1
|
Altıntaş UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato BJ, Nelson GM, Goldman SR, Adelman K, Hach F, Freedman ML, Lack NA. Decoding the epigenetics and chromatin loop dynamics of androgen receptor-mediated transcription. Nat Commun 2024; 15:9494. [PMID: 39489778 PMCID: PMC11532539 DOI: 10.1038/s41467-024-53758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
Grants
- 221Z116 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Scientific and Technological Research Council of Turkey)
- R01 CA259058 NCI NIH HHS
- R01 CA227237 NCI NIH HHS
- W81XWH-21-1-0339 U.S. Department of Defense (United States Department of Defense)
- R01 CA251555 NCI NIH HHS
- W81XWH-21-1-0234 U.S. Department of Defense (United States Department of Defense)
- PJT-173331 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- W81XWH-22-1-0951 U.S. Department of Defense (United States Department of Defense)
- R01 CA262577 NCI NIH HHS
- N.A.L. was supported by funding from TUBITAK (221Z116), W81XWH-21-1-0234 (DoD), and CIHR PJT-173331.
- M.L.F. was supported by the Claudia Adams Barr Program for Innovative Cancer Research, the Dana-Farber Cancer Institute Presidential Initiatives Fund, the H.L. Snyder Medical Research Foundation, the Cutler Family Fund for Prevention and Early Detection, the Donahue Family Fund, W81XWH-21-1-0339, W81XWH-22-1-0951 (DoD), NIH Awards R01CA251555, R01CA227237, R01CA262577, R01CA259058 and a Movember PCF Challenge Award.
Collapse
Affiliation(s)
- Umut Berkay Altıntaş
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Claudia Giambartolomei
- Integrative Data Analysis Unit, Health Data Science Centre, Human Technopole, Milan, 20157, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Dogancan Ozturan
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Brad J Fortunato
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
| | - Faraz Hach
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew L Freedman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- The Eli and Edythe L. Broad Institute, Boston, MA, 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul, 34450, Turkey.
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
2
|
Zhang Y, Wang G, Shao Y, Zheng P, Guo C, Liu Z, Shen L, Liu Z, Ding J, Zhang H. Simultaneous determination of 18 steroids in the hypothalamic pituitary gonadal axis based on UPLC-MS/MS with multimode ionization. Analyst 2024; 149:4663-4674. [PMID: 39073090 DOI: 10.1039/d4an00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To objectively quantify changes in steroid hormones in organisms caused by adverse environmental loads, we developed a simple and sensitive UPLC-MS/MS (ultra-performance liquid chromatography triple quadrupole mass spectrometry) method for the simultaneous determination of 18 steroid hormones on the HPG axis. This analytical method was based on liquid extraction and a multimode electrospray and atmospheric pressure chemical ionization (ESCi) source, which was optimized by mass spectrometry, liquid phase and pretreatment for the quantification of cholesterol (CH), aldosterone (A), cortisone (E), hydrocortisone (F), 21-deoxycortisol (21-DF), corticosterone (B), 11-deoxycortisol (11-DF), androstenedione (A2), estradiol (E2), estrone (E1), 2-methoxyestradiol (2-MeE2), 21-hydroxyprogesterone (21-OHP), 17-α hydroxyprogesterone (17α-OHP), testosterone (T), dehydroepiandrosterone (DHEA), progesterone (P4), dihydrotestosterone (DHT), and pregnenolone (P5). The method exhibits linearity in the analyte-concentration range 0.03-1000 μg mL-1 (r2 > 0.99), the spiked recoveries for the concentration range tested are 76.22-113.66%, and the relevant parameters of precision are 7.52-1.14%. Compared to other methods, this new method not only uses a small amount of serum (only 100 μL), but also permits the analysis of the challenging steroid, cholesterol. Furthermore, the method was successfully applied to the determination of steroids in Mus musculus, Carassius auratus, Rana catesbeiana Shaw, and Rana nigromaculata serum samples from randomly selected individuals. Therefore, this method is efficient and a very useful tool for assessing changes in steroid hormones.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Guanghui Wang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Yongjian Shao
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Pei Zheng
- Daishan Branch of Ecological Environment Bureau, 316299, Zhoushan, Zhejiang, China
| | - Chunyan Guo
- Zhejiang Radiation Environment Monitoring Station (Technical Center for Radiation Environment Monitoring, Ministry of Ecology and Environment), 310012, Hangzhou, Zhejiang, China
| | - Zhiqun Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Lilai Shen
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Zhiquan Liu
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Jiafeng Ding
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
| | - Hangjun Zhang
- Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Li P, Chen Y, Xiang Y, Guo R, Li X, Liu J, Zhou Y, Fu X. 17β-estradiol promotes myeloid-derived suppressor cells functions and alleviates inflammatory bowel disease by activation of Stat3 and NF-κB signalings. J Steroid Biochem Mol Biol 2024; 242:106540. [PMID: 38719162 DOI: 10.1016/j.jsbmb.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
Inflammatory bowel disease (IBD) describes a group of clinically common autoimmune diseases characterized by chronic intestinal inflammation, with gender differences in prevalence. Estrogen has been previously shown to exert anti-inflammatory action in IBD development, however, the mechanisms remain obscure. Recent research has revealed that myeloid-derived suppressor cells (MDSCs) play a protective role in IBD pathogenesis. To investigate the molecular mechanisms of estrogen steroid 17β-estradiol (E2) in IBD progression, we established IBD mouse models (DNB-induced) with or without prior ovariectomy (OVX) and E2 implantation. We found that OVX led to worse IBD symptoms and reduced MDSCs frequency, whereas E2 significantly alleviated these effects in vivo. Moreover, in vitro experiments showed that E2 promoted the proliferation and immunosuppressive function of MDSCs through phosphorylation of Stat3 and p65. Mechanistically, E2-mediated Stat3/p65 phosphorylation depends on the interaction between HOTAIR, a long non-coding RNA that are well-known in MDSCs proliferation, and Stat3/p65 respectively. In conclusion, our study revealed that E2 promotes the expansion and immunosuppressive function of MDSCs, and thus diminished the occurrence and development of IBD.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China; Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P.R. China
| | - Yiwen Chen
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yixiao Xiang
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ruixin Guo
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaosa Li
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China.
