1
|
Karabatić Knezović S, Knezović D, Ban J, Matana A, Puizina Ivić N, Glavina Durdov M, Merćep M, Drmić Hofman I. Immunological Landscape of Non-Melanoma Skin Neoplasms: Role of CTLA4+IFN-γ+ Lymphocytes in Tumor Microenvironment Suppression. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:330. [PMID: 40005446 PMCID: PMC11857809 DOI: 10.3390/medicina61020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: This study explores the immunological landscapes of non-melanoma skin neoplasms (NMSNs), specifically keratoacanthoma (KA), squamous cell carcinoma (SCC), and common warts (VV). Although benign, KA shares histological similarities with low-grade SCC. The tumor microenvironment (TME) plays a key role in tumor progression, affecting angiogenesis, inflammation, and immune evasion. Viral infections, particularly human papillomavirus (HPV), are linked to NMSN development, with various HPV types identified in KA. VV, caused by HPV, serves as a comparative model due to its similar etiopathogenesis. Materials and Methods: This research examines the expression of CTLA4, a critical regulator of T-cell homeostasis, and IFN-γ, a cytokine with immunomodulatory and antiviral effects, in the TME of 41 KA, 37 SCC, and 55 VV samples using multichannel immunofluorescence. Results: The analysis revealed distinct patterns of CTLA4 and IFN-γ expression. SCC exhibited a higher prevalence of CTLA4+IFN-γ+ double-positive lymphocytes, suggesting a more immunosuppressive TME. In contrast, VV showed the highest expression of CTLA4+ cells, while both KA and VV had lower expressions of IFN-γ+ lymphocytes compared to SCC. The increased presence of CTLA4+IFN-γ+ double-positive lymphocytes in SCC suggests that the co-expression of these markers may exert a stronger effect on TME modulation than CTLA4 alone. Conclusions: These findings underscore the potential of immune profiling as a diagnostic tool to differentiate between benign and malignant lesions, such as KA and SCC. Furthermore, the presence of CTLA4+IFN-γ+ lymphocytes, particularly in SCC, may serve as a biomarker for tumor progression and a potential target for future immunotherapy strategies aimed at modulating the immune response in NMSN.
Collapse
Affiliation(s)
| | - Dora Knezović
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Ban
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia; (J.B.); (M.M.)
| | - Antonela Matana
- University Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Neira Puizina Ivić
- Department of Dermatology, University Hospital of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Mladen Merćep
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia; (J.B.); (M.M.)
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000 Split, Croatia;
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
2
|
D’Ambrosio R, Cavallo S, Brunetti R, Pellicanò R, Vaccaro E, Borriello G, Paradiso R, Serpe FP, Lambiase S, Bruzzese F, Palma G, Rea D, Barbieri A, D’Amore M, Dimatteo M, degli Uberti B, Paciello O, Baldi L. The Use of Antimicrobials in Animal Husbandry as a Potential Factor for the Increased Incidence of Colorectal Cancer: Food Safety and Kinetics in a Murine Model. Animals (Basel) 2025; 15:315. [PMID: 39943084 PMCID: PMC11815752 DOI: 10.3390/ani15030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this research was to investigate the effects of the prolonged use of the broad-spectrum antimicrobial widely used in animal husbandry. By means of a mouse model, a translational study was carried out on immunocompetent mice (with a complete immune system). This study highlighted the effect of antimicrobial residues taken in with food on the growth time of cancer and on alterations to the gut microbiota. This project considered the fight against antimicrobial resistance from a One Health perspectivethrough collaboration between human medicine and veterinary medicine. Regarding food safety, antimicrobial residues in products of animal origin are rarely detected; they therefore constitute a negligible factor in determining colorectal cancer.
