1
|
Song QX, Zhang YY, Li YL, Liu F, Liu YJ, Li YK, Li CJ, Zhou C, Shen JF. The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation. Neuropharmacology 2024; 261:110173. [PMID: 39357737 DOI: 10.1016/j.neuropharm.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Temporomandibular joint inflammatory diseases are a significant subtype of temporomandibular disorders (TMD) characterized by inflammatory pain in the orofacial area. The N-methyl-D-aspartate receptor (NMDAR), specifically the NR2A subtype, was crucial in neuropathic pain. However, the exact role of NR2A in inflammatory pain in the TMJ and the molecular and cellular mechanisms mediating peripheral sensitization in the trigeminal ganglion (TG) remain unclear. This study utilized male and female mice to induce the TMJOA model by injecting Complete Freund's adjuvant (CFA) into the TMJ and achieve conditional knockout (CKO) of NR2A in the TG using Cre/Loxp technology. The Von-Frey filament test results showed that CFA-induced orofacial pain with reduced mechanical withdrawal threshold (MWT), which was not developed in NR2A CKO mice. Additionally, the up-regulation of interleukin (IL)-1β, IL-6, and nerve growth factor (NGF) in the TG induced by CFA did not occur by NR2A deficiency. In vitro, NMDA activated satellite glial cells (SGCs) with high expression of glial fibrillary acidic protein (GFAP), and both NMDA and LPS led to increased IL-1β, IL-6, and NGF in SGCs. NR2A deficiency reduced these stimulating effects of NMDA and LPS. The regulation of IL-1β involved the p38, Protein Kinase A (PKA), and Protein Kinase C (PKC) pathways, while IL-6 signaling relied on PKA and PKC pathways. NGF regulation was primarily through the p38 pathway. This study highlighted NR2A's crucial role in the TG peripheral sensitization during TMJ inflammation by mediating ILs and NGF, suggesting potential targets for orofacial inflammatory pain management.
Collapse
Affiliation(s)
- Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
3
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Galus W. Mind-brain identity theory confirmed? Cogn Neurodyn 2024; 18:1467-1487. [PMID: 39104703 PMCID: PMC11297862 DOI: 10.1007/s11571-023-09992-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2024] Open
Abstract
Presented here is a novel graphical, structural, and functional model of the embodied mind. Despite strictly adhering to a physicalistic and reductionist approach, this model successfully resolves the apparent contradiction between the thesis regarding the causal closure of the physical realm and the widely held common-sense belief that the mental realm can influence physical behavior. Furthermore, it substantiates the theory of mind-brain identity while shedding light on its neural foundation. Consciousness, viewed as an epiphenomenon in certain respects, simultaneously possesses causal potency. These two aspects operate concurrently through distinct brain processes. Within the paper, particular emphasis is placed on the significance of qualia and emotions, accompanied by an explanation of their phenomenal nature grounded in the perceptual theory of emotions. The proposed model elucidates how autonomous agents can deliberate on various action scenarios and consciously select the most optimal ones for themselves, considering their knowledge of the world, motivations, preferences, and emotions.
Collapse
|
5
|
Li YL, Zhang YY, Song QX, Liu F, Liu YJ, Li YK, Zhou C, Shen JF. N-methyl-D-aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation. Mol Neurobiol 2024:10.1007/s12035-024-04291-5. [PMID: 38976127 DOI: 10.1007/s12035-024-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zhang M, Liu T, Yang J. Skin neuropathy and immunomodulation in diseases. FUNDAMENTAL RESEARCH 2024; 4:218-225. [PMID: 38933512 PMCID: PMC11197692 DOI: 10.1016/j.fmre.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Skin is a vital barrier tissue of the body. Immune responses in the skin must be precisely controlled, which would otherwise cause severe disease conditions such as psoriasis, atopic dermatitis, or pathogenic infection. Research evidence has increasingly demonstrated the essential roles of neural innervations, i.e., sensory and sympathetic signals, in modulating skin immunity. Notably, neuropathic changes of such neural structures have been observed in skin disease conditions, implicating their direct involvement in various pathological processes. An in-depth understanding of the mechanism underlying skin neuropathy and its immunomodulatory effects could help reveal novel entry points for therapeutic interventions. Here, we summarize the neuroimmune interactions between neuropathic events and skin immunity, highlighting the current knowledge and future perspectives of this emerging research frontier.
Collapse
Affiliation(s)
- Manze Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tingting Liu
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jing Yang
- IDG/McGovern Institute for Brain Research, Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
7
|
Baek JH, Park H, Kang H, Kim R, Kang JS, Kim HJ. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int J Mol Sci 2024; 25:1302. [PMID: 38279303 PMCID: PMC10816396 DOI: 10.3390/ijms25021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, 15 Jinju-daero 816 Beongil, Jinju 52727, Gyeongnam, Republic of Korea; (J.H.B.); (H.P.); (H.K.); (R.K.); (J.S.K.)