| | - Yuting Zhou
- Department of Biotechnology, School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.
| | - Xiaodong Fu
- Key Laboratory of Cardiovascular Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China; Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China.
| |
Collapse
|
4
|
Xiao T, Lee J, Gauntner TD, Velegraki M, Lathia JD, Li Z. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat Rev Cancer 2024; 24:338-355. [PMID: 38589557 DOI: 10.1038/s41568-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are present across multiple non-reproductive organ cancers, with male individuals generally experiencing higher incidence of cancer with poorer outcomes. Although some mechanisms underlying these differences are emerging, the immunological basis is not well understood. Observations from clinical trials also suggest a sex bias in conventional immunotherapies with male individuals experiencing a more favourable response and female individuals experiencing more severe adverse events to immune checkpoint blockade. In this Perspective article, we summarize the major biological hallmarks underlying sex bias in immuno-oncology. We focus on signalling from sex hormones and chromosome-encoded gene products, along with sex hormone-independent and chromosome-independent epigenetic mechanisms in tumour and immune cells such as myeloid cells and T cells. Finally, we highlight opportunities for future studies on sex differences that integrate sex hormones and chromosomes and other emerging cancer hallmarks such as ageing and the microbiome to provide a more comprehensive view of how sex differences underlie the response in cancer that can be leveraged for more effective immuno-oncology approaches.
Collapse
Affiliation(s)
- Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Gauntner
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Rose Ella Burkhardt Brain Tumour Center, Cleveland Clinic, Cleveland, OH, USA.
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA.
| |
Collapse
|
5
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Lack N, Altintas UB, Seo JH, Giambartolomei C, Ozturan D, Fortunato B, Nelson G, Goldman S, Adelman K, Hach F, Freedman M. Decoding the Epigenetics and Chromatin Loop Dynamics of Androgen Receptor-Mediated Transcription. RESEARCH SQUARE 2024:rs.3.rs-3854707. [PMID: 38352568 PMCID: PMC10862967 DOI: 10.21203/rs.3.rs-3854707/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.
Collapse
|
7
|
Hassan S, Thacharodi A, Priya A, Meenatchi R, Hegde TA, R T, Nguyen HT, Pugazhendhi A. Endocrine disruptors: Unravelling the link between chemical exposure and Women's reproductive health. ENVIRONMENTAL RESEARCH 2024; 241:117385. [PMID: 37838203 DOI: 10.1016/j.envres.2023.117385] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
An Endocrine Disrupting Chemical (EDC) is any compound that disrupts the function of the endocrine system in humans and is ubiquitous in the environment either as a result of natural events or through anthropogenic activities. Bisphenol A, phthalates, parabens, pesticides, triclosan, polychlorinated biphenyls, and heavy metals, which are frequently found in the pharmaceutical, cosmetic, and packaging sectors, are some of the major sources of EDC pollutants. EDCs have been identified to have a deteriorating effect on the female reproductive system, as evidenced by the increasing number of reproductive disorders such as endometriosis, uterine fibroids, polycystic ovary syndrome, premature ovarian failure, menstrual irregularity, menarche, and infertility. Studying EDCs in relation to women's health is essential for understanding the complex interactions between environmental factors and health outcomes. It enables the development of strategies to mitigate risks, protect reproductive and overall health, and inform public policy decisions to safeguard women's well-being. Healthcare professionals must know the possible dangers of EDC exposure and ask about environmental exposures while evaluating patients. This may result in more precise diagnosis and personalized treatment regimens. This review summarises the existing understanding of prevalent EDCs that impact women's health and involvement in female reproductive dysfunction and underscores the need for more research. Further insights on potential mechanisms of action of EDCs on female has been emphasized in the article. We also discuss the role of nutritional intervention in reducing the effect of EDCs on women's reproductive health. EDC pollution can be further reduced by adhering to strict regulations prohibiting the release of estrogenic substances into the environment.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Anshu Priya
- SRF-ICMR, CSIR-Institute of Genomics and Integrative Biology (IGIB), South Campus, New Delhi, 110025, India
| | - R Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Thanushree A Hegde
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - Thangamani R
- Department of Civil Engineering, NMAM Institute of Technology, Nitte, Karnataka, 574110, India
| | - H T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
8
|
Shaheer K, Prabhu BS, Ali HS, Lakshmanan-M D. Breast cancer cells are sensitized by piperine to radiotherapy through estrogen receptor-α mediated modulation of a key NHEJ repair protein- DNA-PK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155126. [PMID: 37913642 DOI: 10.1016/j.phymed.2023.155126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Non-homologous end joining, an important DNA-double-stranded break repair pathway, plays a prominent role in conferring resistance to radiotherapeutic agents, resulting in cancer progression and relapse. PURPOSE The molecular players involved in the radio-sensitizing effects of piperine and many other phytocompounds remain evasive to a great extent. The study is designed to assess if piperine, a plant alkaloid can alter the radioresistance by modulating the expression of non-homologous end-joining machinery. METHODS AND MATERIALS Estrogen receptor-positive/negative, breast cancer cells were cultured to understand the synergetic effects of piperine with radiotherapy. Cisplatin and Bazedoxifene were used as positive controls. Cells were exposed to γ- radiation using Low Dose gamma Irradiator-2000. The piperine effect on Estrogen receptor modulation, DNA-Damage, DNA-Damage-Response, and apoptosis was done by western blotting, immunofluorescence, yeast-based-estrogen-receptor-LacZ-reporter assay, and nuclear translocation analysis. Micronuclei assay was done for DNA damage and genotoxicity, and DSBs were quantified by γH2AX-foci-staining using confocal microscopy. Flow cytometry analysis was done to determine the cell cycle, mitochondrial membrane depolarization, and Reactive oxygen species generation. Pharmacophore analysis and protein-ligand interaction studies were done using Schrodinger software. Synergy was computed by compusyn-statistical analysis. Standard errors/deviation/significance were computed with GraphPad prism. RESULTS Using piperine, we propose a new strategy for overcoming acquired radioresistance through estrogen receptor-mediated modulation of the NHEJ pathway. This is the first comprehensive study elucidating the mechanism of radio sensitizing potential of piperine. Piperine enhanced the radiation-induced cell death and enhanced the expression and activation of Estrogen receptor β, while Estrogen receptor α expression and activation were reduced. In addition, piperine shares common pharmacophore features with most of the known estrogen agonists and antagonists. It altered the estrogen receptor α/β ratio and the expression of estrogen-responsive proteins of DDR and NHEJ pathway. Enhanced expression of DDR proteins, ATM, p53, and P-p53 with low DNA-PK repair complex (comprising of DNA-PKcs/Ku70/Ku80), resulted in the accumulation of radiation-induced DNA double-stranded breaks (as evidenced by MNi and γH2AX-foci) culminating in cell cycle arrest and mitochondrial-pathway of apoptosis. CONCLUSION In conclusion, our study for the first time reported that piperine sensitizes breast cancer cells to radiation by accumulating DNA breaks, through altering the expression of DNA-PK Complex, and DDR proteins, via selective estrogen receptor modulation, offering a novel strategy for combating radioresistance.
