the primary sesquiterpene in the leaf EO, was significantly increased under compost treatment, while bicyclogermacrene and δ-cadinene (the second most abundant sesquiterpene) were decreased under compound fertilizer treatment. The two fertilizers had no significant effect on the abundance of the primary (+) - δ-cadinene in the twig EO, but had a positive effect on the second most abundant sesquiterpene copaene. Significant differences were observed in the number of differentially expressed genes (DEGs) with the leaves showing greater number of DEGs as compared to the twigs after compost treatment. Terpenoid backbone biosynthesis (TBB) is a key pathway of sesquiterpenes synthesis. The expression of genes regulating several important enzymes in TBB was altered after fertilization. After the compost treatment, the expression of the leaf DXS gene (ACQ66107.1), being closely related to the sesquiterpene biosynthesis in P. bournei leaves, was decreased. Compost and compound fertilizer altered the expression of the two important branch-point enzymes (FPPS and GGPPS) genes (ART33314.1 and ATT59265.1), which contributed to the changes of the total amount and components of P. bournei sesquiterpenes. This study provides a new insight into the future use of P. bournei for Eos.
Collapse
Affiliation(s)
- Li Liu
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xu Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Shizhi Wen
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanjie He
- School of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhenshan Li
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Durão R, Ramalhete C, Madureira AM, Mendes E, Duarte N. Plant Terpenoids as Hit Compounds against Trypanosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15030340. [PMID: 35337138 PMCID: PMC8951850 DOI: 10.3390/ph15030340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Human African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease) are vector-borne neglected tropical diseases, caused by the protozoan parasites Trypanosoma brucei and Trypanosoma cruzi, respectively. These diseases were circumscribed to South American and African countries in the past. However, human migration, military interventions, and climate changes have had an important effect on their worldwide propagation, particularly Chagas disease. Currently, the treatment of trypanosomiasis is not ideal, becoming a challenge in poor populations with limited resources. Exploring natural products from higher plants remains a valuable approach to find new hits and enlarge the pipeline of new drugs against protozoal human infections. This review covers the recent studies (2016–2021) on plant terpenoids, and their semi-synthetic derivatives, which have shown promising in vitro and in vivo activities against Trypanosoma parasites.
Collapse
Affiliation(s)
- Raquel Durão
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Cátia Ramalhete
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- ATLANTICA—Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Ana Margarida Madureira
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Eduarda Mendes
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Noélia Duarte
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- Correspondence:
| |
Collapse
|
15
|
Maduro CEP, de Camargo RG, Hendges APPK, Ferriani AP, da Silva AR, Duarte MCT, do Amaral W, Sales Maia BHLN. Essential Oils from Piper caldense C. DC. and Piper xylosteoides (Kunth) Steud.: Seasonal Variation of the Chemical Composition and Antimicrobial Activity. Chem Biodivers 2021; 18:e2100495. [PMID: 34669236 DOI: 10.1002/cbdv.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
The essential oils (EOs) chemical composition can be affected by several environmental factors, impacting their desired biological activities. In this sense, this work aimed to evaluate the seasonal variation of the chemical composition and antimicrobial activity of Piper caldense and Piper xylosteoides leaves EOs. Their chemical composition was determined by GC/MS and GC-FID analyses, resulting in the identification of eighty compounds. P. caldense EOs were mainly consisted of sesquiterpene hydrocarbons, whereas in P. xylosteoides EOs, monoterpene hydrocarbons were predominant. EOs from both species strongly inhibited B. subtilis (MIC=0.25 mg mL-1 ), while only P. caldense EOs showed strong activity against S. aureus (MIC=0.50 mg mL-1 ). P. caldense spring EO showed the broadest spectrum of antimicrobial action amongst all samples. For each species, PCA seasonally differentiated EOs chemical composition. In addition, as expected, PCA of all samples showed a distinction between the two species. This study has successfully demonstrated the importance of evaluating the seasonal variation of EOs chemical composition and antimicrobial activity in obtaining a product with the desired properties.
Collapse
Affiliation(s)
- Carlos Eduardo P Maduro
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Rebeca G de Camargo
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Ana Paula P K Hendges
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Aurea P Ferriani
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Allan R da Silva
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Marta Cristina T Duarte
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, Av. Alexandre Cazelatto, 999, Vila Betel, Paulínia, SP, Brazil, 13148-218
| | - Wanderlei do Amaral
- Departamento de Engenharia Química, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| | - Beatriz Helena L N Sales Maia
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, PR, Brazil, 81531-980
| |
Collapse
|
16
|
Al-Sayed E, Gad HA, El-Kersh DM. Characterization of Four Piper Essential Oils (GC/MS and ATR-IR) Coupled to Chemometrics and Their anti- Helicobacter pylori Activity. ACS OMEGA 2021; 6:25652-25663. [PMID: 34632221 PMCID: PMC8495854 DOI: 10.1021/acsomega.1c03777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/12/2023]
Abstract
Background: Essential oils represent a major class of natural products which are known for their antimicrobial activity. This study aimed to determine the composition of four Piper essential oils by gas chromatography mass spectrometry, attenuated total reflection infrared, and chemometric analysis. Results: Monoterpene was the most predominant class in Piper nigrum and white pepper (87.6 and 80%, respectively) with the dominance of α-pinene, β-pinene, 3-carene, limonene, and β-caryophyllene. Sesquiterpenes represented 50, 19.6, and 12.3% of the essential oils of Piper longum, white pepper, and P. nigrum, respectively. Unlike other species, Piper cubeba oil was found to be rich in aromatics (59%), with eugenol (10.7%) and methyl eugenol (47.4%) representing the major components along with β-myrcene (21.2%) and 1,8-cineole (6.4%). Only P. longum essential oil comprised about 18.2% of alkanes and 13.6% of alkenes. Application of chemometric analysis utilizing GC/MS and ATR-IR data displayed the same segregation pattern where both principal component analysis and hierarchal cluster analysis revealed that white pepper was most closely related to P. nigrum while being completely discriminated from other Piper species. The Piper oils showed promising inhibitory effects on Helicobacter pylori. P. longum oil recorded the most efficient anti-Helicobacter activity [minimum inhibitory concentration (MIC) value of 1.95 μg/ml, which is the same as the MIC of clarithromycin], followed by the oil of white pepper (MIC = 3.90 μg/ml), while P. cubeba and P. nigrum produced the lowest activity (MIC value of 7.81 μg/ml). Conclusion: Piper essential oils can be used as nutritional supplements or therapeutic drugs to protect against H. pylori infection.