| |
Collapse
|
8
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
9
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Wang X, Shao L, Hua H, Chen Y. Metabotropic glutamate receptor-8 relieves neonatal maternal separation-induced visceral hypersensitivity in rats by regulating expression of TNF-α. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:118. [PMID: 36819583 PMCID: PMC9929757 DOI: 10.21037/atm-22-6452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/07/2023] [Indexed: 02/03/2023]
Abstract
Background Visceral hypersensitivity (VH) is one of the most common causes of irritable bowel syndrome (IBS). The anti-hyperalgesic effects of metabotropic glutamate receptor 8 (mGluR8) has been identified in the central nervous system (CNS). However, whether this receptor has a similar function in the gastrointestinal tract has not been well studied. The present study aimed to explore the role of this receptor in a visceral hypersensitivity-related IBS rat model. Methods Neonatal rats were separated from their mothers for 3 hours daily from postnatal day 2 to day 14 to establish neonatal maternal separation (NMS) models. The mGluR8 agonist (S)-3,4-DCPG (10 mg/kg) and the mGluR8 antagonist (RS)-α- methylserine-O-phosphate (MSOP) (10 mg/kg) were used to examine the role of mGLuR8 in the NMS rats. The expression of mGluR8, related inflammatory factors, and inflammatory signal pathways were assessed in colon tissues. Results Our data showed that mGluR8 expression was increased in the colonic mucosa of NMS rats compared to controls. In addition, selective activation of mGluR8 ameliorated visceral hypersensitivity, whereas antagonization of mGluR8 aggravated visceral hypersensitivity. Treatment with (S)-3,4-DCPG (10 mg/kg) reduced the expression of myeloperoxidase (MPO) in intestinal mucosa of NMS rats. Furthermore, activating mGluR8 reduced the expression of tumor necrosis factor-α (TNF-α), whereas antagonizing mGluR8 promoted that. The expressions of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) did not significantly change upon activation or antagonization of mGluR8 receptor. Conclusions The activation of mGluR8 receptor ameliorates visceral hypersensitivity in NMS rats, and the underlying mechanisms may be associated with the inhibition of TNF-α and the suppression of colonic inflammatory response.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Limei Shao
- Department of Gastroenterology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjun Hua
- Department of Gastroenterology, Jinhua Municipal Central Hospital, Jinhua, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital, Jinhua, China
| |
Collapse
|
11
|
Liu J, Jia S, Huang F, He H, Fan W. Peripheral role of glutamate in orofacial pain. Front Neurosci 2022; 16:929136. [PMID: 36440288 PMCID: PMC9682037 DOI: 10.3389/fnins.2022.929136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.
Collapse
Affiliation(s)
- Jinyue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Zhang YY, Liu F, Fang ZH, Li YL, Liao HL, Song QX, Zhou C, Shen JF. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun 2022; 106:129-146. [PMID: 36038077 DOI: 10.1016/j.bbi.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1β, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Liu YJ, Li YL, Fang ZH, Liao HL, Zhang YY, Lin J, Liu F, Shen JF. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front Cell Neurosci 2022; 16:999509. [PMID: 36238833 PMCID: PMC9553029 DOI: 10.3389/fncel.2022.999509] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral and central sensitizations of the trigeminal nervous system are the main mechanisms to promote the development and maintenance of chronic orofacial pain characterized by allodynia, hyperalgesia, and ectopic pain after trigeminal nerve injury or inflammation. Although the pathomechanisms of chronic orofacial pain are complex and not well known, sufficient clinical and preclinical evidence supports the contribution of the N-methyl-D-aspartate receptors (NMDARs, a subclass of ionotropic glutamate receptors) to the trigeminal nociceptive signal processing pathway under various pathological conditions. NMDARs not only have been implicated as a potential mediator of pain-related neuroplasticity in the peripheral nervous system (PNS) but also mediate excitatory synaptic transmission and synaptic plasticity in the central nervous system (CNS). In this review, we focus on the pivotal roles and mechanisms of NMDARs in the trigeminal nervous system under orofacial neuropathic and inflammatory pain. In particular, we summarize the types, components, and distribution of NMDARs in the trigeminal nervous system. Besides, we discuss the regulatory roles of neuron-nonneuronal cell/neuron-neuron communication mediated by NMDARs in the peripheral mechanisms of chronic orofacial pain following neuropathic injury and inflammation. Furthermore, we review the functional roles and mechanisms of NMDARs in the ascending and descending circuits under orofacial neuropathic and inflammatory pain conditions, which contribute to the central sensitization. These findings are not only relevant to understanding the underlying mechanisms, but also shed new light on the targeted therapy of chronic orofacial pain.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| |
Collapse
|
14
|
Casili G, Lanza M, Filippone A, Cucinotta L, Paterniti I, Repici A, Capra AP, Cuzzocrea S, Esposito E, Campolo M. Dimethyl Fumarate (DMF) Alleviated Post-Operative (PO) Pain through the N-Methyl-d-Aspartate (NMDA) Receptors. Antioxidants (Basel) 2022; 11:antiox11091774. [PMID: 36139848 PMCID: PMC9495385 DOI: 10.3390/antiox11091774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The management of post-operative (PO) pain has generally been shown to be inadequate; therefore, acquiring a novel understanding of PO pain mechanisms would increase the therapeutic options available. There is accumulating evidence to implicate N-methyl-d-aspartate (NMDA) receptors in the induction and maintenance of central sensitization during pain states by reinforcing glutamate sensory transmission. It is known that DMF protects from oxidative glutamate toxicity. Therefore, NMDA receptor antagonists have been implicated in peri-operative pain management. Recent advances demonstrated that dimethyl fumarate (DMF), a non-opioid and orally bioavailable drug, is able to resolve neuroinflammation through mechanisms that drive nociceptive hypersensitivity. Therefore, in this study, we evaluated the role of DMF on pain and neuroinflammation in a mouse model of PO pain. An incision of the hind paw was performed, and DMF at two different doses (30 and 100 mg/kg) was administered by oral gavage for five consecutive days. Mechanical allodynia, thermal hyperalgesia and locomotor dysfunction were evaluated daily for five days after surgery. Mice were sacrificed at day 7 following PO pain induction, and hind paw and lumbar spinal cord samples were collected for histological and molecular studies. DMF administration significantly reduced hyperalgesia and allodynia, alleviating motor disfunction. Treatment with DMF significantly reduced histological damage, counteracted mast cell activation and reduced the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) inflammatory pathway, in addition to downregulating tumor necrosis factor-α (TNF-α), Interleukin-1β (Il-1β) and Il-4 expression. Interestingly, DMF treatment lowered the activation of NMDA receptor subtypes (NR2B and NR1) and the NMDA-receptor-interacting PDZ proteins, including PSD93 and PSD95. Furthermore, DMF interfered with calcium ion release, modulating nociception. Thus, DMF administration modulated PO pain, managing NMDA signaling pathways. The results suggest that DMF positively modulated persistent nociception related to PO pain, through predominantly NMDA-receptor-operated calcium channels.