Collapse
Affiliation(s)
- Koniyan Shaheer
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Br Swathi Prabhu
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - H Shabeer Ali
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Divya Lakshmanan-M
- Division of Cancer Research and Therapeutics (CaRT), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
9
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
10
|
Tav C, Fournier É, Fournier M, Khadangi F, Baguette A, Côté MC, Silveira MAD, Bérubé-Simard FA, Bourque G, Droit A, Bilodeau S. Glucocorticoid stimulation induces regionalized gene responses within topologically associating domains. Front Genet 2023; 14:1237092. [PMID: 37576549 PMCID: PMC10413275 DOI: 10.3389/fgene.2023.1237092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription-factor binding to cis-regulatory regions regulates the gene expression program of a cell, but occupancy is often a poor predictor of the gene response. Here, we show that glucocorticoid stimulation led to the reorganization of transcriptional coregulators MED1 and BRD4 within topologically associating domains (TADs), resulting in active or repressive gene environments. Indeed, we observed a bias toward the activation or repression of a TAD when their activities were defined by the number of regions gaining and losing MED1 and BRD4 following dexamethasone (Dex) stimulation. Variations in Dex-responsive genes at the RNA levels were consistent with the redistribution of MED1 and BRD4 at the associated cis-regulatory regions. Interestingly, Dex-responsive genes without the differential recruitment of MED1 and BRD4 or binding by the glucocorticoid receptor were found within TADs, which gained or lost MED1 and BRD4, suggesting a role of the surrounding environment in gene regulation. However, the amplitude of the response of Dex-regulated genes was higher when the differential recruitment of the glucocorticoid receptor and transcriptional coregulators was observed, reaffirming the role of transcription factor-driven gene regulation and attributing a lesser role to the TAD environment. These results support a model where a signal-induced transcription factor induces a regionalized effect throughout the TAD, redefining the notion of direct and indirect effects of transcription factors on target genes.
Collapse
Affiliation(s)
- Christophe Tav
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Éric Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Michèle Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Fatemeh Khadangi
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Audrey Baguette
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Maxime C. Côté
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Maruhen A. D. Silveira
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Canadian Center for Computational Genomics, McGill University, Montréal, QC, Canada
| | - Arnaud Droit
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Constantin A, Baicus C. Estradiol in Systemic Lupus Erythematosus. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:274-276. [PMID: 37908893 PMCID: PMC10614577 DOI: 10.4183/aeb.2023.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune polymorphous disease that primarily affects women of reproductive age. This gender disparity has suggested the importance of investigating the role of reproductive hormones in the pathogenesis of the disease. Estradiol, the most potent form of estrogen, plays a key role in shaping the immune system including the production of lymphocytes, the peripheral differentiation of regulatory T cells (T-regs), antibody production, and the complement and interferon systems, and has been studied in the pathogenesis of systemic lupus erythematosus (SLE). It operates by binding to estrogen receptors (ERs) α and β, initiating cellular responses including alterations in gene expression. Regulatory T cells are instrumental in preserving immunological self-tolerance and moderating immune responses. Estradiol's serum levels correlate with the expansion of CD4+CD25+ and FoxP3+ in healthy females. However, this response is reduced in lupus patients. Estradiol also interacts with microRNAs (miRNAs) in gene regulation. Hsa-miR-10b-5p, a miRNA targeting SRSF1, is overexpressed in SLE patients and its levels increase with exposure to estrogens. Other miRNAs also show correlation with plasma Estradiol levels. The precise role of Estradiol in the pathogenesis of SLE remains complex and multifaceted and is a topic for further research.
