1
|
Gonçalves AC, Falcão A, Alves G, Silva LR, Flores-Félix JD. Antioxidant activity of the main phenolics found in red fruits: An in vitro and in silico study. Food Chem 2024; 452:139459. [PMID: 38705121 DOI: 10.1016/j.foodchem.2024.139459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
The current study analysed the antioxidant capacity of the main phenolics found in red fruits. In total, there were analysed the antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radical, nitric oxide and superoxide radicals (DPPH, NO and O2-, respectively) of 23 phenolics. Regarding DPPH, anthocyanins, (-)-epicatechin and kaempferol 3-O-rutinoside were the most active, while isorhamnetin 3-O-glucoside was the least active. Anthocyanins, (-)-epicatechin, quercetin 3-O-glucoside and caffeic acid showed the strongest potential against NO, while ρ-hydroxybenzoic acid was the less efficient. Regarding the O2- assay, quercetin aglycone and their derivatives were the best ones, while cyanidin aglycone did not show any potential to quench this radical. To deeper explore the biological potential of the most promising compounds, docking molecular and ADME studies were also done. The obtained data is another support regarding the biological potential of phenolics and might be useful in encouraging their use and incorporation in new products.
Collapse
Affiliation(s)
- Ana C Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís R Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; SPRINT - Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II-Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - José David Flores-Félix
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Labib MM, Alqahtani AM, Abo Nahas HH, Aldossari RM, Almiman BF, Ayman Alnumaani S, El-Nablaway M, Al-Olayan E, Alsunbul M, Saied EM. Novel Insights into the Antimicrobial and Antibiofilm Activity of Pyrroloquinoline Quinone (PQQ); In Vitro, In Silico, and Shotgun Proteomic Studies. Biomolecules 2024; 14:1018. [PMID: 39199405 PMCID: PMC11352295 DOI: 10.3390/biom14081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.
Collapse
Affiliation(s)
- Mai M. Labib
- Department of Bioinformatics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Cairo 12619, Egypt;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Bandar Fahad Almiman
- Biology Department, College of Science, Al-Baha University, Al Bahah 65779, Saudi Arabia;
| | - Sarah Ayman Alnumaani
- Department of Medical Microbiology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
3
|
Kalinowska M, Świsłocka R, Wołejko E, Jabłońska-Trypuć A, Wydro U, Kozłowski M, Koronkiewicz K, Piekut J, Lewandowski W. Structural characterization and evaluation of antimicrobial and cytotoxic activity of six plant phenolic acids. PLoS One 2024; 19:e0299372. [PMID: 38885237 PMCID: PMC11182523 DOI: 10.1371/journal.pone.0299372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 06/20/2024] Open
Abstract
Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 μM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Maciej Kozłowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Kamila Koronkiewicz
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Jolanta Piekut
- Department of Agri-Food Engineering and Environmental Management, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| |
Collapse
|
4
|
Tiakouang EN, Ewonkem MB, Moto JO, Adjieufack AI, Deussom PM, Mbock MA, Ngeufa EH, Toze AFA, Wansi DJ. Synthesis, antimicrobial properties and in silico evaluation of coumarin derivatives mediated by 1,4-dibromobutane. J Biomol Struct Dyn 2024:1-14. [PMID: 38411010 DOI: 10.1080/07391102.2024.2321507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
In this study, monobrominated coumarins (5-6) and bis-coumarins (7-9) were synthesized from 3-carboxylic coumarin and 7-hydroxy-4-methyl coumarin using 1,4-dibromobutane as a binding agent, according to the synthesis procedures described in the literature. Amongst these coumarins, three are new compounds: monobrominated coumarin 5 and bis-coumarins 7 and 9. The structures of the synthesized coumarins were confirmed by FTIR, NMR and HRMS-ESI. In vitro antimicrobial evaluation of these coumarins against strains of twelve bacteria and four fungi revealed their bactericidal and fungicidal properties, with increased antibacterial activity for monocoumarins and improved antifungal activity for bis-coumarins. It was also found that the antibacterial activity was enhanced by the etheric bond, Br atom and alkyl chain and reduced by the ester bonds at position 3 of the pyrone ring or an additional coumarin unit, while the antifungal activity was reinforced by ester bonds and deactivated by the Br atom. For the first time, the in silico investigations of such coumarins were carried out and it was observed that they are less toxic, suitable for oral administration with good permeability through cell membrane, are able to circulate freely in the bloodstream and cross Blood-Brain-Barriers. Moreover, their molecular docking in DNA indicated stable coumarin-DNA complexes with good scores. The results of molecular dynamics simulations performed for 200 ns revealed the rigidity and stability of bis-coumarins (7-9) in the DNA binding pocket and predict that they are potent binders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eunice N Tiakouang
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Monique B Ewonkem
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Jean O Moto
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Abel I Adjieufack
- Physical and Theoretical Chemistry Laboratory, University of Yaoundé 1, Yaoundé, Cameroon
| | - Pascaline M Deussom
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Michel A Mbock