Collapse
Affiliation(s)
- Rosa D’Ambrosio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Stefania Cavallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Roberta Brunetti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Roberta Pellicanò
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Emanuela Vaccaro
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (E.V.); (O.P.)
| | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Rubina Paradiso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Francesco Paolo Serpe
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Sara Lambiase
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Francesca Bruzzese
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy; (F.B.); (G.P.)
| | - Giuseppe Palma
- Experimental Animal Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy; (F.B.); (G.P.)
| | - Domenica Rea
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS- Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Antonio Barbieri
- ASL Salerno UOC Laboratorio d’Analisi, Vallo della Lucania, 84078 Salerno, Italy
| | - Marianna D’Amore
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Maria Dimatteo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Barbara degli Uberti
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Napoli, Italy; (E.V.); (O.P.)
| | - Loredana Baldi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Italy; (R.D.); (S.C.); (R.P.); (G.B.); (R.P.); (F.P.S.); (S.L.); (M.D.); (B.d.U.); (L.B.)
| |
Collapse
|
3
|
Meci A, Lorenz FJ, Goyal N, Goldenberg D. Elevated Risk of Thyroid Malignancy in Biological Males Taking Estrogen Hormone Therapy. Otolaryngol Head Neck Surg 2025. [PMID: 39791954 DOI: 10.1002/ohn.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE The role of estrogen in developing thyroid malignancy is poorly understood. Epidemiological studies have shown exogenous estrogen is associated with increased risk in females. Still, no studies to date have investigated this association among biological males undergoing estrogen hormone therapy. STUDY DESIGN Retrospective cohort study. SETTING TriNetX Research Network. METHODS Biologically male patients prescribed estrogen with at least 5 years of follow-up were queried from the database. Rates of diagnosis of malignant neoplasm of the thyroid gland within 5 years of estrogen hormone therapy prescription were determined, and statistics were conducted within the TriNetX platform. RESULTS We identified 6394 biologically male patients from 65 health care organizations prescribed estrogen hormone treatment. The average age was 44.4 years. When balanced for demographic factors as well as known risk factors for thyroid malignancy, the estrogen treatment cohort had a 0.64% risk for diagnosis of thyroid malignancy within 5 years, compared to a 0.27% risk among patients not taking estrogen (relative risk: 2.35, 95% confidence interval: 1.34-4.15, P = .002). CONCLUSION We found a higher risk of developing thyroid cancer in biologically male patients prescribed estrogen hormone therapy. This is the first association found between estrogen and thyroid malignancy in this group.
Collapse
Affiliation(s)
- Andrew Meci
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - F Jeffrey Lorenz
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Neerav Goyal
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - David Goldenberg
- Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
4
|
Greygoose E, Metharom P, Kula H, Seckin TK, Seckin TA, Ayhan A, Yu Y. The Estrogen-Immune Interface in Endometriosis. Cells 2025; 14:58. [PMID: 39791759 PMCID: PMC11720315 DOI: 10.3390/cells14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the association between endometriosis and altered immune states. The human endometrium is a highly dynamic tissue that undergoes frequent remodeling in response to hormonal regulation during the menstrual cycle. Similarly, endometriosis shares this propensity, compounded by unclear pathogenic mechanisms, presenting unique challenges in defining its etiology and pathology. Here, we provide a lens to understand the interplay between estrogen and innate and adaptive immune systems throughout the menstrual cycle in the pathogenesis of endometriosis. Estrogen is closely linked to many altered inflammatory and immunomodulatory states, affecting both tissue-resident and circulatory immune cells. This review summarizes estrogenic interactions with specific myeloid and lymphoid cells, highlighting their implications in the progression of endometriosis.
Collapse
Affiliation(s)
- Emily Greygoose
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Pat Metharom
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hakan Kula
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Timur K. Seckin
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76104, USA;
| | - Tamer A. Seckin
- Department of Gynecology, Lenox Hill Hospital, and Hofstra University, New York, NY 10075, USA
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Yu
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Discipline of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Ishikawa E, Watanabe T, Kihara T, Kuroiwa M, Komatsu M, Urano S, Nagahashi M, Hirota S, Miyoshi Y. The cytokine profile correlates with less tumor-infiltrating lymphocytes in luminal A breast cancer. Breast Cancer Res Treat 2025; 209:291-302. [PMID: 39402242 PMCID: PMC11785682 DOI: 10.1007/s10549-024-07492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE Tumor-infiltrating lymphocyte (TIL) levels are prognostic and predictive factors for breast cancer. Unlike other subtypes, most luminal A breast cancers are immune deserts; however, the underlying mechanisms are poorly understood. METHODS Immune-related cytokines, chemokines, and growth factors were measured in the sera of 103 patients with breast cancer using a multiplex panel. The TILs were evaluated for hotspot lesions. RESULTS Circulating interleukin 1 receptor antagonist (IL-1ra), IL-8, IL-12, IL-17, macrophage inflammatory protein-1β (MIP-1b), and platelet-derived growth factor B homodimer (PDGF-bb) concentrations were significantly associated with TIL levels. Cluster analysis using these six variables identified six clusters related to TIL levels. Breast cancers with high TILs (≥ 50%) were most frequent in cluster 3 (9 out of 15 cases, 60.0%), followed by cluster 1 (8 out of 34 cases, 23.5%), and the fewest in cluster 6 (1 out of 21 cases, 4.8%), whereas only one or three cases were present in clusters 2, 4, and 5 (p = 0.0064). Cluster 6, consisting mostly of luminal A (19 out of 21 cases, 90.5%), showed high levels of IL-12, IL-17, and PDGF-bb, and low levels of MIP-1b. CONCLUSION We identified a luminal A-associated immunosuppressive cytokine signature in circulation. These results suggest that a tumor microenvironment with high levels of IL-17 and PDGF-bb, and low levels of MIP-1b in luminal A breast cancers results in low induction of TILs. Our data may partially explain the low TIL levels observed in the patients with luminal A breast cancer.