Collapse
Affiliation(s)
- A.M. Constantin
- “Carold Davila” Unviersity of Medicine and Pharmacy, Department of Internal Medicine, Bucharest, Romania
| | - C. Baicus
- “Carold Davila” Unviersity of Medicine and Pharmacy, Department of Internal Medicine, Bucharest, Romania
| |
Collapse
|
12
|
Expression of Androgen and Estrogen Receptors in the Human Lacrimal Gland. Int J Mol Sci 2023; 24:ijms24065609. [PMID: 36982683 PMCID: PMC10053362 DOI: 10.3390/ijms24065609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Lacrimal gland dysfunction causes dry eye disease (DED) due to decreased tear production. Aqueous-deficient DED is more prevalent in women, suggesting that sexual dimorphism of the human lacrimal gland could be a potential cause. Sex steroid hormones are a key factor in the development of sexual dimorphism. This study aimed to quantify estrogen receptor (ER) and androgen receptor (AR) expression in the human lacrimal gland and compare it between sexes. RNA was isolated from 35 human lacrimal gland tissue samples collected from 19 cornea donors. AR, ERα, and ERβ mRNA was identified in all samples, and their expression was quantified using qPCR. Immunohistochemical staining was performed on selected samples to evaluate protein expression of the receptors. ERα mRNA expression was significantly higher than the expression of AR and ERβ. No difference in sex steroid hormone (SSH) receptor mRNA expression was observed between sexes, and no correlation was observed with age. If ERα protein expression is found to be concordant with mRNA expression, it should be investigated further as a potential target for hormone therapy of DED. Further research is needed to elucidate the role of sex steroid hormone receptors in sex-related differences of lacrimal gland structure and disease.
Collapse
|
13
|
Borborema MEDA, de Lucena TMC, Silva JDA. Vitamin D and estrogen steroid hormones and their immunogenetic roles in Infectious respiratory (TB and COVID-19) diseases. Genet Mol Biol 2023; 46:e20220158. [PMID: 36745756 PMCID: PMC9901533 DOI: 10.1590/1415-4757-gmb-2022-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/07/2022] [Indexed: 02/08/2023] Open
Abstract
The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17β-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.
Collapse
Affiliation(s)
- Maria Eduarda de Albuquerque Borborema
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Thays Maria Costa de Lucena
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Jaqueline de Azevêdo Silva
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório de Genética e Biologia Molecular Humana (LGBMH), Recife, PE, Brazil
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| |
Collapse
|
14
|
Rocks D, Kundakovic M. Hippocampus-based behavioral, structural, and molecular dynamics across the estrous cycle. J Neuroendocrinol 2023; 35:e13216. [PMID: 36580348 PMCID: PMC10050126 DOI: 10.1111/jne.13216] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The activity of neurons in the rodent hippocampus contributes to diverse behaviors, with the activity of ventral hippocampal neurons affecting behaviors related to anxiety and emotion regulation, and the activity of dorsal hippocampal neurons affecting performance in learning- and memory-related tasks. Hippocampal cells also express receptors for ovarian hormones, estrogen and progesterone, and are therefore affected by physiological fluctuations of those hormones that occur over the rodent estrous cycle. In this review, we discuss the effects of cycling ovarian hormones on hippocampal physiology. Starting with behavior, we explore the role of the estrous cycle in regulating hippocampus-dependent behaviors. We go on to detail the cellular mechanisms through which cycling estrogen and progesterone, through changes in the structural and functional properties of hippocampal neurons, may be eliciting these changes in behavior. Then, providing a basis for these cellular changes, we outline the epigenetic, chromatin regulatory mechanisms through which ovarian hormones, by binding to their receptors, can affect the regulation of behavior- and synaptic plasticity-related genes in hippocampal neurons. We also highlight an unconventional role that chromatin dynamics may have in regulating neuronal function across the estrous cycle, including in sex hormone-driven X chromosome plasticity and hormonally-induced epigenetic priming. Finally, we discuss directions for future studies and the translational value of the rodent estrous cycle for understanding the effects of the human menstrual cycle on hippocampal physiology and brain disease risk.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University; Bronx, NY, USA
| |
Collapse
|
15
|
Seo H, Seo H, Byrd N, Kim H, Lee KG, Lee SH, Park Y. Human cell-based estrogen receptor beta dimerization assay. Chem Biol Interact 2023; 369:110264. [PMID: 36402211 DOI: 10.1016/j.cbi.2022.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Estrogen is not only responsible for important functions in the human body, such as cell growth, reproduction, differentiation, and development, but it is also deeply related to pathological processes, such as cancer, metabolic and cardiovascular diseases, and neurodegeneration. Estrogens and other estrogenic compounds have transcriptional activities through binding with the estrogen receptor (ER) to induce ER dimerization. The two estrogen receptor subtypes, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), show structural differences and have different expression ratios in specific cells and tissues. Currently, the methods for confirming the estrogenic properties of compounds are the binding (Test guideline no. 493) and transactivation (Test guideline no. 455) assays provided by the Organization for Economic Co-operation and Development (OECD). In a previous study, we developed an ERα dimerization assay based on the bioluminescence resonance energy transfer (BRET) system, but there are currently no available tests that can confirm the effect of estrogenic compounds on ERβ. Therefore, in this study, we developed a BRET-based ERβ dimerization assay to confirm the estrogenic prosperities of compounds. The BRET-based ERβ dimerization assay was verified using nine representative ER ligands and the results were compared with the dimerization activity of ERα. In conclusion, our BRET-based ERβ dimerization assay can provide information on the ERβ dimerization potential of estrogenic compounds.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Nick Byrd
- Department of Chemistry and Biochemistry, Campden BRI, Chipping Campden, GL55 6LD, UK
| | - Hyejin Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
16
|
Zekri Y, Guyot R, Flamant F. An Atlas of Thyroid Hormone Receptors’ Target Genes in Mouse Tissues. Int J Mol Sci 2022; 23:ijms231911444. [PMID: 36232747 PMCID: PMC9570117 DOI: 10.3390/ijms231911444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
We gathered available RNA-seq and ChIP-seq data in a single database to better characterize the target genes of thyroid hormone receptors in several cell types. This database can serve as a resource to analyze the mode of action of thyroid hormone (T3). Additionally, it is an easy-to-use and convenient tool to obtain information on specific genes regarding T3 regulation or to extract large gene lists of interest according to the users’ criteria. Overall, this atlas is a unique compilation of recent sequencing data focusing on T3, its receptors, modes of action, targets and roles, which may benefit researchers within the field. A preliminary analysis indicates extensive variations in the repertoire of target genes where transcription is upregulated by chromatin-bound nuclear receptors. Although it has a major influence, chromatin accessibility is not the only parameter that determines the cellular selectivity of the hormonal response.