- Department of Biochemistry, Faculty of Science, Laboratory of Biochemistry, University of Douala, Douala, Cameroon
| | - Emmanuel H Ngeufa
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Alfred F A Toze
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Duplex J Wansi
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| |
Collapse
|
5
|
Li N, Cai QM, Hu NY, Jiang SL, Chen FQ, Hu QQ, Yang F, He CZ. Pyrosequencing analysis of bacterial community changes in dental unit waterlines after chlorogenic acid treatment. Front Cell Infect Microbiol 2024; 14:1303099. [PMID: 38299116 PMCID: PMC10828043 DOI: 10.3389/fcimb.2024.1303099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction The contamination of dental unit waterlines (DUWLs) poses a significant risk of cross-infection in dentistry. Although chemical disinfectants have been effective in reducing number of bacteria, they do have limitations. Methods This study aimed to investigate the potential of chlorogenic acid, a natural substance with broadspectrum antibacterial properties, for treating DUWLs. Over a period of three months, we analyzed the microbial communities in 149 DUWLs samples collected from 5 dental units using high-throughput pyrophosphate sequencing. Results The results revealed that chlorogenic acid treatment had a significant impact on the microbial community profile in the DUWLs, with the most significant changes occurring within the first 15 days and stabilization observed in the last 30 days. The predominant genera detected in the samples were Bacteroides, Lactobacillus, Streptococcus, Methylobacterium, and Phreatobacter. Additionally, the relative abundance of certain beneficial bacteria, such as Alloprevotella, Roseburia, and Blautia, increased, while the presence of opportunistic pathogens like Mycobacteria significantly decreased. The functional prediction analysis using the KEGG database indicated a decrease in the pathogenicity of the bacterial community in the DUWLs following chlorogenic acid treatment. Discussion This study introduces a novel approach for the prevention and treatment of infections associated with dental care.
Collapse
Affiliation(s)
- Na Li
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nursing School, Nanchang University, Nanchang, China
| | - Qin-Ming Cai
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ni-Ya Hu
- The First Affiliated Hospital of Nanchang University, School of Public Health, Nanchang University, Nanchang, China
| | - Shu-ling Jiang
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nursing School, Nanchang University, Nanchang, China
| | - Fu-Qing Chen
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiao-Qiao Hu
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fen Yang
- Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao-Zhu He
- Nursing School, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
7
|
Antifungal Activity of Spent Coffee Ground Extracts. Microorganisms 2023; 11:microorganisms11020242. [PMID: 36838208 PMCID: PMC9963196 DOI: 10.3390/microorganisms11020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and β-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.
Collapse
|
8
|
Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds. Sci Rep 2022; 12:20609. [PMID: 36446937 PMCID: PMC9708685 DOI: 10.1038/s41598-022-25030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
In the study the cold-pressed, natural (unfiltered, unrefined) vegetable oils: hemp and milk thistle seed oils were tested for their chemical composition and antioxidant properties. The physico-chemical parameters, content of saturated and unsaturated fatty acids were determined. Solid phase extraction and simple extraction with the use of methanol, ethanol, 80% methanol, 80% ethanol were used to obtain the extracts for the analysis of antioxidant activity and phenolic compounds in oils. The composition of phenolic compounds was studied by means of high-performance liquid chromatography (HPLC-DAD) and spectrophotometric test with the Folin-Ciocalteu reagent. The antioxidant property of extracts was established by means of the following methods: with the DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical, ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical, FRAP (ferric ion reducing antioxidant parameter) and CUPRAC (cupric-reducing antioxidant capacity). Moreover the influence of chlorogenic acid on the inhibition of lipid peroxidation process in the hemp and milk thistle seed oils was also investigated. The tested oils showed different antioxidant properties which was related to the their different chemical composition. The main phenolic compounds present in hemp seed oil were vanillic, ferulic and p-coumaric acids, (-)epicatechin, catechin, kaempferol and procyanidin B2, whereas in milk thistle seed oil-catechins, procyanidin B2, procyanidin C1, p-coumaric acid, phloridzin, quercetin, protocatechuic acid, kaempferol, and syringic acid. The methanolic extracts of hemp and milk thistle seed oils showed the highest antiradical activity, whereas the ethanolic extracts revealed the best reducing properties. The obtained antioxidant parameters for hemp seed oil were: the IC50 = 3.433 ± 0.017 v/v (DPPH test), the percent of ABTS•+ inhibition = 93.301 ± 1.099%, FRAP value = 1063.883 ± 39.225 µmol Fe2+, CUPRAC value = 420.471 ± 1.765 µmol of Trolox. Whereas the antioxidant parameters for milk thistle seed oil were: the IC50 = 5.280 ± 0.584 v/v (DPPH test), 79.59 ± 3.763% (ABTS test), 2891.08 ± 270.044 µmol Fe2+ (FRAP test), 255.48 ± 26.169 µmol of Trolox (CUPRAC assay). Chlorogenic acid effectively inhibited the lipid peroxidation process in hemp and milk thistle seed oils.