Collapse
Affiliation(s)
- Eri Ishikawa
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Takahiro Watanabe
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
- Department of Clinical Pathology, Chibune General Hospital, Osaka, Japan
| | - Takako Kihara
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Mamiko Kuroiwa
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Miki Komatsu
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Sayaka Urano
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Masayuki Nagahashi
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, School of Medicine, Hyogo Medical University, Nishinomiya City, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, Mukogawa-Cho 1-1, Nishinomiya City, Hyogo, 663-8501, Japan.
| |
Collapse
|
6
|
Hao W, Rajendran BK, Cui T, Sun J, Zhao Y, Palaniyandi T, Selvam M. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review). Int J Mol Med 2025; 55:6. [PMID: 39450552 PMCID: PMC11537269 DOI: 10.3892/ijmm.2024.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.
Collapse
Affiliation(s)
- Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Tingting Cui
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Jiayi Sun
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Yingchun Zhao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | | | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
7
|
Zhao H, Xu J, Zhong Y, He S, Hao Z, Zhang B, Liu Z, Zhou X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int Immunopharmacol 2024; 142:113034. [PMID: 39226826 DOI: 10.1016/j.intimp.2024.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1β production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Han Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 210017 Nanjing, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shiqing He
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 221009 Xuzhou, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
8
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Suba Z. Estrogen Regulated Genes Compel Apoptosis in Breast Cancer Cells, Whilst Stimulate Antitumor Activity in Peritumoral Immune Cells in a Janus-Faced Manner. Curr Oncol 2024; 31:4885-4907. [PMID: 39329990 PMCID: PMC11431267 DOI: 10.3390/curroncol31090362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Background: Breast cancer incidence and mortality exhibit a rising trend globally among both premenopausal and postmenopausal women, suggesting that there are serious errors in our preventive and therapeutic measures. Purpose: Providing a series of valuable, but misunderstood inventions highlighting the role of increasing estrogen signaling in prevention and therapy of breast cancer instead of its inhibition. Results: 1. Breast cells and breast cancer cells with germline BRCA1/2 mutations similarly show defects in liganded estrogen receptor (ER) signaling, demonstrating its role in genomic instability and cancer initiation. 2. In breast tumors, the increased expression of special receptor family maybe an effort for self-directed improvement of genomic defects, while the weakness or loss of receptors indicates a defect requiring medical repair. 3. ER overexpression in breast cancer cells is capable of strengthening estrogen signaling and DNA repair, while in ER negative tumors, HER2 overexpression tries to upregulate unliganded ER activation and genome stabilization. 4. ER-positive breast cancers responsive to endocrine therapy may show a compensatory ER overexpression resulting in a transient tumor response. Breast cancers non-responsive to antiestrogen treatment exhibit HER2-overexpression for compensating the complete inhibition of hormonal ER activation. 5. In breast tumors, somatic mutations serve upregulation of ER activation via liganded or unliganded pathway helping genome stabilization and apoptotic death. 6. The mutual communication between breast cancer and its inflammatory environment is a wonderful partnership among cells fighting for genome stabilization and apoptotic death of tumor. 7. In breast cancers, there is no resistance to genotoxic or immune blocker therapies, but rather, the nonresponsive tumor cells exhaust all compensatory possibilities against therapeutic damages. Conclusions: Understanding the behavior and ambition of breast cancer cells may achieve a turn in therapy via applying supportive care instead of genotoxic measures.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
10
|