Collapse
Affiliation(s)
- Eman Al-Sayed
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, 11566 Cairo, Egypt
| | - Haidy A. Gad
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, 11566 Cairo, Egypt
| | - Dina M. El-Kersh
- Department
of Pharmacognosy, Faculty of Pharmacy, The
British University in Egypt (BUE), 11837 Cairo, Egypt
| |
Collapse
|
17
|
Peres RB, Fiuza LFDA, da Silva PB, Batista MM, Camillo FDC, Marques AM, de C. Brito L, Figueiredo MR, Soeiro MDNC. In Vitro Phenotypic Activity and In Silico Analysis of Natural Products from Brazilian Biodiversity on Trypanosoma cruzi. Molecules 2021; 26:5676. [PMID: 34577145 PMCID: PMC8472459 DOI: 10.3390/molecules26185676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chagas disease (CD) affects more than 6 million people worldwide. The available treatment is far from ideal, creating a demand for new alternative therapies. Botanical diversity provides a wide range of novel potential therapeutic scaffolds. Presently, our aim was to evaluate the mammalian host toxicity and anti-Trypanosoma cruzi activity of botanic natural products including extracts, fractions and purified compounds obtained from Brazilian flora. In this study, 36 samples of extracts and fractions and eight pure compounds obtained from seven plant species were evaluated. The fraction dichloromethane from Aureliana fasciculata var. fasciculata (AFfPD) and the crude extract of Piper tectoniifolium (PTFrE) showed promising trypanosomicidal activity. AFfPD and PTFrE presented EC50 values 10.7 ± 2.8 μg/mL and 12.85 ± 1.52 μg/mL against intracellular forms (Tulahuen strain), respectively. Additionally, both were active upon bloodstream trypomastigotes (Y strain), exhibiting EC50 2.2 ± 1.0 μg/mL and 38.8 ± 2.1 μg/mL for AFfPD and PTFrE, respectively. Importantly, AFfPD is about five-fold more potent than Benznidazole (Bz), the reference drug for CD, also reaching lower EC90 value (7.92 ± 2.2 μg/mL) as compared to Bz (23.3 ± 0.6 μg/mL). Besides, anti-parasitic effect of eight purified botanic substances was also investigated. Aurelianolide A and B (compounds 1 and 2) from A. fasciculata and compound 8 from P. tuberculatum displayed the best trypanosomicidal effect. Compounds 1, 2 and 8 showed EC50 of 4.6 ± 1.3 μM, 1.6 ± 0.4 μM and 8.1 ± 0.9 μM, respectively against intracellular forms. In addition, in silico analysis of these three biomolecules was performed to predict parameters of absorption, distribution, metabolism and excretion. The studied compounds presented similar ADMET profile as Bz, without presenting mutagenicity and hepatotoxicity aspects as predicted for Bz. Our findings indicate that these natural products have promising anti-T. cruzi effect and may represent new scaffolds for future lead optimization.
Collapse
Affiliation(s)
- Raiza B. Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Patrícia B. da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Flávia da C. Camillo
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - André M. Marques
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Lavínia de C. Brito
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Maria R. Figueiredo
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Maria de N. C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| |
Collapse
|
18
|
Peixoto JF, Ramos YJ, de Lima Moreira D, Alves CR, Gonçalves-Oliveira LF. Potential of Piper spp. as a source of new compounds for the leishmaniases treatment. Parasitol Res 2021; 120:2731-2747. [PMID: 34245362 DOI: 10.1007/s00436-021-07199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Current treatment guidelines for leishmaniasis is based on chemotherapy with drugs that show a set of limitations such as high cost, toxicity, difficult route of administration, and lack of efficacy in endemic areas. In this context, phytopharmaceutical products and herbal medicines emerge as promising alternatives for developing new treatment against leishmaniasis. This review discusses the perspectives of leishmaniasis treatment based on natural products and phytotherapy highlighting the Piper genus, especially P. aduncun and P. mollicomum Kunth covering the period of 1998 to 2020. Leishmanicidal activity of pure compounds of Piper spp. [3-(3,4,5-trimethoxyphenyl) propanoic acid, 3-chlorosintenpyridone, 2'-hydroxy-3',4',6'-trimethoxy-chalcone, cardamonin, conocarpan, cubebin, eupomatenoid, flavokavain B, ( +)-(7R,8S)-epoxy-5,6-didehydrokavain, N-[7-(3',4'-methylenedioxypheny l-2(E),4(E)-heptadienoyl-pyrrolidine, N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl-pyrrolidine, piperovatine, pellitorine, and piplartine (piperlongumine)] were proved against the promastigote and amastigote forms of parasite related with cutaneous (L. (L.) amazonensis, L. (V.) braziliensis, and L. (V.) guyanensis) and visceral (L. (L.) donovani, L. (L.) chagasi, and L. (L.) infantum). We also discussed the perspective of leishmaniasis treatment, considering the potential synergism between different promising species of Piper, presenting some interesting interaction possibilities for future studies between plants. Finally, the necessary steps for technological development of phytomedicines and herbal medicines with the desirable quality requirements for medicines are highlighted. The data presented here highlight the use of Piper spp. as source of pharmacological compounds that can lead to effective, safe, and inexpensive treatments for leishmaniasis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor Jessé Ramos