Collapse
|
9
|
Palierse E, Masse S, Laurent G, Le Griel P, Mosser G, Coradin T, Jolivalt C. Synthesis of Hybrid Polyphenol/Hydroxyapatite Nanomaterials with Anti-Radical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3588. [PMID: 36296776 PMCID: PMC9612319 DOI: 10.3390/nano12203588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant-derived natural bioactive molecules are of great therapeutic potential but, so far, their application in nanomedicine has scarcely been studied. This work aimed at comparing two methodologies, i.e., adsorption and in situ incorporation, to prepare hybrid polyphenol/hydroxyapatite nanoparticles. Two flavonoids, baicalin and its aglycone derivative baicalein, and two phenolic acids derived from caffeic acid, rosmarinic and chlorogenic acids, were studied. Adsorption of these polyphenols on pre-formed hydroxyapatite nanoparticles did not modify particle size or shape and loading was less than 10% (w/w). In contrast, presence of polyphenols during the synthesis of nanoparticles significantly impacted and sometimes fully inhibited hydroxyapatite formation but recovered particles could exhibit higher loadings. For most hybrid particles, release profiles consisted of a 24 h burst effect followed by a slow release over 2 weeks. Antioxidant properties of the polyphenols were preserved after adsorption but not when incorporated in situ. These results provide fruitful clues for the valorization of natural bioactive molecules in nanomedicine.
Collapse
Affiliation(s)
- Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 75005 Paris, France
| | - Sylvie Masse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Patrick Le Griel
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Gervaise Mosser
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 75005 Paris, France
| |
Collapse
|
10
|
Kalinowska M, Gryko K, Gołębiewska E, Świderski G, Lewandowska H, Pruszyński M, Zawadzka M, Kozłowski M, Sienkiewicz-Gromiuk J, Lewandowski W. Fe(III) and Cu(II) Complexes of Chlorogenic Acid: Spectroscopic, Thermal, Anti-/Pro-Oxidant, and Cytotoxic Studies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6832. [PMID: 36234176 PMCID: PMC9572621 DOI: 10.3390/ma15196832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Complexes of chlorogenic acid (5-CQA) with copper(II) and iron(III) were synthesized in a solid state and examined by means of FT-IR, thermogravimetric, and elemental analyses. The molar stoichiometric ratios of metal:ligand for the solid forms of the complexes were established as Cu(II):L = 1:2 and Fe(III):L = 2:3 (L: 5-CQA), with the possible coordination through the carboxylate group and the hydroxyl group from the catechol moiety. In an aqueous solution at pH = 7.4, the composition of the complexes was Cu(II):L = 1:1, and Fe(III):L = 1:1 and 1:2. The Cu(II) and Fe(III) complexes with 5-CQA showed lower antioxidant properties, as estimated by the spectrophotometric methods with DPPH•, ABTS•+, and HO• radicals, than the ligand alone, whereas in the lipid peroxidation inhibition assay, the metal complexes revealed a higher antioxidant activity than 5-CQA. Cu(II) 5-CQA showed the highest pro-oxidant activity in the Trolox oxidation assays compared to the other studied compounds. The lipophilic parameters of the compounds were estimated using the HPLC method. 5-CQA and its complexes with Fe(III) and Cu(II) were not toxic to HaCaT cells in a tested concentration range of 0.15-1000 nM after a 24 h incubation time.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Kamila Gryko
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, 7 Andrzeja Soltana Street, 05-400 Otwock, Poland
| | - Małgorzata Zawadzka
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Maciej Kozłowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Justyna Sienkiewicz-Gromiuk
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Environmental Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| |
Collapse
|
11
|
Fedenko VS, Landi M, Shemet SA. Metallophenolomics: A Novel Integrated Approach to Study Complexation of Plant Phenolics with Metal/Metalloid Ions. Int J Mol Sci 2022; 23:ijms231911370. [PMID: 36232672 PMCID: PMC9570091 DOI: 10.3390/ijms231911370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Plant adaptive strategies have been shaped during evolutionary development in the constant interaction with a plethora of environmental factors, including the presence of metals/metalloids in the environment. Among adaptive reactions against either the excess of trace elements or toxic doses of non-essential elements, their complexation with molecular endogenous ligands, including phenolics, has received increasing attention. Currently, the complexation of phenolics with metal(loid)s is a topic of intensive studies in different scientific fields. In spite of the numerous studies on their chelating capacity, the systemic analysis of phenolics as plant ligands has not been performed yet. Such a systematizing can be performed based on the modern approach of metallomics as an integral biometal science, which in turn has been differentiated into subgroups according to the nature of the bioligands. In this regard, the present review summarizes phenolics–metal(loid)s’ interactions using the metallomic approach. Experimental results on the chelating activity of representative compounds from different phenolic subgroups in vitro and in vivo are systematized. General properties of phenolic ligands and specific properties of anthocyanins are revealed. The novel concept of metallophenolomics is proposed, as a ligand-oriented subgroup of metallomics, which is an integrated approach to study phenolics–metal(loid)s’ complexations. The research subjects of metallophenolomics are outlined according to the methodology of metallomic studies, including mission-oriented biometal sciences (environmental sciences, food sciences and nutrition, medicine, cosmetology, coloration technologies, chemical sciences, material sciences, solar cell sciences). Metallophenolomics opens new prospects to unite multidisciplinary investigations of phenolic–metal(loid) interactions.