Benslimane Y, Amalfi K, Lapin S, Perrino S, Brodt P. Estrogen Receptor Blockade Potentiates Immunotherapy for Liver Metastases by Altering the Liver Immunosuppressive Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:1963-1977. [PMID: 39007345 PMCID: PMC11306998 DOI: 10.1158/2767-9764.crc-24-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Liver metastases (LM) remain a major cause of cancer-related death and are a major clinical challenge. LM and the female sex are predictors of a poorer response to immunotherapy but the underlying mechanisms remain unclear. We previously reported on a sexual dimorphism in the control of the tumor microenvironment (TME) of colorectal carcinoma liver metastases (CRCLM) and identified estrogen as a regulator of an immunosuppressive TME in the liver. Here we aimed to assess the effect of estrogen deprivation on the cytokine/chemokine profile associated with CRCLM, using a multiplex cytokine array and the RNAscope technology, and its effects on the innate and adaptive immune responses in the liver. We also evaluated the benefit of combining the selective estrogen-receptor degrader Fulvestrant with immune checkpoint blockade for the treatment of CRCLM. We show that estrogen depletion altered the cytokine/chemokine repertoire of the liver, decreased macrophage polarization, as reflected in reduced accumulation of tumor infiltrating M2 macrophages and increased the accumulation of CCL5+/CCR5+ CD8+ T and NKT cells in the liver TME. Similar results were obtained in a murine pancreatic ductal adenocarcinoma model. Importantly, treatment with Fulvestrant also increased the accumulation of CD8+CCL5+, CD8+CCR5+ T and NK cells in the liver TME and enhanced the therapeutic benefit of anti-PD1 immunotherapy, resulting in a significant reduction in the outgrowth of LM. Taken together, our results show that estrogen regulates immune cell recruitment to the liver and suggest that inhibition of estrogen action could potentiate the tumor-inhibitory effect of immunotherapy in hormone-independent and immunotherapy-resistant metastatic cancer. SIGNIFICANCE The immune microenvironment of the liver plays a major role in controlling the expansion of hepatic metastases and is regulated by estrogen. We show that treatment of tumor-bearing mice with an estrogen receptor degrader potentiated an anti-metastatic effect of immunotherapy. Our results provide mechanistic insight into clinical findings and a rationale for evaluating the efficacy of combination anti-estrogen and immunotherapy for prevention and/or treatment of hepatic metastases in female patients.
Collapse
Affiliation(s)
- Yasmine Benslimane
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada.
- The Research Institute of the McGill University Health Center, Montreal, Canada.
| | - Kevin Amalfi
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Sara Lapin
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | - Stephanie Perrino
- The Research Institute of the McGill University Health Center, Montreal, Canada.
| | - Pnina Brodt
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada.
- The Research Institute of the McGill University Health Center, Montreal, Canada.
- Department of Surgery, McGill University, Montreal, Canada.
- Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
12
|
Thakare E, Chaudhary M, Gadbail A. A prospective study of circulating estrogen in oral leukoplakia and oral squamous cell carcinoma. J Cancer Res Ther 2024; 20:1370-1375. [PMID: 38102904 DOI: 10.4103/jcrt.jcrt_2377_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND Reports suggested that hormone replacement therapy decreased the incidence of squamous cell carcinoma (SCC) of the oral cavity. AIM The aim of this study was to analyze and quantify the serum 17β-estradiol (E2) level by chemiluminescence immunoassay in four groups, Group I (control group with no habit of tobacco and areca), Group II (control group with a habit of tobacco and areca), Group III (potentially malignant disorder-leukoplakia), and Group IV (oral squamous cell carcinoma (OSCC)). It was the first study to evaluate E2 in four study groups with and without the habit of tobacco. METHOD The serum analysis was carried out in Cobas e411 analyzer by electrochemiluminescence immunoassay analysis. RESULTS As per the Kruskal--Wallis test, statistically significant rise in estradiol levels in Group IV as in comparison to Group III as compared with Groups II and I. CONCLUSION This study proved that irrespective of the gender bias, the female sex hormone, estradiol levels were significantly raised in OSCC patients. This study suggests that E2 may play a vital role in determining the patient prognosis in OSCC with tobacco habit. The confounding results of this preliminary study opened up new advents emphasizing the role of E2 in OSCC. The role of E2 in estrogen receptor regulation can also be a subject of study for targeted therapies in improving the patient's prognosis.