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davyson de Lima Moreira
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Filipe Gonçalves-Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Ramírez J, Andrade MD, Vidari G, Gilardoni G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. PLANTS (BASEL, SWITZERLAND) 2021; 10:1168. [PMID: 34207495 PMCID: PMC8228786 DOI: 10.3390/plants10061168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022]
Abstract
The essential oil and the major non-volatile secondary metabolites from the leaves of Piper subscutatum (Miq.) C. DC. (Family Piperaceae), collected in the Ecuadorian Amazon, were analyzed for the first time in the present study. The essential oil was submitted to chemical and enantioselective analyses by GC-MS and GC-FID. (E)-β-caryophyllene (25.3-25.2%), β-chamigrene (10.3-7.8%), (E)-nerolidol (8.1-7.7%), β-selinene (7.2-7.7%), δ-cadinene (2.7-3.9%), bicyclogermacrene (3.7-2.4%), and β-pinene (2.6-3.4%) were the major components. The enantioselective analysis, carried out on a β-cyclodextrin-based column, showed four scalemic mixtures in which (1R,5R)-(+)-α-pinene, (1S,5S)-(-)-β-pinene, (S)-(-)-limonene, and (1R,2S,6S,7S,8S)-(-)-α-copaene were the major enantiomers, with enantiomeric excesses of 28.8%, 77.8%, 18.4%, and 6.0%, respectively. The study was complemented with the chemical analysis of the organic fraction dissolved in the hydrolate, whose major components were 6-methyl-5-hepten-2-one (63.7-64.4%) and linalool (6.5-6.0%). Concerning the non-volatile fraction, five lignans were the major components. (-)-Beilshminol B, (-)-grandisin, (-)-3',4'-methylenedioxy-3,4,5-trimethoxy-7,7'-epoxylignan, (-)-3',4'-methylenedioxy-3,4,5,5'-tetramethoxy-7,7'-epoxylignan, and (-)-3,4,3',4'-dimethylenedioxy-5,5'-dimethoxy-7,7'-epoxylignan were identified by means of NMR spectroscopy, mass spectrometry and X-ray crystallography. The absolute configuration 7S,8S,7'S,8'S was tentatively assigned to all of them.
Collapse
Affiliation(s)
- Jorge Ramírez
- Departamento de Química, Universidad Técnica Particular de Loja, Calle M. Champagnat s/n, Loja 1101608, Ecuador; (J.R.); (M.D.A.)
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 10, 27100 Pavia, Italy;
| | - María Daniela Andrade
- Departamento de Química, Universidad Técnica Particular de Loja, Calle M. Champagnat s/n, Loja 1101608, Ecuador; (J.R.); (M.D.A.)
| | - Giovanni Vidari
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 10, 27100 Pavia, Italy;
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja, Calle M. Champagnat s/n, Loja 1101608, Ecuador; (J.R.); (M.D.A.)
| |
Collapse
|
20
|
Pereira Filho AA, Pessoa GCD, Yamaguchi LF, Stanton MA, Serravite AM, Pereira RHM, Neves WS, Kato MJ. Larvicidal Activity of Essential Oils From Piper Species Against Strains of Aedes aegypti (Diptera: Culicidae) Resistant to Pyrethroids. FRONTIERS IN PLANT SCIENCE 2021; 12:685864. [PMID: 34149785 PMCID: PMC8213341 DOI: 10.3389/fpls.2021.685864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The continuous and indiscriminate use of insecticides has been responsible for the emergence of insecticide resistant vector insect populations, especially in Aedes aegypti. Thus, it is urgent to find natural insecticide compounds with novel mode of action for vector control. The goal of this study was to investigate the larvicidal activity of essential oils (EOs) from Piper species against A. aegypti characterized as resistant and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species were submitted to the evaluation of larvicidal activity in populations of A. aegypti in agreement with the (World Health Organization, 2005) guidelines. The resistance of the strains characterized by determining the lethal concentrations (LCs) with the insecticide deltamethrin (positive control). The major compounds of the EOs from Piper species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum, P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to 90% lethality at 100 ppm (concentration for screening). The activities of the EOs from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds identified in the most active EO were available commercially and included β-Asarone, (E)-Anethole, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids [Dillapiole, (E)-Anethole and β-Asarone] and monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene, and β-Pinene) showed larvicidal activity with mortality between 90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene (E)-β-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P. crassinervium, did not show activity on the three populations of A. aegypti larvae at a concentration of 100 ppm. These results indicate that Piper's EOs should be further evaluated as a potential larvicide, against strains resistant to currently used pesticides, and the identification of phenylpropanoids and monoterpenes as the active compounds open the possibility to study their mechanism of action.