Collapse
Affiliation(s)
- Volodymyr S. Fedenko
- Research Institute of Biology, Oles Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80I-56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216620
| | - Sergiy A. Shemet
- Ukrainian Association for Haemophilia and Haemostasis “Factor D”, Topola-3, 20/2/81, 49041 Dnipro, Ukraine
| |
Collapse
|
12
|
Gamboa-Carvajal L, Jara-Gutiérrez C, Villena J, Taborga L, Martínez JR, Espinoza L, Stashenko EE. Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules 2022; 27:molecules27134186. [PMID: 35807442 PMCID: PMC9268250 DOI: 10.3390/molecules27134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, the antioxidant activity of the hydro-ethanolic extracts of the leaves, flowers, and aerial parts of Steiractinia aspera Cuatrec, both fresh and post-distillation, was evaluated by ABTS+·, FRAP, H2O2 and DPPH assays. The cytotoxic activity was evaluated in MCF-7, MCF-10A and HT-29 cell lines. The hydro-ethanolic extracts were obtained by matrix solid-phase dispersion (MSPD) and ultrasound-assisted solvent extraction (SE). The fresh-leaf MSPD extract had the highest antioxidant activity, and the post-distillation leaf ultrasound-assisted SE extract had the highest cytotoxicity in the MCF-7 breast cancer cell line, although not selective, which was evaluated by sulforhodamine B assay. On the other hand, ROS was evaluated by flow cytometry which showed that post-distillation leaf extract is pro-oxidant. Chlorogenic acid, kaempferol-3-glucoside and quercetin were found in the fresh leaves’ extracts, according to HPLC-DAD. PLC-DAD permitted the isolation of p-coumaric acid, E-3-(4-(((E)-3-(3,4-dihydroxyphenyl) acryloyl) oxy)-3-hydroxyphenyl) acrylic acid and a diglucosylated derivative of ursolic acid, which were analyzed by 1H and 13C NMR. Our results suggest that the fresh leaf extract of Steiractinia aspera Cuatrec has potential use for antioxidant applications.
Collapse
Affiliation(s)
- Laura Gamboa-Carvajal
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
| | - Carlos Jara-Gutiérrez
- Laboratorio de Bioensayos, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2340000, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Laboratorio de Bioensayos, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2340000, Chile; (C.J.-G.); (J.V.)
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
| | - Jairo René Martínez
- Center for Chromatography and Mass Spectrometry CROM-MASS, Universidad Industrial de Santander, Bucaramanga 68000, Colombia;
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 224000, Chile; (L.G.-C.); (L.T.)
- Correspondence: (L.E.); (E.E.S.)
| | - Elena E. Stashenko
- Center for Chromatography and Mass Spectrometry CROM-MASS, Universidad Industrial de Santander, Bucaramanga 68000, Colombia;
- Correspondence: (L.E.); (E.E.S.)
| |
Collapse
|
13
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Samsonowicz M, Gołębiewska E, Wołejko E, Wydro U, Świderski G, Zwolińska J, Kalinowska M, Lewandowski W. Spectroscopic, Thermal, Microbiological, and Antioxidant Study of Alkali Metal 2-Hydroxyphenylacetates. MATERIALS 2021; 14:ma14247824. [PMID: 34947419 PMCID: PMC8708765 DOI: 10.3390/ma14247824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
The structural, spectral, thermal, and biological properties of hydroxyphenylacetic acid and lithium, sodium, potassium, rubidium, and cesium 2-hydroxyphenylacetates were analyzed by means of infrared spectroscopy FT-IR, electronic absorption spectroscopy UV-VIS, nuclear magnetic resonance 1H and 13C NMR, thermogravimetric analysis (TG/DSC), and quantum-chemical calculations at B3LYP/6-311++G** level. Moreover, the antioxidant (ABTS, FRAP, and CUPRAC assays), antibacterial (against E. coli, K. aerogenes, P. fluorescens, and B. subtilis) and antifungal (against C. albicans) properties of studied compounds were measured. The effect of alkali metal ions on the structure, thermal, and biological properties of 2-hydroxyphenylacetates was discussed.