Collapse
Affiliation(s)
- Eesha Thakare
- Department of Oral Pathology and Microbiology, Nanded Rural Dental College, Nanded, Maharashtra, India
| | - Minal Chaudhary
- Professor and Director (Examination, Assessment and Evaluation), Datta Meghe Institute of Medical Sciences (Deemed to be University), Nagpur, Maharashtra, India
| | - Amol Gadbail
- Department of Dentistry, Shree Bhausaheb Hire Medical College and Hospital, Dhule, Maharashtra, India
| |
Collapse
|
13
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Suba Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers (Basel) 2024; 16:1573. [PMID: 38672654 PMCID: PMC11049279 DOI: 10.3390/cancers16081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In tumors, somatic mutagenesis presumably drives the DNA damage response (DDR) via altered regulatory pathways, increasing genomic instability and proliferative activity. These considerations led to the standard therapeutic strategy against cancer: the disruption of mutation-activated DNA repair pathways of tumors. PURPOSE Justifying that cancer cells are not enemies to be killed, but rather that they are ill human cells which have the remnants of physiologic regulatory pathways. RESULTS 1. Genomic instability and cancer development may be originated from a flaw in estrogen signaling rather than excessive estrogen signaling; 2. Healthy cells with genomic instability exhibit somatic mutations, helping DNA restitution; 3. Somatic mutations in tumor cells aim for the restoration of DNA damage, rather than further genomic derangement; 4. In tumors, estrogen signaling drives the pathways of DNA stabilization, leading to apoptotic death; 5. In peritumoral cellular infiltration, the genomic damage of the tumor induces inflammatory cytokine secretion and increased estrogen synthesis. In the inflammatory cells, an increased growth factor receptor (GFR) signaling confers the unliganded activation of estrogen receptors (ERs); 6. In breast cancer cells responsive to genotoxic therapy, constitutive mutations help the upregulation of estrogen signaling and consequential apoptosis. In breast tumors non-responsive to genotoxic therapy, the possibilities for ER activation via either liganded or unliganded pathways are exhausted, leading to farther genomic instability and unrestrained proliferation. CONCLUSIONS Understanding the real character and behavior of human tumors at the molecular level suggests that we should learn the genome repairing methods of tumors and follow them by supportive therapy, rather than provoking additional genomic damages.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
15
|
Li H, Zhang W, Liu Y, Cai Z, Lan A, Shu D, Shen M, Li K, Pu D, Tan W, Liu S, Peng Y. UTRN as a potential biomarker in breast cancer: a comprehensive bioinformatics and in vitro study. Sci Rep 2024; 14:7702. [PMID: 38565593 PMCID: PMC10987506 DOI: 10.1038/s41598-024-58124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Utrophin (UTRN), known as a tumor suppressor, potentially regulates tumor development and the immune microenvironment. However, its impact on breast cancer's development and treatment remains unstudied. We conducted a thorough examination of UTRN using both bioinformatic and in vitro experiments in this study. We discovered UTRN expression decreased in breast cancer compared to standard samples. High UTRN expression correlated with better prognosis. Drug sensitivity tests and RT-qPCR assays revealed UTRN's pivotal role in tamoxifen resistance. Furthermore, the Kruskal-Wallis rank test indicated UTRN's potential as a valuable diagnostic biomarker for breast cancer and its utility in detecting T stage of breast cancer. Additionally, our results demonstrated UTRN's close association with immune cells, inhibitors, stimulators, receptors, and chemokines in breast cancer (BRCA). This research provides a novel perspective on UTRN's role in breast cancer's prognostic and therapeutic value. Low UTRN expression may contribute to tamoxifen resistance and a poor prognosis. Specifically, UTRN can improve clinical decision-making and raise the diagnosis accuracy of breast cancer.