Collapse
|
15
|
Lakatos PP, Karádi DÁ, Galambos AR, Essmat N, Király K, Laufer R, Geda O, Zádori ZS, Tábi T, Al-Khrasani M, Szökő É. The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. Int J Mol Sci 2022; 23:ijms23179564. [PMID: 36076962 PMCID: PMC9455595 DOI: 10.3390/ijms23179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.
Collapse
Affiliation(s)
- Péter P. Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Rudolf Laufer
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| |
Collapse
|
16
|
Huang B, Guo S, Zhang Y, Lin P, Lin C, Chen M, Zhu S, Huang L, He J, Zhang L, Zheng Y, Wen Z. MiR-223-3p alleviates trigeminal neuropathic pain in the male mouse by targeting MKNK2 and MAPK/ERK signaling. Brain Behav 2022; 12:e2634. [PMID: 35608154 PMCID: PMC9304854 DOI: 10.1002/brb3.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trigeminal neuralgia (TN) is a neuropathic pain that occurs in branches of the trigeminal nerve. MicroRNAs (miRNAs) have been considered key mediators of neuropathic pain. This study was aimed to elucidate the pathophysiological function and mechanisms of miR-223-3p in mouse models of TN. METHODS Infraorbital nerve chronic constriction injury (CCI-ION) was applied in male C57BL/6J mice to establish mouse models of TN. Pain responses were assessed utilizing Von Frey method. The expression of miR-223-3p, MKNK2, and MAPK/ERK pathway protein in trigeminal ganglions (TGs) of CCI-ION mice was measured using RT-qPCR and Western blotting. The concentrations of inflammatory cytokines were evaluated using Western blotting. The relationship between miR-223-3p and MKNK2 was tested by a luciferase reporter assay. RESULTS We found that miR-223-3p was downregulated, while MKNK2 was upregulated in TGs of CCI-ION mice. MiR-223-3p overexpression by an intracerebroventricular injection of Lv-miR-223-3p attenuated trigeminal neuropathic pain in CCI-ION mice, as well as reduced the protein levels of pro-inflammatory cytokines in TGs of CCI-ION mice. MKNK2 was verified to be targeted by miR-223-3p. Additionally, miR-223-3p overexpression decreased the phosphorylation levels of ERK1/2, JNK, and p38 protein in TGs of CCI-ION mice to inhibit MAPK/ERK signaling. CONCLUSIONS Overall, miR-223-3p attenuates the development of TN by targeting MKNK2 to suppress MAPK/ERK signaling.
Collapse
Affiliation(s)
- Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, Putian, China
| | - Yipan Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Pengxing Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Changgui Lin
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Meixia Chen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Shengyin Zhu
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Liyu Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Junwei He
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Lingfeng Zhang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Yanping Zheng
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| | - Zhipeng Wen
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
17
|
Seidel MF, Hügle T, Morlion B, Koltzenburg M, Chapman V, MaassenVanDenBrink A, Lane NE, Perrot S, Zieglgänsberger W. Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 2022; 356:114108. [PMID: 35551902 DOI: 10.1016/j.expneurol.2022.114108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Chronic pain syndrome is a heterogeneous group of diseases characterized by several pathological mechanisms. One in five adults in Europe may experience chronic pain. In addition to the individual burden, chronic pain has a significant societal impact because of work and school absences, loss of work, early retirement, and high social and healthcare costs. Several anti-inflammatory treatments are available for patients with inflammatory or autoimmune diseases to control their symptoms, including pain. However, patients with degenerative chronic pain conditions, some with 10-fold or more elevated incidence relative to these manageable diseases, have few long-term pharmacological treatment options, limited mainly to non-steroidal anti-inflammatory drugs or opioids. For this review, we performed multiple PubMed searches using keywords such as "pain," "neurogenic inflammation," "NGF," "substance P," "nociception," "BDNF," "inflammation," "CGRP," "osteoarthritis," and "migraine." Many treatments, most with limited scientific evidence of efficacy, are available for the management of chronic pain through a trial-and-error approach. Although basic science and pre-clinical pain research have elucidated many biomolecular mechanisms of pain and identified promising novel targets, little of this work has translated into better clinical management of these conditions. This state-of-the-art review summarizes concepts of chronic pain syndromes and describes potential novel treatment strategies.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum Biel-Centre Hospitalier Bienne, 2501 Biel-Bienne, Switzerland.
| | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Barton Morlion
- The Leuven Center for Algology and Pain Management, University of Leuven, Leuven, Belgium
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Serge Perrot
- Unité INSERM U987, Hôpital Ambroise Paré, Paris Descartes University, Boulogne Billancourt, France; Centre d'Evaluation et Traitement de la Douleur, Hôpital Cochin, Paris Descartes University, Paris, France
| | | |
Collapse
|
18
|
Zhang YY, Liu F, Lin J, Li YL, Fang ZH, Zhou C, Li CJ, Shen JF. Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 2022; 185:174-192. [DOI: 10.1016/j.brainresbull.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
|
19
|
KC E, Islam J, Kim S, Kim HK, Park YS. Pain Relief in a Trigeminal Neuralgia Model via Optogenetic Inhibition on Trigeminal Ganglion Itself With Flexible Optic Fiber Cannula. Front Cell Neurosci 2022; 16:880369. [PMID: 35573830 PMCID: PMC9096083 DOI: 10.3389/fncel.2022.880369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
The trigeminal ganglion (TG) is the primary site of aberration in trigeminal neuralgia (TN), and hence a crucial site where afferent input can be modulated. Here, we postulated that inhibiting TG via optogenetics using flexible optic cannula would diminish brainstem trigeminal nucleus caudalis (TNC) neuronal activity and pain behavior in TN rat model. Infraorbital nerve constriction was employed to induce TN in female Sprague-Dawley rats, while naive and sham rats served as controls. TG-directed microinjections of AAV virus containing either the optogenetic or null vector were delivered to rats in each group. In vivo electrophysiological responses were obtained from the ventral posteromedial nucleus (VPm) of the thalamus with simultaneous TG optogenetic stimulation using flexible optic cannula as well the effects on behavioral responses were investigated. Recordings in TN rats revealed a decrease in burst firing activity during yellow laser driven inhibition on TG, as well as considerably improved behavioral responses. In contrast, we noticed persistent hypersensitivity and increased tonic firing with blue laser stimulation which indicates that TG inhibition can synchronize trigeminal pain signal transmission in a TN animal model. The potential of an optogenetic approach in TG itself with flexible optic fiber to directly disrupt the trigeminal pain circuitry delivers fundamental underpinnings toward its prospective as a trigeminal neuralgia management.
Collapse
Affiliation(s)
- Elina KC
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Soochong Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, South Korea
| |
Collapse
|
20
|
Rocha JR, Passetto MDF, Maldonado-Menetti JDS, Cabral ALB, Toledo CABD, Koike M. Pigeon as a model to study peripheral projections from the horizontal semicircular canal vestibular apparatus to a brainstem target immunoreactive for AMPA. Acta Cir Bras 2022; 36:e361206. [PMID: 35019066 PMCID: PMC8734960 DOI: 10.1590/acb361206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: To evaluate whether the pigeon (Columba livia) is a good
model for evaluating the vestibular system involved with postural
maintenance during movement. Methods: This study maps the brainstem targets of the horizontal ampullary inputs from
the vestibular periphery of the pigeon. We used biotin dextran amine (BDA)
injection in horizontal semicircular canal (HSCC), immunohistochemistry for
GluR2/3 and GluR4 AMPA and computerized histomorphology reconstruction. Results: Our results show the same distribution pattern with ipsilateral projections
to vestibular nuclear complex (VNC) from the HSCC, with the majority of
labeled fibers being, long, thin, with few varicosities and many
ramifications. Horizontal semicircular canal projections achieve neurons
belonging to all nuclei of the VNC with exception of dorsal portion of
lateral vestibular nucleus and this area express GluR2/3 and GluR4 AMPA
receptors reinforcing the idea of glutamate participation in these
connections. Conclusions: Pigeon is an appropriated experimental model to study of projections of HSCC
and reinforcing the information that the vestibular system has strong
relation with the fast responses necessary for postural control. Moreover,
its phylogenetic organization apparently conservation, also seems to be a
fundamental characteristic for vertebrates.
Collapse
Affiliation(s)
- João Roberto Rocha
- Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Stephens KE, Zhou W, Renfro Z, Ji Z, Ji H, Guan Y, Taverna SD. Global gene expression and chromatin accessibility of the peripheral nervous system in animal models of persistent pain. J Neuroinflammation 2021; 18:185. [PMID: 34446036 PMCID: PMC8390277 DOI: 10.1186/s12974-021-02228-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Efforts to understand genetic variability involved in an individual's susceptibility to chronic pain support a role for upstream regulation by epigenetic mechanisms. METHODS To examine the transcriptomic and epigenetic basis of chronic pain that resides in the peripheral nervous system, we used RNA-seq and ATAC-seq of the rat dorsal root ganglion (DRG) to identify novel molecular pathways associated with pain hypersensitivity in two well-studied persistent pain models induced by chronic constriction injury (CCI) of the sciatic nerve and intra-plantar injection of complete Freund's adjuvant (CFA) in rats. RESULTS Our RNA-seq studies identify a variety of biological process related to synapse organization, membrane potential, transmembrane transport, and ion binding. Interestingly, genes that encode transcriptional regulators were disproportionately downregulated in both models. Our ATAC-seq data provide a comprehensive map of chromatin accessibility changes in the DRG. A total of 1123 regions showed changes in chromatin accessibility in one or both models when compared to the naïve and 31 shared differentially accessible regions (DAR)s. Functional annotation of the DARs identified disparate molecular functions enriched for each pain model which suggests that chromatin structure may be altered differently following sciatic nerve injury and hind paw inflammation. Motif analysis identified 17 DNA sequences known to bind transcription factors in the CCI DARs and 33 in the CFA DARs. Two motifs were significantly enriched in both models. CONCLUSIONS Our improved understanding of the changes in chromatin accessibility that occur in chronic pain states may identify regulatory genomic elements that play essential roles in modulating gene expression in the DRG.