Collapse
Affiliation(s)
- Adalberto Alves Pereira Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grasielle C. D‘Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lydia F. Yamaguchi
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Alves Stanton
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Artur M. Serravite
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael H. M. Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Welber S. Neves
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Laboratory of Natural Product Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Valéria Amorim L, de Lima Moreira D, Muálem de Moraes Alves M, Jessé Ramos Y, Pereira Costa Sobrinho E, Arcanjo DDR, Rodrigues de Araújo A, de Souza de Almeida Leite JR, das Chagas Pereira de Andrade F, Mendes AN, Aécio de Amorim Carvalho F. Anti-Leishmania activity of extracts from Piper cabralanum C.DC. (Piperaceae). ACTA ACUST UNITED AC 2021; 76:229-241. [PMID: 33660490 DOI: 10.1515/znc-2020-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 μg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 μg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Layane Valéria Amorim
- Antileishmania Activity Laboratory, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Davyson de Lima Moreira
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Ygor Jessé Ramos
- Natural Products Laboratory, Institute of Pharmaceutical Tecnologies, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro-RJ, Brazil
| | | | - Daniel Dias Rufino Arcanjo
- Department of Biophysics and Physiology, Laboratory of Funcional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne Rodrigues de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, Piauí, Brazil
| | | | | | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Innovation on Science and Technology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | |
Collapse
|
22
|
Durofil A, Radice M, Blanco-Salas J, Ruiz-Téllez T. Piper aduncum essential oil: a promising insecticide, acaricide and antiparasitic. A review. Parasite 2021; 28:42. [PMID: 33944775 PMCID: PMC8095093 DOI: 10.1051/parasite/2021040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies have assessed the potential of essential oils as substitutes for synthetic pesticides, in order to counter insect resistance to commercial pesticides. Piper aduncum L. is a very common shrub in the Amazon Rainforest and in other subtropical areas. The objective of this review was to analyse the existing information on P. aduncum essential oil as a raw material for new bioproducts for sustainable pest disease management. With this review, we collected and critically analysed 59 papers, representing all the studies that aimed to evaluate the essential oil properties of this species as an insecticide, acaricide and antiparasitic. The chemical composition differs depending on the origin, although phenylpropanoid dillapiole is the most cited component, followed by myristicin, 1,8-cineole and β-ocimene. Between the acaricidal, antiparasitic and synergistic activities, the insecticidal effects are highly promising, with optimal results against the malaria vector Aedes aegypti, with an LC50 that ranges between 57 and 200μg/mL. Acaricidal activity has mainly been reported against Tetranychus urticae, showing an LC50 that ranges between 5.83 and 7.17μg/mL. Antiparasitic activity has predominately been found on Leishmania amazonensis, and antipromastigote activity has been found to be between 23.8 and 25.9μg/mL. Concerning the synergistic effect between dillapiole and synthetic insecticides, four studies on Spodoptera frugiperda found promising results with cypermethrin. In this review, we highlighted the potential of P. aduncum essential oil as a biopesticide, also focusing on the lack of information about applied research. We also provide suggestions for future investigations.
Collapse
Affiliation(s)
- Andrea Durofil
-
Universidad Estatal Amazónica Km 2½ Vía Puyo-Tena 160150 Puyo Ecuador
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| | - Matteo Radice
-
Universidad Estatal Amazónica Km 2½ Vía Puyo-Tena 160150 Puyo Ecuador
| | - José Blanco-Salas
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| | - Trinidad Ruiz-Téllez
-
Department of Vegetal Biology, Ecology and Earth Science, Faculty of Sciences, University of Extremadura 06006 Badajoz Spain
| |
Collapse
|
23
|
França LP, Amaral ACF, Ramos ADS, Ferreira JLP, Maria ACB, Oliveira KMT, Araujo ES, Branches ADS, Silva JN, Silva NG, Barros GDA, Chaves FCM, Tadei WP, Silva JRDA. Piper capitarianum essential oil: a promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9760-9776. [PMID: 33159226 DOI: 10.1007/s11356-020-11148-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are responsible for serious public health problems worldwide, and as such, Aedes aegypti and Aedes albopictus are important vectors in the transmission of dengue, chikungunya, and Zika in Brazil and other countries of the world. Due to growing resistance to chemical insecticides among populations of vectors, environmentally friendly strategies for vector management are receiving ever more attention. Essential oils (EOs) extracted from plants have activities against insects with multiple mechanisms of action. These mechanisms hinder the development of resistance, and have the advantages of being less toxicity and biodegradable. Thus, the present study aimed to evaluate the chemical composition of the EOs obtained from Piper capitarianum Yunck, as well as evaluating their insecticidal potential against Aedes aegypti and A. albopictus, and their toxicity in relation to Artemia salina. The yields of the EOs extracted from the leaves, stems, and inflorescences of P. capitarianum were 1.2%, 0.9%, and 0.6%, respectively, and their main constituents were trans-caryophyllene (20.0%), α-humulene (10.2%), β-myrcene (10.5%), α-selinene (7.2%), and linalool (6.0%). The EO from the inflorescences was the most active against A. aegypti and A. albopictus, and exhibited the respective larvicidal (LC50 = 87.6 μg/mL and 76.1 μg/mL) and adulticide activities (LC50 = 126.2 μg/mL and 124.5 μg/mL). This EO was also the most active in the inhibition of AChE, since it presented an IC50 value of 14.2 μg/mL. Its larvicidal effect was observed under optical and scanning electron microscopy. Additionally, non-toxic effects against A. salina were observed. Docking modeling of trans-caryophyllene and α-humulene on sterol carrier protein-2 (SCP-2) suggests that both molecules have affinity with the active site of the enzyme, which indicates a possible mechanism of action. Therefore, the essential oil of P. capitarianum may be used in the development of new insecticide targets for the control of A. aegypti and A. albopictus in the Amazonian environment.
Collapse
Affiliation(s)
- Leandro P França
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Ana Claudia F Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Aline de S Ramos
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - José Luiz P Ferreira
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Ana Clara B Maria
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Kelson Mota T Oliveira
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Earle S Araujo
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Adjane Dalvana S Branches
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Jonathas N Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Noam G Silva
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | - Gabriel de A Barros
- Laboratory of Theoretical and Computational Chemistry, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Wanderli P Tadei
- Laboratory of Malaria and Dengue, Institute for Research in the Amazon, Manaus, AM, Brazil
| | | |
Collapse
|
24
|
Impact of genetic variants in IL-2RA and IL-2RB on breast cancer risk in Chinese Han women. Biochem Genet 2021; 59:697-713. [PMID: 33507447 DOI: 10.1007/s10528-021-10029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 12/09/2022]
Abstract
The expression of IL-2RA and IL-2RB was correlated with breast cancer (BC) progression. However, there is no literature investigating the association of IL-2RA and IL-2RB polymorphisms with BC predisposition among Chinese Han Women. Seven SNPs in IL-2RA and IL-2RB were genotyped by Agena MassARRAY platform among 553 BC patients and 550 healthy controls. Odds ratios (OR) and 95% confidence interval (CI) adjusted for age were calculated for the effect of IL-2RA and IL-2RB variants on BC susceptibility. IL-2RA rs12722498 was a protective factor for BC occurrence (OR = 0.70, p = 0.019), especially in subjects with age ≤ 52 years (OR = 0.55, p = 0.004). IL-2RA rs12569923 (OR = 9.07, p = 0.033), IL-2RB rs2281089 (OR = 0.67, p = 0.043) and rs9607418 (OR = 0.59, p = 0.012) were related to the incidence of estrogen receptor positive (ER +) BC. IL-2RB rs3218264 (OR = 1.38, p = 0.010) and rs9607418 (OR = 0.56, p = 0.009) were associated with the risk of developing progesterone receptor positive (PR +) BC. Rs2281089 (OR = 1.54, p = 0.012) and rs1573673 (OR = 0.72, p = 0.035) were correlated to Ki-67 level. Moreover, IL-2RB rs2281089 (OR = 0.72, p = 0.022) showed a reduced risk of BC metastasis, and IL-2RA rs12722498 (OR = 0.54, p = 0.030) had a lower frequency in BC patients with tumor size > 2 cm. Our study identified the potential effect of genetic variations in IL-2RA and IL-2RB on BC susceptibility and/or BC clinicopathologic indicators among Chinese Han Women.