Collapse
Affiliation(s)
- Han Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Wenjie Zhang
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Yang Liu
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Zehao Cai
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Ailin Lan
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Dan Shu
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Meiying Shen
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Kang Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Dongyao Pu
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Wenhao Tan
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Yang Peng
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
16
|
Akter R, Awais M, Boopathi V, Ahn JC, Yang DC, Kang SC, Yang DU, Jung SK. Inversion of the Warburg Effect: Unraveling the Metabolic Nexus between Obesity and Cancer. ACS Pharmacol Transl Sci 2024; 7:560-569. [PMID: 38481689 PMCID: PMC10928896 DOI: 10.1021/acsptsci.3c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2025]
Abstract
Obesity is a well-established risk factor for cancer, significantly impacting both cancer incidence and mortality. However, the intricate molecular mechanisms connecting adipose tissue to cancer cell metabolism are not fully understood. This Review explores the historical context of tumor energy metabolism research, tracing its origins to Otto Warburg's pioneering work in 1920. Warburg's discovery of the "Warburg effect", wherein cancer cells prefer anaerobic glycolysis even in the presence of oxygen, laid the foundation for understanding cancer metabolism. Building upon this foundation, the "reverse Warburg effect" emerged in 2009, elucidating the role of aerobic glycolysis in cancer-associated fibroblasts (CAFs) and its contribution to lactate accumulation in the tumor microenvironment, subsequently serving as a metabolic substrate for cancer cells. In contrast, within high-adiposity contexts, cancer cells exhibit a unique metabolic shift termed the "inversion of the Warburg effect". This phenomenon, distinct from the stromal-dependent reverse Warburg effect, relies on increased nutrient abundance in obesity environments, leading to the generation of glucose from lactate as a metabolic substrate. This Review underscores the heightened tumor proliferation and aggressiveness associated with obesity, introducing the "inversion of the Warburg effect" as a novel mechanism rooted in the altered metabolic landscape within an obese milieu. The insights presented here open promising avenues for therapeutic exploration, offering fresh perspectives and opportunities for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Reshmi Akter
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Muhammad Awais
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Vinothini Boopathi
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Jong Chan Ahn
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Deok Chun Yang
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Se Chan Kang
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggido, Republic of Korea
| | - Dong Uk Yang
- AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu 34214, Daejeon, Republic of Korea
| | - Seok-Kyu Jung
- Department
of Horticulture, Kongju National University, Yesan 32588,Chungcheongnam-do, Republic of Korea
| |
Collapse
|
17
|
Cheung SM, Chan KS, Zhou W, Husain E, Gagliardi T, Masannat Y, He J. Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer. Sci Rep 2024; 14:4699. [PMID: 38409583 PMCID: PMC10897464 DOI: 10.1038/s41598-024-55458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (rs = - .64), PUFA entropy (rs = .63) and SFA skewness (rs = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.
Collapse
Affiliation(s)
- Sai Man Cheung
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Kwok-Shing Chan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Wenshu Zhou
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ehab Husain
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Tanja Gagliardi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Yazan Masannat
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Broomfield Breast Unit, Broomfield Hospital, Mid and South Essex NHS Trust, Chelmsford, UK
- London Breast Institute, Princess Grace Hospital, London, UK
| | - Jiabao He
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
- Faculty of Medical Sciences, Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
18
|
Yao H, Hu Y, Tong H, Shi S. Dimethylglycine Alleviates Metabolic Dysfunction-Associated Fatty Liver Disease by Improving the Circulating Estrogen Level via Gut Staphylococcus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2708-2717. [PMID: 38131116 DOI: 10.1021/acs.jafc.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Our previous study screened out dietary 0.1% dimethylglycine (DMG), which had beneficial effects on egg production and fat deposition in laying hens during the late laying period. In this paper, it was further found that dietary DMG alleviated fatty liver disease and enhanced lipid deposited into the yolk while promoting hepatic lipid transport. There are intestinal estrogen-metabolizing bacteria (EBM) having β-glucuronase (GUS) activity that regulates the content of circulating estrogen (E2) in mammals. There were 39 related bacteria found in laying hens, and DMG increased E2 in blood, Staphylococcus abundance among EBM and GUS activity in cecum chyme. Interfered in situ, Staphylococcus with GUS activity was proved the target bacteria for DMG. Furthermore, E2 could modify hepatic lipid deposition through promoting lipid transport by the steatosis LMH model. These perspectives confirm that DMG, mediated by Staphylococcus, alleviates the restriction of hepatic lipid transport due to reduced levels of E2 in laying hens.