Collapse
Affiliation(s)
- Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| | - Joanna Zwolińska
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland;
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (E.W.); (U.W.); (G.Ś.); (M.K.); (W.L.)
| |
Collapse
|
16
|
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021; 13:nu13093107. [PMID: 34578985 PMCID: PMC8466373 DOI: 10.3390/nu13093107] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Aleksander Astel
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a Street, 76-200 Słupsk, Poland;
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Anna Barbara Złowodzka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warszawa, Poland;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Włodzimierz Lewandowski
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| |
Collapse
|
17
|
Kowalczyk M, Golonko A, Świsłocka R, Kalinowska M, Parcheta M, Swiergiel A, Lewandowski W. Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives. Front Pharmacol 2021; 12:709104. [PMID: 34393787 PMCID: PMC8363300 DOI: 10.3389/fphar.2021.709104] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell's biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Aleksandra Golonko
- Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Artur Swiergiel
- Faculty of Biology, University of Gdansk, Gdansk, Poland
- Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | | |
Collapse
|
18
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
19
|
Samsonowicz M, Kalinowska M, Gryko K. Enhanced Antioxidant Activity of Ursolic Acid by Complexation with Copper (II): Experimental and Theoretical Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E264. [PMID: 33430329 PMCID: PMC7825779 DOI: 10.3390/ma14020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
The copper (II) complex of ursolic acid (Cu(II) UA) was synthesized and discussed in terms of its infrared, UV-visible spectra, quantum-chemical calculations at B3LYP/6-31G(d) level and antioxidant capacity. The copper (II) complex was stable in methanolic solution with the molar ratio metal:ligand 1:1. The data obtained by FT-IR confirmed the metal ion coordination through the carboxylate anion. The antioxidant properties of ursolic acid and its complex with Cu were discussed on the basis of energy of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and values of chemical reactivity parameters. The antiradical properties of ursolic acid and the Cu (II) complex were examined against DPPH• and HO• radicals, and the ferric reducing antioxidant power (FRAP) was examined. The Cu(II) complex showed higher antioxidant activity than ursolic acid, i.e., in DPPH• assay, the EC50 for UA was 47.0 mM, whereas, for Cu(II), UA EC50 = 19.5 mM; the FRAP value for UA was 20.8 µMFe2+, and 35.4 µMFe2+ for Cu(II) UA (compound concentration 3 mM). Although there was no distinct difference in the antioxidant activity against HO• between these two chemicals, they were both better HO• scavengers than DPPH• and showed different kinetics in the reaction with DPPH•.
Collapse
Affiliation(s)
- Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (M.K.); (K.G.)
| | | | | |
Collapse
|
20
|
Kim HH, Kim JK, Kim J, Jung SH, Lee K. Characterization of Caffeoylquinic Acids from Lepisorus thunbergianus and Their Melanogenesis Inhibitory Activity. ACS OMEGA 2020; 5:30946-30955. [PMID: 33324802 PMCID: PMC7726789 DOI: 10.1021/acsomega.0c03752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Hyperpigmentation resulting from the overactivation of tyrosinase leads to darker spots or patches on the human skin. Although these phenomena are harmless, there is still great demand for melanogenesis inhibitors to prevent hyperpigmentation by inhibiting the tyrosinase, a rate-limiting enzyme in melanogenesis. Although Lepisorus thunbergianus has been used in folk remedies as a diuretic and hemostatic agent, its effect on melanogenesis has not yet been reported. In this study, we prepared an L. thunbergianus extract and its solvent fractions and evaluated their biological activity against free radical and melanin synthesis. The extract of L. thunbergianus inhibited mushroom tyrosinase activity more efficiently than, and with similar antioxidant activity to, arbutin in vitro. Comparative evaluation of the anti-melanogenesis and anti-tyrosinase activity of L. thunbergianus solvent fractions demonstrated that, by inhibiting tyrosinase activity, the butanol fraction has the highest potential for the inhibition of melanogenesis in melanoma cells. We found by structural analysis using high-performance liquid chromatography (HPLC) and NMR spectroscopy that the major compounds in butanol fraction were three caffeoylquinic acid derivatives. The three derivatives had similar radical scavenging and anti-tyrosinase activities in vitro, while only 5-caffeoylquinic acid had an inhibitory effect on α-MSH-induced melanogenesis. The inhibitory effect of 5-caffeoylquinic acid was verified by the determination of the melanin content and tyrosinase activity in melanoma after treating the cells with a commercial compound. Further, we revealed that 5-caffeoylquinic acid inhibited melanogenesis by chelating a copper cation from a copper-tyrosinase complex. Thus, 5-caffeoylquinic acid or butanol fraction isolated from L. thunbergianus might be useful in cosmetics as a skin-whitening agent.