Collapse
Affiliation(s)
- Kimberly E Stephens
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA.
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| | - Weiqiang Zhou
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Renfro
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Slot 512-47, Little Rock, AR, 72202, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Epigenetics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Huang B, Zdora I, de Buhr N, Lehmbecker A, Baumgärtner W, Leitzen E. Phenotypical peculiarities and species-specific differences of canine and murine satellite glial cells of spinal ganglia. J Cell Mol Med 2021; 25:6909-6924. [PMID: 34096171 PMCID: PMC8278083 DOI: 10.1111/jcmm.16701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Satellite glial cells (SGCs) are located in the spinal ganglia (SG) of the peripheral nervous system and tightly envelop each neuron. They preserve tissue homeostasis, protect neurons and react in response to injury. This study comparatively characterizes the phenotype of murine (mSGCs) and canine SGCs (cSGCs). Immunohistochemistry and immunofluorescence as well as 2D and 3D imaging techniques were performed to describe a SGC-specific marker panel, identify potential functional subsets and other phenotypical, species-specific peculiarities. Glutamine synthetase (GS) and the potassium channel Kir 4.1 are SGC-specific markers in murine and canine SG. Furthermore, a subset of mSGCs showed CD45 immunoreactivity and the majority of mSGCs were immunopositive for neural/glial antigen 2 (NG2), indicating an immune and a progenitor cell character. The majority of cSGCs were immunopositive for glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and Sox2. Therefore, cSGCs resemble central nervous system glial cells and progenitor cells. SGCs lacked expression of macrophage markers CD107b, Iba1 and CD204. Double labelling with GS/Kir 4.1 highlights the unique anatomy of SGC-neuron units and emphasizes the indispensability of further staining and imaging techniques for closer insights into the specific distribution of markers and potential colocalizations.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
23
|
Li YL, Liu F, Zhang YY, Lin J, Huang CL, Fu M, Zhou C, Li CJ, Shen JF. NMDAR1-Src-Pannexin1 Signal Pathway in the Trigeminal Ganglion Contributed to Orofacial Ectopic Pain Following Inferior Alveolar Nerve Transection. Neuroscience 2021; 466:77-86. [PMID: 33965504 DOI: 10.1016/j.neuroscience.2021.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is a glutamate-gated receptor channel that plays a role in peripheral neuropathic pain. Src, a protein tyrosine kinase, can regulate the activation of NMDARs in chronic pain conditions. Pannexin 1 (Panx1), a plasma membrane channel, plays an important role in neuropathic pain and functionally interacts with NMDARs in the pathological condition of epilepsy. In this study, the roles of NMDAR1 (NR1), Src, and Panx1 and their interactions in the trigeminal ganglion (TG) in orofacial ectopic pain attributed to inferior alveolar nerve transection (IANX) were investigated. IANX induced mechanical allodynia in the whisker pad with increased expression levels of NR1, Src phosphorylation (p-Src), and Panx1 in the TG. Double immunostaining revealed that NR1, Src, and Panx1 all colocalized with glutamine synthetase (GS) and neuronal nuclei (NeuN), and they overlapped in the TG, suggesting that they might be structurally connected to one another. In addition, trigeminal injection of memantine, PP2, or 10Panx attenuated IANX-induced mechanical allodynia in the whisker pad. Continuous intraganglionic administration of memantine (an antagonist of NMDAR) decreased IANX-induced upregulated expression of p-Src and Panx1. Similarly, PP2 (an inhibitor of Src) also decreased Panx1 protein expression but had no effect on NR1. In addition, intraganglionic injection of 10Panx (a blocker of Panx1) decreased NR1 protein expression but did not affect Src. In general, our findings demonstrated that NR1, Src, and Panx1 all contributed to orofacial ectopic pain following IANX and that they composed a signalling pathway in the TG involved in mechanical allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Gonzalez-Vazquez A, Aguilar-Peralta AK, Tomas-Sanchez C, Blanco-Alvarez VM, Martinez-Fong D, Gonzalez-Barrios JA, Treviño S, Millán-Perez Peña L, Alatriste V, Soto-Rodriguez G, Brambila E, Leon-Chavez BA. Taurine Increases Zinc Preconditioning-Induced Prevention of Nitrosative Stress, Metabolic Alterations, and Motor Deficits in Young Rats following Intrauterine Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6696538. [PMID: 34040692 PMCID: PMC8121588 DOI: 10.1155/2021/6696538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Oxygen deprivation in newborns leads to hypoxic-ischemic encephalopathy, whose hallmarks are oxidative/nitrosative stress, energetic metabolism alterations, nutrient deficiency, and motor behavior disability. Zinc and taurine are known to protect against hypoxic-ischemic brain damage in adults and neonates. However, the combined effect of prophylactic zinc administration and therapeutic taurine treatment on intrauterine ischemia- (IUI-) induced cerebral damage remains unknown. The present work evaluated this issue in male pups subjected to transient IUI (10 min) at E17 and whose mothers received zinc from E1 to E16 and taurine from E17 to postnatal day 15 (PND15) via drinking water. We assessed motor alterations, nitrosative stress, lipid peroxidation, and the antioxidant system comprised of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Enzymes of neuronal energetic pathways, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), were also evaluated. The hierarchization score of the protective effect of pharmacological strategies (HSPEPS) was used to select the most effective treatment. Compared with the IUI group, zinc, alone or combined with taurine, improved motor behavior and reduced nitrosative stress by increasing SOD, CAT, and GPx activities and decreasing the GSSG/GSH ratio in the cerebral cortex and hippocampus. Taurine alone increased the AST/ALT, LDH/ALT, and AST/LDH ratios in the cerebral cortex, showing improvement of the neural bioenergetics system. This result suggests that taurine improves pyruvate, lactate, and glutamate metabolism, thus decreasing IUI-caused cerebral damage and relieving motor behavior impairment. Our results showed that taurine alone or in combination with zinc provides neuroprotection in the IUI rat model.