Collapse
|
17
|
Chromatin modifiers – Coordinators of estrogen action. Biomed Pharmacother 2022; 153:113548. [DOI: 10.1016/j.biopha.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
|
18
|
Different transcriptional responses by the CRISPRa system in distinct types of heterochromatin in Drosophila melanogaster. Sci Rep 2022; 12:11702. [PMID: 35810197 PMCID: PMC9271074 DOI: 10.1038/s41598-022-15944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) activate gene expression by binding to elements close to promoters or enhancers. Some TFs can bind to heterochromatic regions to initiate gene activation, suggesting that if a TF is able to bind to any type of heterochromatin, it can activate transcription. To investigate this possibility, we used the CRISPRa system based on dCas9-VPR as an artificial TF in Drosophila. dCas9-VPR was targeted to the TAHRE telomeric element, an example of constitutive heterochromatin, and to promoters and enhancers of the HOX Ultrabithorax (Ubx) and Sex Combs Reduced (Scr) genes in the context of facultative heterochromatin. dCas9-VPR robustly activated TAHRE transcription, showing that although this element is heterochromatic, dCas9-VPR was sufficient to activate its expression. In the case of HOX gene promoters, although Polycomb complexes epigenetically silence these genes, both were ectopically activated. When the artificial TF was directed to enhancers, we found that the expression pattern was different compared to the effect on the promoters. In the case of the Scr upstream enhancer, dCas9-VPR activated the gene ectopically but with less expressivity; however, ectopic activation also occurred in different cells. In the case of the bxI enhancer located in the third intron of Ubx, the presence of dCas9-VPR is capable of increasing transcription initiation while simultaneously blocking transcription elongation, generating a lack of functional phenotype. Our results show that CRISPRa system is able to activate transcription in any type of heterochromatin; nevertheless, its effect on transcription is subject to the intrinsic characteristics of each gene or regulatory element.
Collapse
|
19
|
Kundakovic M, Rocks D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front Neuroendocrinol 2022; 66:101010. [PMID: 35716803 PMCID: PMC9715398 DOI: 10.1016/j.yfrne.2022.101010] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Women are at twice the risk for anxiety and depression disorders as men are, although the underlying biological factors and mechanisms are largely unknown. In this review, we address this sex disparity at both the etiological and mechanistic level. We dissect the role of fluctuating sex hormones as a critical biological factor contributing to the increased depression and anxiety risk in women. We provide parallel evidence in humans and rodents that brain structure and function vary with naturally-cycling ovarian hormones. This female-unique brain plasticity and associated vulnerability are primarily driven by estrogen level changes. For the first time, we provide a sex hormone-driven molecular mechanism, namely chromatin organizational changes, that regulates neuronal gene expression and brain plasticity but may also prime the (epi)genome for psychopathology. Finally, we map out future directions including experimental and clinical studies that will facilitate novel sex- and gender-informed approaches to treat depression and anxiety disorders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
20
|
Sex-specific multi-level 3D genome dynamics in the mouse brain. Nat Commun 2022; 13:3438. [PMID: 35705546 PMCID: PMC9200740 DOI: 10.1038/s41467-022-30961-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 05/24/2022] [Indexed: 01/08/2023] Open
Abstract
The female mammalian brain exhibits sex hormone-driven plasticity during the reproductive period. Recent evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped the 3D genome of ventral hippocampal neurons across the oestrous cycle and by sex in mice. In females, we find cycle-driven dynamism in 3D chromatin organization, including in oestrogen response elements-enriched X chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising oestrogen levels, the female 3D genome becomes more similar to the male 3D genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes and pathways. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk. Here the authors provide evidence that 3D chromatin structure in the mouse brain differs between males and females and undergoes dynamic remodelling during the female ovarian cycle. They show female-specific 3D genome dynamics affects neuronal gene expression and brain disorder-relevant genes, and could play a role in reproductive hormone-induced brain plasticity and female-specific risk for brain disorders.
Collapse
|
21
|
Cheng C, Zhou MX, He X, Liu Y, Huang Y, Niu M, Liu YX, Gao Y, Lu YW, Song XH, Li HF, Xiao XH, Wang JB, Ma ZT. Metabolomic Analysis Uncovers Lipid and Amino Acid Metabolism Disturbance During the Development of Ascites in Alcoholic Liver Disease. Front Med (Lausanne) 2022; 9:815467. [PMID: 35770013 PMCID: PMC9234647 DOI: 10.3389/fmed.2022.815467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Ascites is one of the most common complications of cirrhosis, and there is a dearth of knowledge about ascites-related pathologic metabolism. In this study, 122 alcoholic liver disease (ALD) patients, including 49 cases without ascites, 18 cases with mild-ascites, and 55 cases with large-ascites (1) were established according to the International Ascites Club (2), and untargeted metabolomics coupled with pattern recognition approaches were performed to profile and extract metabolite signatures. A total of 553 metabolites were uniquely discovered in patients with ascites, of which 136 metabolites had been annotated in the human metabolome database. Principal component analysis (PCA) analysis was used to further identify 21 ascites-related fingerprints. The eigenmetabolite calculated by reducing the dimensions of the 21 metabolites could be used to effectively identify those ALD patients with or without ascites. The eigenmetabolite showed a decreasing trend during ascites production and accumulation and was negatively related to the disease progress. These metabolic fingerprints mainly belong to the metabolites in lipid metabolism and the amino acid pathway. The results imply that lipid and amino acid metabolism disturbance may play a critical role in the development of ascites in ALD patients and could be a potent prognosis marker.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming-xi Zhou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xian He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ying Huang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi-xuan Liu
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ya-wen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xin-hua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hui-fang Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
| | - Xiao-he Xiao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia-bo Wang,
| | - Zhi-tao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Zhi-tao Ma,
| |
Collapse
|
22
|
Hewitt SC, Wu SP, Wang T, Young SL, Spencer TE, DeMayo FJ. Progesterone Signaling in Endometrial Epithelial Organoids. Cells 2022; 11:1760. [PMID: 35681455 PMCID: PMC9179553 DOI: 10.3390/cells11111760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
For pregnancy to be established, uterine cells respond to the ovarian hormones, estrogen, and progesterone, via their nuclear receptors, the estrogen receptor (ESR1) and progesterone receptor (PGR). ESR1 and PGR regulate genes by binding chromatin at genes and at distal enhancer regions, which interact via dynamic 3-dimensional chromatin structures. Endometrial epithelial cells are the initial site of embryo attachment and invasion, and thus understanding the processes that yield their receptive state is important. Here, we cultured and treated organoids derived from human epithelial cells, isolated from endometrial biopsies, with estrogen and progesterone and evaluated their transcriptional profiles, their PGR cistrome, and their chromatin conformation. Progesterone attenuated estrogen-dependent gene responses but otherwise minimally impacted the organoid transcriptome. PGR ChIPseq peaks were co-localized with previously described organoid ESR1 peaks, and most PGR and ESR1 peaks were in B (inactive) compartment regions of chromatin. Significantly more ESR1 peaks were assigned to estrogen-regulated genes by considering chromatin loops identified using HiC than were identified using ESR1 peak location relative to closest genes. Overall, the organoids model allowed a definition of the chromatin regulatory components governing hormone responsiveness.