Collapse
|
25
|
Barata LM, Andrade EH, Ramos AR, de Lemos OF, Setzer WN, Byler KG, Maia JGS, da Silva JKR. Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper ( Piper nigrum L.) Cultivated in Pará State, Brazil. Int J Mol Sci 2021; 22:ijms22020890. [PMID: 33477389 PMCID: PMC7830865 DOI: 10.3390/ijms22020890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography-mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5-90.9%) in the cultivars "Cingapura", "Equador", "Guajarina", "Iaçará", and "Kottanadan", and "Bragantina", "Clonada", and "Uthirankota" displayed oxygenated sesquiterpenoids (50.6-75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene ("Equador"/"Guajarina", I); δ-elemene ("Iaçará"/"Kottanadan"/"Cingapura", II); elemol ("Clonada"/"Uthirankota", III) and α-muurolol, bicyclogermacrene, and cubebol ("Bragantina", IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, β-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75-140.53 mg GAE·g-1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19-57.22 µU·mL-1), and carotenoids (0.21-2.31 µg·mL-1) displayed significant variations. Due to black pepper's susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar's volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.
Collapse
Affiliation(s)
- Luccas M. Barata
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
| | - Eloísa H. Andrade
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, PA 66077-830, Brazil;
| | - Alessandra R. Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil;
| | - Oriel F. de Lemos
- Centro de Pesquisa Agroflorestal da Amazônia Oriental, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Belém, PA 66095-100, Brazil;
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Correspondence: (W.N.S.); (J.K.R.d.S.); Tel.: +1-256-824-6519 (W.N.S.); +55-91-3201-7297 (J.K.R.d.S.)
| | - Kendall G. Byler
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA 65080-805, Brazil;
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém, PA 66075-110, Brazil;
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (W.N.S.); (J.K.R.d.S.); Tel.: +1-256-824-6519 (W.N.S.); +55-91-3201-7297 (J.K.R.d.S.)
| |
Collapse
|
26
|
Valarezo E, Flores-Maza P, Cartuche L, Ojeda-Riascos S, Ramírez J. Phytochemical profile, antimicrobial and antioxidant activities of essential oil extracted from Ecuadorian species Piper ecuadorense sodiro. Nat Prod Res 2020; 35:6014-6019. [PMID: 32851854 DOI: 10.1080/14786419.2020.1813138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present research, the essential oil from Piper ecuadorense was analysed by GC/MS and GC/FID techniques. A total of forty-four chemical compounds were identified which represent 98.65% of the essential oil composition. The main compounds were bicyclogermacrene (12.98%), 3-thujopsanone (11.59%), α-phellandrene (6.89%), (E)-nerolidol (6.88%), δ-elemene (6.83%) and shyobunol (5.79%). The essential oil from P. ecuadorense exerted a strong activity against Gram-positive bacterium Staphylococcus aureus (ATCC 25923) with an MIC of 250 μg/mL, and a very strong activity against Trichophyton rubrum (ATCC 28188) and Trichophyton mentagrophytes (ATCC 28185) with an MIC of 62.5 μg/mL in both cases. The antioxidant activity of essential oil was explored using DPPH and ABTS method, through ABTS assay. The oils showed an IC50 of 1.81 ± 0.09 mg/mL. This is the first report on the chemical composition and biological activity of essential oil from this species.
Collapse
Affiliation(s)
- Eduardo Valarezo
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Paola Flores-Maza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Luis Cartuche
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Santiago Ojeda-Riascos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Jorge Ramírez
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
27
|
de Souza MT, de Souza MT, Bernardi D, Krinski D, de Melo DJ, da Costa Oliveira D, Rakes M, Zarbin PHG, de Noronha Sales Maia BHL, Zawadneak MAC. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13056-13065. [PMID: 32006336 DOI: 10.1007/s11356-020-07871-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to analyze the chemical composition of five species of the genus Piper (P. aduncum L.; P. crassinervium Kunth.; P. malacophyllum Prels.; P. gaudichaudianum Kunth.; P. marginatum L.), and assess their toxicity to the adults of Drosophila suzukii (Diptera: Drosophilidae) and the pupal parasitoid Trichopria anastrephae Lima (Hymenoptera: Diapriidae). The major compounds were monoterpene hydrocarbons (5.3-60.9%); oxygenated monoterpenes (13.3%); sesquiterpenes hydrocarbons (8.3-45.3%), oxygenated sesquiterpenes (5.2-58.8%); and arylpropanoids (15.2-29.6%). In bioassays of ingestion and topical application, essential oils (EOs) from P. aduncum, P. gaudichaudianum, and P. marginatum killed approximately 100% of adults of D. suzukii, similarly to the insecticide based on spinetoram (75 mg L-1) (96.2% of mortality). Besides, the dry residues from P. aduncum, P. gaudichaudianum, and P. marginatum provided a repellent effect on oviposition (≅ 7 eggs/fruits) and negative effects on egg viability (≅ 2 larvae/fruits) of D. suzukii on artificial fruits. Based on the estimate of the lethal concentration required to kill 90% of exposed flies, EOs from P. aduncum, P. crassinervium, P. gaudichaudianum, P. malacophyllum, and P. marginatum provided low toxicity to the parasitoid T. anastrephae in a bioassay of ingestion and topical application (mortality < 20%), similarly to the water treatment (≅ 5% of mortality). EOs of Piper species tested in this work showed to be promising plant insecticides for the management of D. suzukii.