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Vazquez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Ana-Karina Aguilar-Peralta
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victor-Manuel Blanco-Alvarez
- Facultad de enfermería, Benemérita Universidad Autónoma de Puebla, 27 sur 1304, Col. Volcanes, Puebla, 72410 Puebla, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Juan-Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida, Instituto Politécnico Nacional #1669, 07760 México DF, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Lourdes Millán-Perez Peña
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Victorino Alatriste
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Col. Volcanes, Puebla, 72410 Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, 14 sur y Av. San Claudio, Puebla, 72570 Puebla, Mexico
| |
Collapse
|
25
|
Fu M, Liu F, Zhang YY, Lin J, Huang CL, Li YL, Wang H, Zhou C, Li CJ, Shen JF. The α2δ-1-NMDAR1 interaction in the trigeminal ganglion contributes to orofacial ectopic pain following inferior alveolar nerve injury. Brain Res Bull 2021; 171:162-171. [PMID: 33811955 DOI: 10.1016/j.brainresbull.2021.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Orofacial ectopic pain can often arise following nerve injury. However, the exact mechanism responsible for orofacial ectopic pain induced by trigeminal nerve injury remains unknown. The α2δ-1 and glutamate N-methyl-d-aspartic acid receptor (NMDAR) interactions have been demonstrated to participate in neuropathic pain regulation in the spinal cord. In this study, a rat model of inferior alveolar nerve transection (IANX) was used to investigate the role of α2δ-1-NMDAR1 interaction in the trigeminal ganglion (TG) in regard to the regulation of orofacial ectopic pain. Western blot (WB) analysis indicated that α2δ-1 and NMDAR1 in the TG were substantially higher in IANX rats than they were in sham/naive rats. Additionally, immunofluorescence (IF) results revealed that α2δ-1 and NMDAR1 were co-expressed and distributed within neurons and activated satellite glial cells in the TG. Co-immunoprecipitation (Co-IP) results indicated that α2δ-1-NMDAR1 complex levels in the TG were higher in IANX rats than they were in sham rats. Furthermore, the results of behavioral tests demonstrated that intra-TG injection of gabapentin (α2δ-1 inhibitory ligand) or memantine hydrochloride (NMDAR antagonist) reversed the decrease in mechanical head-withdrawal threshold (HWT) in IANX rats. Moreover, inhibition of α2δ-1 by intra-TG administration of gabapentin suppressed the upregulation of the NMDAR1 protein, and the inhibition of NMDAR by intra-TG administration of memantine hydrochloride inhibited the increased expression of α2δ-1 protein induced by IANX. In conclusion, the physical and functional interaction between α2δ-1 and NMDAR1 is critical for the development of orofacial ectopic pain, indicating that α2δ-1, NMDAR1, and the α2δ-1-NMDAR1 complex may represent potential targets for the treatment of orofacial ectopic pain.
Collapse
Affiliation(s)
- Min Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Bayat FK, Polat Budak B, Yiğit EN, Öztürk G, Gülçür HÖ, Güveniş A. Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures. PLoS One 2021; 16:e0246924. [PMID: 33657119 PMCID: PMC7928449 DOI: 10.1371/journal.pone.0246924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic network formation ability of the sensory neurons. To identify interaction profiles of Dorsal Root Ganglia (DRG) neurons and explore their putative connectivity, we developed an in vitro experimental approach. A double transgenic mouse model, expressing genetically encoded calcium indicator (GECI) in their glutamatergic neurons, was produced. Dissociated DRG cultures from adult mice were prepared with a serum-free protocol and no additional growth factors or cytokines were utilized for neuronal sensitization. DRG neurons were grown on microelectrode arrays (MEA) to induce stimulus-evoked activity with a modality-free stimulation strategy. With an almost single-cell level electrical stimulation, spontaneous and evoked activity of GCaMP6s expressing neurons were detected under confocal microscope. Typical responses were analyzed, and correlated calcium events were detected across individual DRG neurons. Next, correlated responses were successfully blocked by glutamatergic receptor antagonists, which indicated functional synaptic coupling. Immunostaining confirmed the presence of synapses mainly in the axonal terminals, axon-soma junctions and axon-axon intersection sites. Concisely, the results presented here illustrate a new type of neuron-to-neuron interaction in cultured DRG neurons conducted through synapses. The developed assay can be a valuable tool to analyze individual and collective responses of the cultured sensory neurons.