Collapse
Affiliation(s)
- Sylvia C. Hewitt
- Pregnancy and Female Reproduction, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA; (S.C.H.); (S.-p.W.)
| | - San-pin Wu
- Pregnancy and Female Reproduction, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA; (S.C.H.); (S.-p.W.)
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA;
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Thomas E. Spencer
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MI 65211, USA;
| | - Francesco J. DeMayo
- Pregnancy and Female Reproduction, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA; (S.C.H.); (S.-p.W.)
| |
Collapse
|
23
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
24
|
Lee SH, Seo H, Seo H, Lazari M, D'Agostino M, Byrd N, Yoon KS, Lee HS, Park Y. An In vitro dimerization assay for the adverse outcome pathway approach in risk assessment of human estrogen receptor α-mediated endocrine-disrupting chemicals. CHEMOSPHERE 2022; 290:133267. [PMID: 34914963 DOI: 10.1016/j.chemosphere.2021.133267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The adverse outcome pathway (AOP) has been recently proposed as an effective framework for chemical risk assessment. The AOP framework offers the advantage of effectively integrating individual in vitro studies and in silico prediction models. Thus, the development of an effective testing method to measure key events caused by chemicals is essential for chemical risk assessment through a fully developed AOP framework. We developed a human cell-based estrogen receptor α (ERα) dimerization assay using the bioluminescence resonance energy transfer (BRET) technique and evaluated the ERα dimerization activities of 72 chemicals. Fifty-one chemicals were identified to mediate dimerization of ERα, and the BRET-based ERα dimerization assay could effectively measure the events that mediated dimerization of ERα by the estrogenic chemicals. These results were compared with the results of pre-existing assay to determine whether the BRET-based ERα dimerization assay could be employed as an in vitro test method to provide scientific information for explaining key events as a part of the AOP framework. Consequently, we propose that the BRET-based ERα dimerization assay is suitable for measuring the chemical-mediated dimerization of ERα, a key event in the AOP framework for cellular-level risk assessment of estrogenic chemicals.
Collapse
Affiliation(s)
- Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Maria Lazari
- Department of Virology, Campden BRI, Chipping Campden, Gloucestershire, GL556LD, UK
| | - Martin D'Agostino
- Department of Virology, Campden BRI, Chipping Campden, Gloucestershire, GL556LD, UK
| | - Nick Byrd
- Department of Chemistry and Biochemistry, Campden BRI, Chipping Campden, Gloucestershire, GL556LD, UK
| | - Kyong Sup Yoon
- Department of Environmental Sciences, Southern-Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea.
| |
Collapse
|
25
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
26
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Biosynthesis and signalling functions of central and peripheral nervous system neurosteroids in health and disease. Essays Biochem 2021; 64:591-606. [PMID: 32756865 PMCID: PMC7517341 DOI: 10.1042/ebc20200043] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Neurosteroids are steroid hormones synthesised de novo in the brain and peripheral nervous tissues. In contrast to adrenal steroid hormones that act on intracellular nuclear receptors, neurosteroids directly modulate plasma membrane ion channels and regulate intracellular signalling. This review provides an overview of the work that led to the discovery of neurosteroids, our current understanding of their intracellular biosynthetic machinery, and their roles in regulating the development and function of nervous tissue. Neurosteroids mediate signalling in the brain via multiple mechanisms. Here, we describe in detail their effects on GABA (inhibitory) and NMDA (excitatory) receptors, two signalling pathways of opposing function. Furthermore, emerging evidence points to altered neurosteroid function and signalling in neurological disease. This review focuses on neurodegenerative diseases associated with altered neurosteroid metabolism, mainly Niemann-Pick type C, multiple sclerosis and Alzheimer disease. Finally, we summarise the use of natural and synthetic neurosteroids as current and emerging therapeutics alongside their potential use as disease biomarkers.