Collapse
Affiliation(s)
- Michele Trombin de Souza
- Department of Phytotechnology and Plant Health, Federal University of Paraná, Curitiba, Parana, Brazil
| | - Mireli Trombin de Souza
- Department of Phytotechnology and Plant Health, Federal University of Paraná, Curitiba, Parana, Brazil
| | - Daniel Bernardi
- Department of Plant Health, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Pelotas, 96010-900, Brazil.
| | - Diones Krinski
- Department of Biological Sciences, University of the State of Mato Grosso, Cáceres, Brazil
| | - Douglas José de Melo
- Department of Phytotechnology and Plant Health, Federal University of Paraná, Curitiba, Parana, Brazil
| | - Daiana da Costa Oliveira
- Department of Plant Health, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Pelotas, 96010-900, Brazil
| | - Matheus Rakes
- Department of Plant Health, Federal University of Pelotas, Capão do Leão, Rio Grande do Sul, Pelotas, 96010-900, Brazil
| | | | | | | |
Collapse
|
28
|
Dillapiole in Piper holtonii as an Inhibitor of the Symbiotic Fungus Leucoagaricus gongylophorus of Leaf-Cutting Ants. J Chem Ecol 2020; 46:668-674. [PMID: 32173778 DOI: 10.1007/s10886-020-01170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Plants of the Piperaceae family are studied for their diverse secondary metabolism with a vast array of compounds that act as chemical defense agents against herbivores. Of all the agricultural pests, the management of insects is a highly significant challenge in the Neotropics, and ants of the Attini tribe pose a major problem. Due to their symbiotic association with the fungus Leucoagaricus gongylophorus (Möller) Singer (Agaricaceae), the species of Atta and Acromyrmex have exhaustive foraging activity which has intensified as deforestation and monoculture farming have increased. The control of leaf-cutting ants is still carried out with synthetic products with negative consequences to the environment and human health. In search for natural and sustainable alternatives to synthetic pesticides, Piper holtonii C. DC. was selected among other plant species after field observations of the foraging activity of Atta cephalotes, which revealed that P. holtonii was never chosen by ants. In vitro evaluation of an ethanol extract of the leaves of P. holtonii resulted in promising inhibitory activity (IC50 102 ppm) against L. gongylophorus. Subsequently, bioassay-guided fractionation led to the isolation of the phenylpropanoid dillapiole, which was also detected in the essential oil. This compound demonstrated inhibition of the fungus with an IC50 of 38 ppm. Considering the symbiotic relationship between the Attini ants and L. gongylophorus, the negative effect on the survival of one of the organisms will affect the survival of the other, so dillapiole or standardized essential oil extracts of P. holtonii containing this active principle could be a unique and useful source as a control agent for leaf cutting-ants.
Collapse
|
29
|
Monteiro D, Guimarães EF. Piperaceae do nordeste brasileiro II: estado de Alagoas. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Este estudo traz o tratamento taxonômico das espécies de Piperaceae ocorrentes no estado de Alagoas, com o objetivo ampliar o conhecimento sobre a flora alagoana e dar continuidade aos estudos com a família no nordeste brasileiro. Foram registradas 30 espécies de Piperaceae, distribuídas nos gêneros Peperomia (9 spp.) e Piper (21 spp.), das quais oito são pela primeira vez registradas para o estado de Alagoas (3 e 5 spp., respectivamente). Apesar da maioria dos táxons ocorrerem em áreas florestais, alguns podem ser encontrados em áreas de restinga, brejo de altitude, no agreste, cerrado e na caatinga. São apresentadas chave para a identificação dos táxons ocorrentes, descrições para as espécies analisadas, além de comentários sobre distribuição geográfica, habitat, ação biológica, e ilustrações para aquelas pouco conhecidas.
Collapse
Affiliation(s)
- Daniele Monteiro
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Brasil
| | | |
Collapse
|
30
|
Evaluation of Antioxidant and Antimicrobial Activity of Some Plants Collected from Malaysia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
31
|
|
32
|
Sugier D, Sugier P, Jakubowicz-Gil J, Winiarczyk K, Kowalski R. Essential Oil from Arnica Montana L. Achenes: Chemical Characteristics and Anticancer Activity. Molecules 2019; 24:molecules24224158. [PMID: 31744121 PMCID: PMC6891426 DOI: 10.3390/molecules24224158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
Mountain arnica Arnica montana L. is a source of several metabolite classes with diverse biological activities. The chemical composition of essential oil and its major volatile components in arnica may vary depending on the geographical region, environmental factors, and plant organ. The objective of this study was to characterize the chemical composition of essential oil derived from A. montana achenes and to investigate its effect on induction of apoptosis and autophagy in human anaplastic astrocytoma MOGGCCM and glioblastoma multiforme T98G cell lines. The chemical composition of essential oil extracted from the achenes was examined with the use of Gas Chromatography–Mass Spectrometry GC-MS. Only 16 components of the essential oil obtained from the achenes of 3-year-old plants and 18 components in the essential oil obtained from the achenes of 4-year-old plants constituted ca. 94.14% and 96.38% of the total EO content, respectively. The main components in the EO from the arnica achenes were 2,5-dimethoxy-p-cymene (39.54 and 44.65%), cumene (13.24 and 10.71%), thymol methyl ether (8.66 and 8.63%), 2,6-diisopropylanisole (8.55 and 8.41%), decanal (7.31 and 6.28%), and 1,2,2,3-tetramethylcyclopent-3-enol (4.33 and 2.94%) in the 3- and 4-year-old plants, respectively. The essential oils were found to exert an anticancer effect by induction of cell death in anaplastic astrocytoma and glioblastoma multiforme cells. The induction of apoptosis at a level of 25.7–32.7% facilitates the use of this secondary metabolite in further studies focused on the development of glioma therapy in the future. Probably, this component plays a key role in the anticancer activity against the MOGGCCM and T98G cell lines. The present study is the first report on the composition and anticancer activities of essential oil from A. montana achenes, and further studies are required to explore its potential for future medicinal purposes.