Collapse
Affiliation(s)
- F. Kemal Bayat
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
| | - Betul Polat Budak
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
- Faculty of Engineering and Natural Sciences, Biruni University, İstanbul, Turkey
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
- Institute of Biotechnology, Gebze Technical University, İzmit, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
| | - Halil Özcan Gülçür
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
- Faculty of Engineering and Natural Sciences, Biruni University, İstanbul, Turkey
- * E-mail:
| | - Albert Güveniş
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
| |
Collapse
|
27
|
Controlling the "Opioid Epidemic": A Novel Chemical Entity (NCE) to Reduce or Supplant Opiate Use for Chronic Pain. ACTA ACUST UNITED AC 2020; 5. [PMID: 33117893 PMCID: PMC7591148 DOI: 10.20900/jpbs.20200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report on the ongoing project “A Novel Therapeutic to Ameliorate Chronic Pain and Reduce Opiate Use.” Over 100 million adults in the U.S. suffer from intermittent or constant chronic pain, and chronic pain affects at least 10% of the world’s population. The primary pharmaceuticals for treatment of chronic pain have been natural or synthetic opioids and the use of opioids for pain treatment has resulted in what has been called an “epidemic” of opioid abuse, addiction and lethal overdoses. We have, through a process of rational drug design, generated a novel chemical entity (NCE) and have given it the name Kindolor. Kindolor is a non-opiate, non-addicting molecule that was developed specifically to simultaneously control the aberrant activity of three targets on the peripheral sensory system that are integral in the development and propagation of chronic pain. In our initial preclinical studies, we demonstrated the efficacy of Kindolor to reduce or eliminate chronic pain in five animal models. The overall goal of the project is to complete the investigational new drug (IND)-enabling preclinical studies of Kindolor, and once IND approval is gained, we will proceed to the clinical Phase Ia and 1b safety studies and a Phase 2a efficacy study. The work is in its second year, and the present report describes progress toward our overall goal of bringing our compound to a full Phase 2 ready stage.
Collapse
|
28
|
Fozzato S, Baranzini N, Bossi E, Cinquetti R, Grimaldi A, Campomenosi P, Surace MF. TRPV4 and TRPM8 as putative targets for chronic low back pain alleviation. Pflugers Arch 2020; 473:151-165. [PMID: 32955611 PMCID: PMC7835199 DOI: 10.1007/s00424-020-02460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study is to investigate the presence of nervous fibers and expression of TRP channels in samples harvested during decompressive/fusion spine surgeries from patients affected by chronic low back pain (CLBP). The aim was to understand if members of this family of receptors played a role in detection and processing of painful stimuli, to eventually define them as potential targets for CLBP alleviation. Expression of transient receptor potential (TRP) channels (A1, V1, V2, V4, and M8) was evaluated in samples from different periarticular sites of 6 patients affected by CLBP, at both protein and transcript levels. The capsular connective pathological tissue appeared infiltrated by sensitive unmyelinated nervous fibers. An increase in TRP channel mRNAs and proteins was observed in the pathological capsule compared with tissues collected from the non-symptomatic area in five of the six analyzed patients, independently by the location and number of affected sites. In particular, TRPV4 and TRPM8 were consistently upregulated in pathological tissues. Interestingly, the only patient showing a different pattern of expression also had a different clinical history. TRPV4 and TRPM8 channels may play a role in CLBP and warrant further investigations as possible therapeutic targets.
Collapse
Affiliation(s)
- Stefania Fozzato
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy. .,Center for Neuroscience Research, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy.
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy
| | - Michele Francesco Surace
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, VA, Italy.,Interdisciplinary Research Centre for Pathology and Surgery of the Musculoskeletal System, University of Insubria, Varese, Italy
| |
Collapse
|
29
|
Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR. Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 2020; 11:2602-2614. [PMID: 32697906 DOI: 10.1021/acschemneuro.0c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies in mouse, and to a lesser extent in rat, have revealed the neuroanatomical distribution of vesicular glutamate transporters (VGLUTs) and begun exposing the critical role of VGLUT2 and VGLUT3 in pain transmission. In the present study in rat, we used specific riboprobes to characterize the transcript expression of all three VGLUTs in lumbar dorsal root ganglia (DRGs) and in the thoracolumbar, lumbar, and sacral spinal cord. We show for the first time in rat a very discrete VGLUT3 expression in DRGs and in deep layers of the dorsal horn. We confirm the abundant expression of VGLUT2, in both DRGs and the spinal cord, including presumable motorneurons in the latter. As expected, VGLUT1 was present in many DRG neuron profiles, and in the spinal cord it was mostly localized to neurons in the dorsal nucleus of Clarke. In rats with a 10 day long hindpaw inflammation, increased spinal expression of VGLUT2 transcript was detected by qRT-PCR, and intrathecal administration of the nonselective VGLUT inhibitor Chicago Sky Blue 6B resulted in reduced mechanical and thermal allodynia for up to 24 h. In conclusion, our results provide a collective characterization of VGLUTs in rat DRGs and the spinal cord, demonstrate increased spinal expression of VGLUT2 during chronic peripheral inflammation, and support the use of spinal VGLUT blockade as a strategy for attenuating inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Carly J. McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Harry Trigosso-Venario
- Hospital Universitario Austral, Austral University, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Rebecca P. Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| |
Collapse
|
30
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Noh ASM, Ismail CAN. A Review on Chronic Pain in Rheumatoid Arthritis: A Focus on Activation of NR2B Subunit of N-Methyl-D-Aspartate Receptors. Malays J Med Sci 2020; 27:6-21. [PMID: 32158341 PMCID: PMC7053548 DOI: 10.21315/mjms2020.27.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a debilitating condition that occurs after tissue damage, which substantially affects the patient's emotional state and physical activity. The chronic pain in rheumatoid arthritis (RA) is the result of various autoimmune-induced inflammatory reactions in the joints. Both types of peripheral and central pain processing can lead to sensitisation. Non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs) can result in potent anti-inflammatory effect. However, these drugs are not able to suppress the pain from RA for a prolonged period. For years, researchers have examined the role of the N-methyl-D-aspartic acid receptor 2B (NR2B) subunit of N-methyl-D-aspartate receptors (NMDAR) in chronic and neuropathic pain models. This NMDAR subtype can be found in at the peripheral and central nervous system and it represents an effective therapy for RA pain management. This review focuses on the NR2B subunit of NMDAR and the different pathways leading to its activation. Furthermore, specific attention is given to the possible involvement of NR2B subunit in the peripheral and central pathogenesis of RA.