Collapse
Affiliation(s)
- Hong Yao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Yan Hu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| | - Shourong Shi
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China
| |
Collapse
|
19
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
20
|
Nicolini A, Rossi G, Ferrari P. Experimental and clinical evidence in favour of an effective immune stimulation in ER-positive, endocrine-dependent metastatic breast cancer. Front Immunol 2024; 14:1225175. [PMID: 38332913 PMCID: PMC10850262 DOI: 10.3389/fimmu.2023.1225175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 02/10/2024] Open
Abstract
In ER+ breast cancer, usually seen as the low immunogenic type, the main mechanisms favouring the immune response or tumour growth and immune evasion in the tumour microenvironment (TME) have been examined. The principal implications of targeting the oestrogen-mediated pathways were also considered. Recent experimental findings point out that anti-oestrogens contribute to the reversion of the immunosuppressive TME. Moreover, some preliminary clinical data with the hormone-immunotherapy association in a metastatic setting support the notion that the reversion of immune suppression in TME is likely favoured by the G0-G1 state induced by anti-oestrogens. Following immune stimulation, the reverted immune suppression allows the boosting of the effector cells of the innate and adaptive immune response. This suggests that ER+ breast cancer is a molecular subtype where a successful active immune manipulation can be attained. If this is confirmed by a prospective multicentre trial, which is expected in light of the provided evidence, the proposed hormone immunotherapy can also be tested in the adjuvant setting. Furthermore, the different rationale suggests a synergistic activity of our proposed immunotherapy with the currently recommended regimen consisting of antioestrogens combined with cyclin kinase inhibitors. Overall, this lays the foundation for a shift in clinical practice within this most prevalent molecular subtype of breast cancer.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology, National Research Council and Gabriele Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
van Eijck CWF, Mustafa DAM, Vadgama D, de Miranda NFCC, Groot Koerkamp B, van Tienhoven G, van der Burg SH, Malats N, van Eijck CHJ. Enhanced antitumour immunity following neoadjuvant chemoradiotherapy mediates a favourable prognosis in women with resected pancreatic cancer. Gut 2024; 73:311-324. [PMID: 37709493 PMCID: PMC10850691 DOI: 10.1136/gutjnl-2023-330480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND This study investigates sex disparities in clinical outcomes and tumour immune profiles in patients with pancreatic ductal adenocarcinoma (PDAC) who underwent upfront resection or resection preceded by gemcitabine-based neoadjuvant chemoradiotherapy (nCRT). METHODS Patients originated from the PREOPANC randomised controlled trial. Upfront surgery was performed in 82 patients, and 66 received nCRT before resection. The impact of sex on overall survival (OS) was investigated using Cox proportional hazards models. The immunological landscape within the tumour microenvironment (TME) was mapped using transcriptomic and spatial proteomic profiling. RESULTS The 5-year OS rate differed between the sexes following resection preceded by nCRT, with 43% for women compared with 22% for men. In multivariate analysis, the female sex was a favourable independent prognostic factor for OS only in the nCRT group (HR 0.19; 95% CI 0.07 to 0.52). Multivariate heterogeneous treatment effects analysis revealed a significant interaction between sex and treatment, implying increased nCRT efficacy among women with resected PDAC. The TME of women contained fewer protumoural CD163+MRC1+M2 macrophages than that of men after nCRT, as indicated by transcriptomic and validated using spatial proteomic profiling. CONCLUSION PDAC tumours of women are more sensitive to gemcitabine-based nCRT, resulting in longer OS after resection compared with men. This may be due to enhanced immunity impeding the infiltration of protumoral M2 macrophages into the TME. Our findings highlight the importance of considering sex disparities and mitigating immunosuppressive macrophage polarisation for personalised PDAC treatment.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Dana A M Mustafa
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology, Tumour-Immuno Pathology Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| | - Casper H J van Eijck
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, and CIBERONC, Madrid, Spain
| |
Collapse
|
22
|
Luo Q, Li X, Meng Z, Rong H, Li Y, Zhao G, Zhu H, Cen L, Liao Q. Identification of hypoxia-related gene signatures based on multi-omics analysis in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18032. [PMID: 38013642 PMCID: PMC10826438 DOI: 10.1111/jcmm.18032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer and one of the malignancies with the highest incidence rate and mortality worldwide. Hypoxia is a typical feature of tumour microenvironment (TME), which affects the progression of LUAD from multiple molecular levels. However, the underlying molecular mechanisms behind LUAD hypoxia are not fully understood. In this study, we estimated the level of hypoxia by calculating a score based on 15 hypoxia genes. The hypoxia scores were relatively high in LUAD patients with poor prognosis and were bound up with tumour node metastasis (TNM) stage, tumour size, lymph node, age and gender. By comparison of high hypoxia score group and low hypoxia score group, 1820 differentially expressed genes were identified, among which up-regulated genes were mainly about cell division and proliferation while down-regulated genes were primarily involved in cilium-related biological processes. Besides, LUAD patients with high hypoxia scores had higher frequencies of gene mutations, among which TP53, TTN and MUC16 had the highest mutation rates. As for DNA methylation, 1015 differentially methylated probes-related genes were found and may play potential roles in tumour-related neurobiological processes and cell signal transduction. Finally, a prognostic model with 25 multi-omics features was constructed and showed good predictive performance. The area under curve (AUC) values of 1-, 3- and 5-year survival reached 0.863, 0.826 and 0.846, respectively. Above all, our findings are helpful in understanding the impact and molecular mechanisms of hypoxia in LUAD.