Collapse
Affiliation(s)
- Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-46
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Krystyna Winiarczyk
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| |
Collapse
|
33
|
Chemical Compositions and Mosquito Larvicidal Activities of Essential Oils from Piper Species Growing Wild in Central Vietnam. Molecules 2019; 24:molecules24213871. [PMID: 31717867 PMCID: PMC6864731 DOI: 10.3390/molecules24213871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/30/2023] Open
Abstract
Mosquitoes are the deadliest animals on earth and are the vectors of several neglected tropical diseases. Recently, essential oils have emerged as potential renewable, cost-effective, and environmentally benign alternatives to synthetic pesticides for control of mosquitoes. In this work, thirteen species of Piper were collected from different areas of central Vietnam. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry. The essential oils were screened for mosquito larvicidal activity against Aedes aegypti. Four of the Piper essential oils showed outstanding larvicidal activity against Ae. aegypti, namely P. caninum, P. longum, P. montium, and P. mutabile, with LC50 and LC90 values less than 10 µg/mL. Multivariate analysis has correlated concentrations of β-caryophyllene, β-bisabolene, α-pinene, and β-pinene with mosquito larvicidal activity.
Collapse
|
34
|
Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes. Oncotarget 2019; 10:3472-3490. [PMID: 31191820 PMCID: PMC6544398 DOI: 10.18632/oncotarget.26930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Melanoma is a deadly form of malignancy and according to the World Health Organization 132,000 new cases of melanoma are diagnosed worldwide each year. Surgical resection and chemo/drug treatments opted for early and late stage of melanoma respectively, however detrimental post surgical and chemotherapy consequences are inevitable. Noticeably melanoma drug treatments are associated with liver injuries such as hepatitis and cholestasis which are very common. Alleviation of these clinical manifestations with better treatment options would enhance prognosis status and patients survival. Natural products which induce cytotoxicity with minimum side effects are of interest to achieve high therapeutic efficiency. In this study we investigated anti-melanoma and hepatoprotective activities of frankincense essential oil (FEO) in both in vitro and in vivo models. Pretreatment with FEO induce a significant (p < 0.05) dose-dependent reduction in the cell viability of mouse (B16-F10) and human melanoma (FM94) but not in the normal human epithelial melanocytes (HNEM). Immunoblot analysis showed that FEO induces down regulation of Bcl-2 and up regulation of BAX in B16-F10 cells whereas in FM94 cells FEO induced dose-dependent cleavage of caspase 3, caspase 9 and PARP. Furthermore, FEO (10 μg/ml) treatment down regulated MCL1 in a time-dependent manner in FM94 cells. In vivo toxicity analysis reveals that weekly single dose of FEO (1200 mg/kg body weight) did not elicit detrimental effect on body weight during four weeks of experimental period. Histology of tissue sections also indicated that there were no observable histopathologic differences in the brain, heart, liver, and kidney compare to control groups. FEO (300 and 600 mg/kg body weight) treatments significantly reduced the tumor burden in C57BL/6 mice melanoma model. Acetaminophen (750 mg/kg body weight) was used to induce hepatic injury in Swiss albino mice. Pre treatment with FEO (250 and 500 mg/kg body weight) for seven days retained hematology (complete blood count), biochemical parameters (AST, ALT, ALK, total bilirubin, total protein, glucose, albumin/globulin ratio, cholesterol and triglyceride), and the level of phase I and II drug metabolizing enzymes (cytochrome P450, cytochromeb5, glutathione-S-transferase) which were obstructed by the administration of acetaminophen. Further liver histology showed that FEO treatments reversed the damages (central vein dilation, hemorrhage, and nuclei condensation) caused by acetaminophen. In conclusion, FEO elicited marked anti-melanoma in both in vitro and in vivo with a significant heptoprotection.
Collapse
|
35
|
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019; 24:E1364. [PMID: 30959974 PMCID: PMC6479398 DOI: 10.3390/molecules24071364] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rabin Gyawali
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Elif Turkdonmez
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Lianet Monzote Fidalgo
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| |
Collapse
|
36
|
Cáceres A, Cruz SM, Martínez-Arevalo JV, Henriques AT, Apel MA. Composition of Essential Oil from Piper jacquemontianum from Eight Provenances of Guatemala. Nat Prod Commun 2019. [DOI: 10.1177/1934578x1901400120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Piper jacquemontianum Kunth (Piperaceae) is a native species from Central America and the Caribbean lowlands. It is traditionally used as a medicine and condiment in several ethnic groups from the region. Essential oils of dry leaves were obtained from eight ecologically different sites of Guatemala, which were cultivated under similar conditions in the Pacific basin. The essential oil yields obtained by hydrodistillation varied with the site of collection (0.3-1.7%). The essential oil composition was determined by gas chromatography; E-nerolidol was the only compound common to all provenances, although in a wide range (5.7-73.8%), being the main component of four of them. In the oils from other provenances, the main components were linalool, terpinen-4-ol, spathulenol, and α-bisabolol. This is the first report on the variation of the essential oil composition of this species of different provenance cultivated under similar conditions, suggesting high variability in its composition, and demonstrating at least five groups of P. jacquemontianum according to the composition of its essential oil. In further agrotechnological research, selection of the most promising samples could generate unique cultivars which might produce the expected compound.