Collapse
Affiliation(s)
- Ain' Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | |
Collapse
|
32
|
Abstract
In the peripheral nervous system, the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves. Axons within the nerves are in close contact with myelinating glia, the Schwann cells that are ideally placed to respond to, and possibly shape, axonal activity. The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells, as well as signalling via diffusible substances. Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves. Two types of experimental findings support this idea: first, glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves; second, axons and Schwann cells in the peripheral nerves express glutamate receptors. Yet, the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing. Remarkably, in the central nervous system, axons and myelinating glia are involved in glutamatergic signalling. This signalling occurs via different mechanisms, the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells. Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation, migration, and differentiation of oligodendrocyte precursor cells, survival of oligodendrocytes, and re-myelination of axons after damage. Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves? What is the functional role of glutamate receptors in the peripheral nerves? Is activation of glutamate receptors in the nerves beneficial or harmful during diseases? In this review, we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves. We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
Collapse
Affiliation(s)
- Ting-Jiun Chen
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Centre, Washington, DC, USA
| | - Maria Kukley
- Group of Neuron Glia Interaction, University of Tübingen; Research Institute of Ophthalmology, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
33
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
34
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
35
|
Shao L, Liu Y, Xiao J, Wang Q, Liu F, Ding J. Activating metabotropic glutamate receptor‑7 attenuates visceral hypersensitivity in neonatal maternally separated rats. Int J Mol Med 2018; 43:761-770. [PMID: 30569115 PMCID: PMC6317681 DOI: 10.3892/ijmm.2018.4022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has indicated that metabotropic glutamate receptor-7 (mGluR7) is an important target for reducing anxiety and stress-associated behaviours. Notably, mood disorders exhibit high levels of comorbidity with gastrointestinal dysfunction; however, the role of mGluR7 outside of the central nervous system is currently unknown. Activating mGluR7 likely increases colonic secretory function. Therefore, the present study aimed to evaluate the possible effects of mGluR7 on the visceral hypersensitivity of irritable bowel syndrome (IBS) in rats. The expression levels of mGluR7 were assessed in the colon tissues of rats with neonatal maternal separation (NMS)-induced visceral hypersensitivity using reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. In addition, the mGluR7 agonist AMN082 (3 or 10 mg/kg; i.p.) was administered 1 h prior to the visceral hypersensitivity test, and the effects of AMN082 were then observed on the nuclear factor (NF)-κB signalling pathway. The mRNA and protein expression levels of mGluR7 were upregulated in the colon mucosa of NMS rats compared with in normal control rats. Notably, administration of AMN082 (10 mg/kg) attenuated colorectal distension (CRD)-induced visceral hypersensitivity in NMS rats. In addition, interleukin-10 and transforming growth factor-β mRNA expression levels were upregulated, whereas interferon-γ mRNA expression levels were downregulated in the NMS + AMN082 group compared with in NMS rats. The number of cluster of differentiation 3+ T cells in the intestinal mucosa and myeloperoxidase activity were decreased in NMS + AMN082 rats. Furthermore, AMN082 treatment reduced the protein expression levels of phosphorylated-NF-κB in the colon tissue of NMS rats. These results indicated that activation of mGluR7 may attenuate CRD-induced visceral hypersensitivity in experimental IBS and reduce the abnormal immune cytokine response. In addition, it was suggested that the role of AMN082 in modulating the inflammatory response may be partially associated with inhibiting NF-κB activation. These data suggested that targeting mGluR7 may be useful in the treatment of stress-associated IBS.
Collapse
Affiliation(s)
- Limei Shao
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Yanbing Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Junhua Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qunying Wang
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Jin Ding
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
36
|
Li JH, He PY, Fan DN, Alemujiang D, Huo FQ, Zhao Y, Cao DY. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves. Neurosci Lett 2018; 678:1-7. [PMID: 29705538 DOI: 10.1016/j.neulet.2018.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization.
Collapse
Affiliation(s)
- Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, P. R. China
| | - Pei-Yao He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, P. R. China
| | - Dan-Ni Fan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, P. R. China
| | - Dilinapa Alemujiang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, P. R. China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, P. R. China
| | - Yan Zhao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, Shaanxi 710061, P. R. China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, P. R. China.
| |
Collapse
|