Collapse
Affiliation(s)
- Hak Hyun Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Kwon Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaehyun Kim
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Se-Hui Jung
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health
Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
21
|
Les F, Cásedas G, Valero MS, Arbonés-Mainar JM, López V. Rock tea ( Jasonia glutinosa (L.) DC.) polyphenolic extract inhibits triglyceride accumulation in 3T3-L1 adipocyte-like cells and obesity related enzymes in vitro. Food Funct 2020; 11:8931-8938. [PMID: 32996952 DOI: 10.1039/d0fo01497d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Jasonia glutinosa (L.) DC., also known in Spain as "té de roca" (rock tea, RT), is an endemic plant species of the Iberian Peninsula and Southern France. Traditionally, it is used in infusions, prepared with the flowering aerial parts, as a digestive and anti-inflammatory herbal tea. Despite the traditional knowledge of this plant as a digestive after meals, there are hardly any scientific studies that support its use. The aim of this study is to assess the effects of RT extract on physiological targets related to metabolic diseases such as obesity. For this purpose, enzyme inhibition bioassays of lipase, α-glucosidase and fatty acid amide hydrolase were carried out in cell-free systems. Similarly, adipocytes derived from 3T3-L1 cells were employed to study the effects of the extract on adipocyte differentiation and triglyceride (TG) accumulation. RT extract was able to inhibit lipase, α-glucosidase and fatty acid amide hydrolase. Furthermore, the extract displayed anti-adipogenic properties in a dose-dependent manner as it significantly reduced TG accumulation during adipocyte differentiation. These results may explain from a molecular perspective the beneficial effects of RT in the prevention of metabolic-associated disorders such as obesity, diabetes and related complications.
Collapse
Affiliation(s)
- Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain. and Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain.
| | - Marta Sofía Valero
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain and Departamento de Farmacología y Fisiología, Universidad de Zaragoza, Spain
| | - José Miguel Arbonés-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigacion Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain. and Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|
22
|
Kalinowska M, Sienkiewicz-Gromiuk J, Świderski G, Pietryczuk A, Cudowski A, Lewandowski W. Zn(II) Complex of Plant Phenolic Chlorogenic Acid: Antioxidant, Antimicrobial and Structural Studies. MATERIALS 2020; 13:ma13173745. [PMID: 32847095 PMCID: PMC7504324 DOI: 10.3390/ma13173745] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
The structure of the Zn(II) complex of 5-caffeoylquinic acid (chlorogenic acid, 5-CQA) and the type of interaction between the Zn(II) cation and the ligand were studied by means of various experimental and theoretical methods, i.e., electronic absorption spectroscopy UV/Vis, infrared spectroscopy FT-IR, elemental, thermogravimetric and density functional theory (DFT) calculations at B3LYP/6-31G(d) level. DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric reducing antioxidant power), CUPRAC (cupric reducing antioxidant power) and trolox oxidation assays were applied in study of the anti-/pro-oxidant properties of Zn(II) 5-CQA and 5-CQA. The antimicrobial activity of these compounds against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Salmonella enteritidis and Candida albicans was tested. An effect of Zn(II) chelation by chlorogenic acid on the anti-/pro-oxidant and antimicrobial activities of the ligand was discussed. Moreover, the mechanism of the antioxidant properties of Zn(II) 5-CQA and 5-CQA were studied on the basis of the theoretical energy descriptors and thermochemical parameters. Zn(II) chlorogenate showed better antioxidant activity than chlorogenic acid and commonly applied natural (L-ascorbic acid) and synthetic antioxidants (butylated hydroxyanisol (BHA) and butylated hydroxytoluene (BHT)). The pro-oxidant activity of Zn(II) 5-CQA was higher than the ligand and increased with the rise of the compound concentration The type of Zn(II) coordination by the chlorogenate ligand strongly affected the antioxidant activity of the complex.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (G.Ś.); (W.L.)