Collapse
Affiliation(s)
- Armando Cáceres
- Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala
| | - Sully M. Cruz
- Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala
| | | | - Amelia T. Henriques
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Miriam A. Apel
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
37
|
Martínez-Arévalo JV, Cruz SM, Apel MA, Henriques AT, Cáceres A. Essential Oil of Piper oradendron from the Pacific Slope of Guatemala. Nat Prod Commun 2019. [DOI: 10.1177/1934578x1901400121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Essential oils of leaves of the endemic species Piper oradendron Trel. & Standl. (Piperaceae) were obtained from three sites of the Guatemalan Pacific slope. The yields of the essential oils obtained by hydrodistillation varied from the site of collection (0.4-1.4%). The GC/MS analysis showed that sample A (Samayac) had up to 53 peaks that were identified, B (Popoyá) showed 31 peaks and C (Bulbuxyá) showed 22; major constituents were similar in the three samples, including α- and β-pinene (28.3-46.9%), germacrene D (10.7-22.7%), and iso-spathulenol (10.2-22-3%). This is the first report on the chemical composition of the essential oil of samples of P. oradendron from different provenances of Guatemala, suggesting little variability in its main components.
Collapse
Affiliation(s)
| | - Sully M. Cruz
- Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala
| | - Miriam A. Apel
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Amélia T. Henriques
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Armando Cáceres
- Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala
| |
Collapse
|
38
|
Mischko W, Hirte M, Fuchs M, Mehlmer N, Brück TB. Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective β-copaene and cubebol production in E. coli. Microb Cell Fact 2018; 17:164. [PMID: 30348159 PMCID: PMC6198442 DOI: 10.1186/s12934-018-1010-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background Terpenes are an important and extremely versatile class of secondary metabolites that are commercially used in the pharmaceutical, food and cosmetics sectors. Genome mining of different fungal collections has revealed the genetic basis for a steadily increasing number of putative terpene synthases without any detailed knowledge about their biochemical properties. The analysis and research of this rich genetic source provides a precious basis for the advancing biotechnological production of an almost endless number of valuable natural metabolites. Results Three annotated terpene synthases from the little investigated Basidiomycota Coniophora puteana were studied in this work. For biochemical characterization, the heterologous expression in E. coli was conducted leading to the identification of two sesquiterpene synthases capable of the highly selective generation of β-copaene and cubebol. These compounds are commercially used as food and flavor additives. The new enzymes show the highest reported product selectivity for their main compounds and therefore represent the first exclusive synthases for β-copaene (62% product selectivity) and cubebol (75% product selectivity) generation. In combination with an optimized heterologous microbial production system, we obtained product titers of 215 mg/L β-copaene and 497 mg/L cubebol. Conclusion The reported product selectivity and our generated terpene titers exceed all published biotechnological data regarding the production of β-copaene and cubebol. This represents a promising and economic alternative to extraction from natural plant sources and the associated complex product purification. Electronic supplementary material The online version of this article (10.1186/s12934-018-1010-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wolfgang Mischko
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Max Hirte
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Monika Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Thomas B Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
39
|
Piper Essential Oils Inhibit Rhizopus oryzae Growth, Biofilm Formation, and Rhizopuspepsin Activity. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:5295619. [PMID: 30073039 PMCID: PMC6057405 DOI: 10.1155/2018/5295619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022]
Abstract
Piper is the largest genus of the Piperaceae family. The species of this genus have diverse biological activities and are used in pharmacopeia throughout the world. They are also used in folk medicine for treatment of many diseases in several countries including Brazil, China, India, Jamaica, and Mexico. In Brazil, Piper species are distributed throughout the national territory, making this genus a good candidate for biological activity screening. During our studies with Piper essential oils, we evaluated its activity against Rhizopus oryzae, the main agent of mucormycosis. The main compounds of seven Piper essential oils analyzed were Piper callosum—safrole (53.8%), P. aduncum—dillapiole (76.0%), P. hispidinervum—safrole (91.4%), P. marginatum—propiopiperone (13.2%), P. hispidum—γ-terpinene (30.9%), P. tuberculatum—(E)-caryophyllene (30.1%), and Piper sp.—linalool (14.6%). The minimum inhibitory concentration of Piper essential oils against R. oryzae ranged from 78.12 to >1250 μg/mL. The best result of total inhibition of biofilm formation was obtained with Piper sp. starting from 4.88 μg/mL. Considering the bioactive potential of EOs against planktonic cells and biofilm formation of R. oryzae could be of great interest for development of antimicrobials for therapeutic use in treatment of fungal infection.
Collapse
|
40
|
Chaaban A, Santos VMCS, Gomes EN, Martins CEN, Amaral WD, Deschamps C, Molento MB. Chemical composition of Piper gaudichaudianum essential oil and its bioactivity against Lucilia cuprina (Diptera: Calliphoridae). JOURNAL OF ESSENTIAL OIL RESEARCH 2018. [DOI: 10.1080/10412905.2017.1423406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amanda Chaaban
- Department of Veterinary Sciences, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Parasitic diseases, Federal University of Paraná, Curitiba, Brazil
- Department of Veterinary Medicine, Catarinense Federal Institute (IFC), Araquari, Brazil
| | | | - Erik Nunes Gomes
- Department of Plant Sciences, Federal University of Paraná, Curitiba, Brazil
| | | | - Wanderlei do Amaral
- Department of Plant Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Cícero Deschamps
- Department of Plant Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Marcelo Beltrão Molento
- Department of Veterinary Sciences, Federal University of Paraná, Curitiba, Brazil
- National Institute of Science and Technology, INCT-Livestock, Belo Horizonte, Brazil
| |
Collapse
|