Collapse
|
28
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
29
|
Bar-Sadeh B, Rudnizky S, Pnueli L, Bentley GR, Stöger R, Kaplan A, Melamed P. Unravelling the role of epigenetics in reproductive adaptations to early-life environment. Nat Rev Endocrinol 2020; 16:519-533. [PMID: 32620937 DOI: 10.1038/s41574-020-0370-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Reinhard Stöger
- Department of Biological Sciences, University of Nottingham, Nottingham, UK
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
30
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
31
|
Hewitt SC, Grimm SA, Wu SP, DeMayo FJ, Korach KS. Estrogen receptor α (ERα)-binding super-enhancers drive key mediators that control uterine estrogen responses in mice. J Biol Chem 2020; 295:8387-8400. [PMID: 32354741 DOI: 10.1074/jbc.ra120.013666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor α (ERα) modulates gene expression by interacting with chromatin regions that are frequently distal from the promoters of estrogen-regulated genes. Active chromatin-enriched "super-enhancer" (SE) regions, mainly observed in in vitro culture systems, often control production of key cell type-determining transcription factors. Here, we defined super-enhancers that bind to ERα in vivo within hormone-responsive uterine tissue in mice. We found that SEs are already formed prior to estrogen exposure at the onset of puberty. The genes at SEs encoded critical developmental factors, including retinoic acid receptor α (RARA) and homeobox D (HOXD). Using high-throughput chromosome conformation capture (Hi-C) along with DNA sequence analysis, we demonstrate that most SEs are located at a chromatin loop end and that most uterine genes in loop ends associated with these SEs are regulated by estrogen. Although the SEs were formed before puberty, SE-associated genes acquired optimal ERα-dependent expression after reproductive maturity, indicating that pubertal processes that occur after SE assembly and ERα binding are needed for gene responses. Genes associated with these SEs affected key estrogen-mediated uterine functions, including transforming growth factor β (TGFβ) and LIF interleukin-6 family cytokine (LIF) signaling pathways. To the best of our knowledge, this is the first identification of SE interactions that underlie hormonal regulation of genes in uterine tissue and optimal development of estrogen responses in this tissue.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
32
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Maglione A, Rolla S, Mercanti SFD, Cutrupi S, Clerico M. The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells 2019; 8:E1280. [PMID: 31635066 PMCID: PMC6829884 DOI: 10.3390/cells8101280] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| |
Collapse
|
34
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
35
|
Stelloo S, Bergman AM, Zwart W. Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers. Endocr Relat Cancer 2019; 26:R267-R285. [PMID: 30865928 DOI: 10.1530/erc-19-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
The androgen receptor (AR) is commonly known as a key transcription factor in prostate cancer development, progression and therapy resistance. Genome-wide chromatin association studies revealed that transcriptional regulation by AR mainly depends on binding to distal regulatory enhancer elements that control gene expression through chromatin looping to gene promoters. Changes in the chromatin epigenetic landscape and DNA sequence can locally alter AR-DNA-binding capacity and consequently impact transcriptional output and disease outcome. The vast majority of reports describing AR chromatin interactions have been limited to cell lines, identifying numerous other factors and interacting transcription factors that impact AR chromatin interactions. Do these factors also impact AR cistromics - the genome-wide chromatin-binding landscape of AR - in vivo? Recent technological advances now enable researchers to identify AR chromatin-binding sites and their target genes in human specimens. In this review, we provide an overview of the different factors that influence AR chromatin binding in prostate cancer specimens, which is complemented with knowledge from cell line studies. Finally, we discuss novel perspectives on studying AR cistromics in clinical samples.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
36
|
Giulianelli S, Riggio M, Guillardoy T, Pérez Piñero C, Gorostiaga MA, Sequeira G, Pataccini G, Abascal MF, Toledo MF, Jacobsen BM, Guerreiro AC, Barros A, Novaro V, Monteiro FL, Amado F, Gass H, Abba M, Helguero LA, Lanari C. FGF2 induces breast cancer growth through ligand-independent activation and recruitment of ERα and PRBΔ4 isoform to MYC regulatory sequences. Int J Cancer 2019; 145:1874-1888. [PMID: 30843188 DOI: 10.1002/ijc.32252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Progression to hormone-independent growth leading to endocrine therapy resistance occurs in a high proportion of patients with estrogen receptor alpha (ERα) and progesterone receptors (PR) positive breast cancer. We and others have previously shown that estrogen- and progestin-induced tumor growth requires ERα and PR interaction at their target genes. Here, we show that fibroblast growth factor 2 (FGF2)-induces cell proliferation and tumor growth through hormone-independent ERα and PR activation and their interaction at the MYC enhancer and proximal promoter. MYC inhibitors, antiestrogens or antiprogestins reverted FGF2-induced effects. LC-MS/MS identified 700 canonical proteins recruited to MYC regulatory sequences after FGF2 stimulation, 397 of which required active ERα (ERα-dependent). We identified ERα-dependent proteins regulating transcription that, after FGF2 treatment, were recruited to the enhancer as well as proteins involved in transcription initiation that were recruited to the proximal promoter. Also, among the ERα-dependent and independent proteins detected at both sites, PR isoforms A and B as well as the novel protein product PRBΔ4 were found. PRBΔ4 lacks the hormone-binding domain and was able to induce reporter gene expression from estrogen-regulated elements and to increase cell proliferation when cells were stimulated with FGF2 but not by progestins. Analysis of the Cancer Genome Atlas data set revealed that PRBΔ4 expression is associated with worse overall survival in luminal breast cancer patients. This discovery provides a new mechanism by which growth factor signaling can engage nonclassical hormone receptor isoforms such as PRBΔ4, which interacts with growth-factor activated ERα and PR to stimulate MYC gene expression and hence progression to endocrine resistance.