- Correspondence:
| | - Justyna Sienkiewicz-Gromiuk
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland;
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (G.Ś.); (W.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (G.Ś.); (W.L.)
| |
Collapse
|
23
|
Alshibl HM, Al-Abdullah ES, Haiba ME, Alkahtani HM, Awad GE, Mahmoud AH, Ibrahim BM, Bari A, Villinger A. Synthesis and Evaluation of New Coumarin Derivatives as Antioxidant, Antimicrobial, and Anti-Inflammatory Agents. Molecules 2020; 25:E3251. [PMID: 32708787 PMCID: PMC7397269 DOI: 10.3390/molecules25143251] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
New pyranocoumarin and coumarin-sulfonamide derivatives were prepared and evaluated for their antioxidant, antimicrobial, and/or anti-inflammatory activities. Coumarin-sulfonamide compounds 8a-d demonstrated significant antioxidant activity, while 7c,d, 8c,d, and 9c,d exhibited antimicrobial activity equal to or higher than the standard antimicrobials against at least one tested microorganism. Regarding the anti-inflammatory testing, pyranocoumarins 2b, 3a,b and 5c and coumarin-sulfonamide compound 9a showed more potent antiproteinase activity than aspirin in vitro; however, five compounds were as potent as aspirin. The anti-inflammatory activity of the promising compounds was further assessed pharmacologically on formaldehyde-induced rat paw oedema and showed significant inhibition of oedema. For in vitro COX-inhibitory activity of coumarin derivatives, pyranocoumarin derivative 5a was the most selective (SI = 152) and coumarin-sulfonamide derivative 8d was most active toward COX-2 isozyme. The most active derivatives met the in silico criteria for orally active drugs; thus, they may serve as promising candidates to develop more potent and highly efficient antioxidant, antimicrobial, and/or anti-inflammatory agents.
Collapse
Affiliation(s)
- Hanan M. Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Ebtehal S. Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Mogedda E. Haiba
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
- Department of Medicinal Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Ghada E.A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt;
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Bassant M.M. Ibrahim
- Pharmacology Department, Medical Research Division, National Research Centre, Cairo 12622, Egypt;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Alexander Villinger
- Institut für Chemie, Abteilung Anorganische Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany;
| |
Collapse
|
24
|
Palierse E, Przybylski C, Brouri D, Jolivalt C, Coradin T. Interactions of Calcium with Chlorogenic and Rosmarinic Acids: An Experimental and Theoretical Approach. Int J Mol Sci 2020; 21:E4948. [PMID: 32668750 PMCID: PMC7403997 DOI: 10.3390/ijms21144948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Chlorogenic (CA) and rosmarinic (RA) acids are two natural bioactive hydroxycinnamic acids whose antioxidant properties can be modulated by the chelation of metal ions. In this work, the interactions of these two carboxylic phenols with calcium ions and the impact of such interactions on their antioxidant activity were investigated. UV-Vis absorbance, mass spectroscopy and 1H and 13C liquid NMR were used to identify complexes formed by CA and RA with calcium. Antioxidant activities were measured by the Bois method. Density functional theory (DFT) calculations were performed to evaluate the most stable configurations and correlated with NMR data. Taken together, these data suggest that calcium ions mainly interact with the carboxylate groups of both molecules but that this interaction modifies the reactivity of the catechol groups, especially for RA. These results highlight the complex interplay between metal chelation and antioxidant properties of natural carboxylic phenols.
Collapse
Affiliation(s)
- Estelle Palierse
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France;
- CNRS, Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, 4 place Jussieu, 75005 Paris, France; (D.B.); (C.J.)
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 place Jussieu, 75005 Paris, France;
| | - Dalil Brouri
- CNRS, Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, 4 place Jussieu, 75005 Paris, France; (D.B.); (C.J.)
| | - Claude Jolivalt
- CNRS, Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, 4 place Jussieu, 75005 Paris, France; (D.B.); (C.J.)
| | - Thibaud Coradin
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France;
| |
Collapse
|
25
|
Świderski G, Jabłońska-Trypuć A, Kalinowska M, Świsłocka R, Karpowicz D, Magnuszewska M, Lewandowski W. Spectroscopic, Theoretical and Antioxidant Study of 3d-Transition Metals (Co (II), Ni(II), Cu(II), Zn(II) Complexes with Cichoric Acid. MATERIALS 2020; 13:ma13143102. [PMID: 32664569 PMCID: PMC7412476 DOI: 10.3390/ma13143102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
Cichoric acid (CA) is a derivative of both caffeic acid and tartaric acid. It was isolated for the first time from Cichorium intybus L. (chicory) but it also occurs in significant amounts in Echinacea, particularly E. purpurea, dandelion leaves, basil, lemon balm and in aquatic plants, including algae and sea grasses. It has a wide spectrum of biological properties, including antioxidant, antiviral, anti-inflammatory and other. The work yielded cichoric acid complexes with selected transition metals, i.e., copper(II), nickel(II), zinc(II) and cobalt(II). In this work the dependency between the molecular structure and biological activity was discussed. The molecular structure was studied by means of infrared spectroscopy (Fourier transform infrared (FT-IR) Raman (FT-Raman)), electronic absorption spectroscopy (ultraviolet-visible (UV/VIS)) and theoretical calculations (density functional theory (DFT), Hartree-Fock (HF)). Understanding the mechanism of the effect of metals on the electronic system of ligands with biological importance will facilitate in the future the search for new, effective and natural antioxidants. The composition of the studied complexes in aqueous solutions was determined at a constant pH by the Job's method. Antioxidative properties of the tested compounds were determined using the ferric-reducing antioxidant power (FRAP), DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method), cupric-reducing antioxidant capacity (CUPRAC) and Superoxide Dismutase Activity Assay (SOD).
Collapse
Affiliation(s)
- Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
- Correspondence: (G.Ś.); (W.L.)
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
| | - Danuta Karpowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
| | - Marta Magnuszewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (A.J.-T.); (M.K.); (R.Ś.); (D.K.); (M.M.)
| | - Włodzimierz Lewandowski
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36 Street, 02-532 Warsaw, Poland
- Correspondence: (G.Ś.); (W.L.)
| |
Collapse
|
26
|
Rebollo-Hernanz M, Fernández-Gómez B, Herrero M, Aguilera Y, Martín-Cabrejas MA, Uribarri J, del Castillo MD. Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods 2019; 8:E438. [PMID: 31557849 PMCID: PMC6835918 DOI: 10.3390/foods8100438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
This work aimed to evaluate the contribution of isoflavones and melatonin to the aqueous extract obtained from the coffee silverskin (CSE) antiglycative properties, which has not been previously studied. To achieve this goal, two model systems constituted by bovine serum albumin (BSA) and reactive carbonyls (glucose or methylglyoxal) in the presence or absence of pure phytochemicals (chlorogenic acid (CGA), genistein, and melatonin) and CSE were employed. Glucose was used to evaluate the effect on the formation of glycation products formed mainly in the early stage of the reaction, while methylglyoxal was employed for looking at the formation of advanced products of the reaction, also called methylglyoxal-derivative advanced glycation end products (AGE) or glycoxidation products. CGA inhibited the formation of fructosamine, while genistein and melatonin inhibited the formation of advanced glycation end products and protein glycoxidation. It was also observed that phenolic compounds from CSE inhibited protein glycation and glycoxidation by forming BSA-phytochemical complexes. CSE showed a significant antiglycative effect (p < 0.05). Variations in the UV-Vis spectrum and the antioxidant capacity of protein fractions suggested the formation of protein-phytochemical complexes. Fluorescence quenching and in silico analysis supported the formation of antioxidant-protein complexes. For the first time, we illustrate that isoflavones and melatonin may contribute to the antiglycative/antiglycoxidative properties associated with CSE. CGA, isoflavones, and melatonin composing CSE seem to act simultaneously by different mechanisms of action.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz Fernández-Gómez
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Miguel Herrero
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| | - Yolanda Aguilera
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jaime Uribarri
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029, USA;
| | - María Dolores del Castillo
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (B.F.-G.); (M.H.); marí
| |
Collapse
|
27
|
Soll M, Goswami TK, Chen QC, Saltsman I, Teo RD, Shahgholi M, Lim P, Di Bilio AJ, Cohen S, Termini J, Gray HB, Gross Z. Cell-Penetrating Protein/Corrole Nanoparticles. Sci Rep 2019; 9:2294. [PMID: 30783138 PMCID: PMC6381154 DOI: 10.1038/s41598-019-38592-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
Recent work has highlighted the potential of metallocorroles as versatile platforms for the development of drugs and imaging agents, since the bioavailability, physicochemical properties and therapeutic activity can be dramatically altered by metal ion substitution and/or functional group replacement. Significant advances in cancer treatment and imaging have been reported based on work with a water-soluble bis-sulfonated gallium corrole in both cellular and rodent-based models. We now show that cytotoxicities increase in the order Ga < Fe < Al < Mn < Sb < Au for bis-sulfonated corroles; and, importantly, that they correlate with metallocorrole affinities for very low density lipoprotein (VLDL), the main carrier of lipophilic drugs. As chemotherapeutic potential is predicted to be enhanced by increased lipophilicity, we have developed a novel method for the preparation of cell-penetrating lipophilic metallocorrole/serum-protein nanoparticles (NPs). Cryo-TEM revealed an average core metallocorrole particle size of 32 nm, with protein tendrils extending from the core (conjugate size is ~100 nm). Optical imaging of DU-145 prostate cancer cells treated with corrole NPs (≤100 nM) revealed fast cellular uptake, very slow release, and distribution into the endoplasmic reticulum (ER) and lysosomes. The physical properties of corrole NPs prepared in combination with transferrin and albumin were alike, but the former were internalized to a greater extent by the transferrin-receptor-rich DU-145 cells. Our method of preparation of corrole/protein NPs may be generalizable to many bioactive hydrophobic molecules to enhance their bioavailability and target affinity.
Collapse
Affiliation(s)
- Matan Soll
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Tridib K Goswami
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Irena Saltsman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Ruijie D Teo
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mona Shahgholi
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Angel J Di Bilio
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sarah Cohen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|