Collapse
Affiliation(s)
- Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, Puerto Madryn, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Tomas Guillardoy
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - María A Gorostiaga
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - María F Abascal
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - María F Toledo
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana C Guerreiro
- Department of Chemistry, QOPNA - Universidade de Aveiro, Aveiro, Portugal
| | - António Barros
- Department of Chemistry, QOPNA - Universidade de Aveiro, Aveiro, Portugal
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| | - Fátima L Monteiro
- Department of Medical Sciences, iBiMED - Universidade de Aveiro, Aveiro, Portugal
| | - Francisco Amado
- Department of Chemistry, QOPNA - Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Gass
- Hospital de Agudos Magdalena V de Martínez, General Pacheco, Buenos Aires, Argentina
| | - Martin Abba
- CINIBA, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luisa A Helguero
- Department of Medical Sciences, iBiMED - Universidade de Aveiro, Aveiro, Portugal
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Buenos Aires, Argentina
| |
Collapse
|
37
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
38
|
Iannello A, Rolla S, Maglione A, Ferrero G, Bardina V, Inaudi I, De Mercanti S, Novelli F, D'Antuono L, Cardaropoli S, Todros T, Turrini MV, Cordioli C, Puorro G, Marsili A, Lanzillo R, Brescia Morra V, Cordero F, De Bortoli M, Durelli L, Visconti A, Cutrupi S, Clerico M. Pregnancy Epigenetic Signature in T Helper 17 and T Regulatory Cells in Multiple Sclerosis. Front Immunol 2019; 9:3075. [PMID: 30671056 PMCID: PMC6331474 DOI: 10.3389/fimmu.2018.03075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence supports the anti-inflammatory role of estrogens in Multiple Sclerosis (MS), originating from the observation of reduction in relapse rates among women with MS during pregnancy, but the molecular mechanisms are still not completely understood. Using an integrative data analysis, we identified T helper (Th) 17 and T regulatory (Treg) cell-type-specific regulatory regions (CSR) regulated by estrogen receptor alpha (ERα). These CSRs were validated in polarized Th17 from healthy donors (HD) and in peripheral blood mononuclear cells, Th17 and Treg cells from relapsing remitting (RR) MS patients and HD during pregnancy. 17β-estradiol induces active histone marks enrichment at Forkhead Box P3 (FOXP3)-CSRs and repressive histone marks enrichment at RAR related orphan receptor C (RORC)-CSRs in polarized Th17 cells. A disease-associated epigenetic profile was found in RRMS patients during pregnancy, suggesting a FOXP3 positive regulation and a RORC negative regulation in the third trimester of pregnancy. Altogether, these data indicate that estrogens act as immunomodulatory factors on the epigenomes of CD4+ T cells in RRMS; the identified CSRs may represent potential biomarkers for monitoring disease progression or new potential therapeutic targets.
Collapse
Affiliation(s)
- Andrea Iannello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
| | - Valentina Bardina
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Ilenia Inaudi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefania De Mercanti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Healthy Sciences, University of Turin, Turin, Italy
| | - Lucrezia D'Antuono
- Obstetric and Gynecologic Department, OIRM-Sant'Anna Hospital, Città della Salute e della Scienza, Turin, Italy
| | | | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Maria Vittoria Turrini
- Multiple Sclerosis Center, Ospedali Civili di Brescia, Montichiari Hospital, Montichiari, Italy
| | - Cinzia Cordioli
- Multiple Sclerosis Center, Ospedali Civili di Brescia, Montichiari Hospital, Montichiari, Italy
| | - Giorgia Puorro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Marsili
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | | | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Luca Durelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
39
|
Molecular Pathways of Estrogen Receptor Action. Int J Mol Sci 2018; 19:ijms19092591. [PMID: 30200344 PMCID: PMC6164862 DOI: 10.3390/ijms19092591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
|
40
|
Bonfiglio F, Zheng T, Garcia-Etxebarria K, Hadizadeh F, Bujanda L, Bresso F, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Latiano A, Hübenthal M, Thijs V, Netea MG, Jonkers D, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, Zhernakova A, D'Amato M. Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology 2018; 155:168-179. [PMID: 29626450 PMCID: PMC6035117 DOI: 10.1053/j.gastro.2018.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genetic factors are believed to affect risk for irritable bowel syndrome (IBS), but there have been no sufficiently powered and adequately sized studies. To identify DNA variants associated with IBS risk, we performed a genome-wide association study (GWAS) of the large UK Biobank population-based cohort, which includes genotype and health data from 500,000 participants. METHODS We studied 7,287,191 high-quality single nucleotide polymorphisms in individuals who self-reported a doctor's diagnosis of IBS (cases; n = 9576) compared to the remainder of the cohort (controls; n = 336,499) (mean age of study subjects, 40-69 years). Genome-wide significant findings were further investigated in 2045 patients with IBS from tertiary centers and 7955 population controls from Europe and the United States, and a small general population sample from Sweden (n = 249). Functional annotation of GWAS results was carried out by integrating data from multiple biorepositories to obtain biological insights from the observed associations. RESULTS We identified a genome-wide significant association on chromosome 9q31.2 (single nucleotide polymorphism rs10512344; P = 3.57 × 10-8) in a region previously linked to age at menarche, and 13 additional loci of suggestive significance (P < 5.0×10-6). Sex-stratified analyses revealed that the variants at 9q31.2 affect risk of IBS in women only (P = 4.29 × 10-10 in UK Biobank) and also associate with constipation-predominant IBS in women (P = .015 in the tertiary cohort) and harder stools in women (P = .0012 in the population-based sample). Functional annotation of the 9q31.2 locus identified 8 candidate genes, including the elongator complex protein 1 gene (ELP1 or IKBKAP), which is mutated in patients with familial dysautonomia. CONCLUSIONS In a sufficiently powered GWAS of IBS, we associated variants at the locus 9q31.2 with risk of IBS in women. This observation may provide additional rationale for investigating the role of sex hormones and autonomic dysfunction in IBS.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koldo Garcia-Etxebarria
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Universidad del País Vasco, San Sebastián, Spain
| | - Francesca Bresso
- Gastoenterology Unit, Tema inflammation and infection, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Lund, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Rosario Cuomo
- Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- SC Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and Center for Excellence on Aging, G. D'Annunzio University and Foundation, Chieti, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola, Malpighi Hospital, Bologna, Italy
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daisy Jonkers
- Department of Internal Medicine, Nutrition and Toxicology Research Institute Maastricht, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Mira M Wouters
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mauro D'Amato
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|