Collapse
Affiliation(s)
- Qineng Luo
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Xing Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Zixing Meng
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Hao Rong
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Yanguo Li
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
| | - Guofang Zhao
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Huangkai Zhu
- Department of Thoracic SurgeryHwa Mei HospitalUniversity of Chinese Academy of SciencesNingboZhejiangP. R. China
| | - Lvjun Cen
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| | - Qi Liao
- School of Public HealthHealth Science CenterNingbo UniversityNingboZhejiangP. R. China
- The First Affiliated HospitalNingbo UniversityNingboZhejiangP. R. China
| |
Collapse
|
23
|
Cirstea AE, Docea AO, Cercelaru L, Drocas AI, Mesnage R, Marginean C, Marinas C, Diaconu M, Golokhvast KS, Mitrut R, Antoniou MN, Tsatsakis A, Calina D. Changes in Rat Mammary Tissue Architecture Following Pregnancy/Lactation Exposure to Glyphosate Alone or with 2,4-D and Dicamba. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:94-105. [PMID: 38846475 PMCID: PMC11151954 DOI: 10.12865/chsj.50.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The current study aimed to assess the possible endocrine disruptor effects on rat mammary tissue and reproductive organs during pregnancy and lactation when exposed to low doses of glyphosate and its combination with 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba. The study involved the exposure of pregnant Wistar rats to various regulatory-relevant doses of glyphosate, ranging from gestational day 6 until fine of the lactation period. Glyphosate doses corresponded to the European Union's glyphosate-acceptable daily intake (ADI; 0.5mg/kg bw/day) and no observed adverse effect level (NOAEL; 50mg/kg bw/day). The dose of the mixture of glyphosate, dicamba, and 2,4-D was at the European Union ADI for each herbicide namely 0.5, 0.002, and 0.3mg/kg bw/day, respectively. In the animals exposed to glyphosate NOAEL serum estradiol levels were increased compared to untreated animals, along with an upregulation of TNF-?, MMP-2, and MMP-9 as measured in mammary gland homogenates compared to non-treated animals. Moreover, in this group, a focally acute inflammatory infiltrate was observed in the mammary gland. Our study showed that short-term exposure to glyphosate at doses that are set as safe by regulators and thus without risk corroborated with a particular physiological state as gestation and lactation, can give rise to inflammatory changes in breast tissue in rats. These findings support the need for further evaluation of glyphosate and mixtures of glyphosate with other pesticides for public health protection, especially for those categories vulnerable to the potential endocrine disruptor properties of these pesticides such as pregnant women, newborns, and children.
Collapse
Affiliation(s)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Romania
| | - Liliana Cercelaru
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, Romania
| | - Andrei Ioan Drocas
- Department of Urology, University of Medicine and Pharmacy of Craiova, Romania
| | - Robin Mesnage
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662 Überlingen, Germany
| | - Cristina Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristian Marinas
- Department of Obstetrics and Gynecology, Emergency Clinical County Hospital, Romania
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Romania
| | - Magdalena Diaconu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Kirill S Golokhvast
- Siberian Federal Scientific Center for Agrobiotechnology RAS, Krasnoobsk, Russia
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Michael N Antoniou
- King's College London, Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
24
|
Brown KA, Scherer PE. Update on Adipose Tissue and Cancer. Endocr Rev 2023; 44:961-974. [PMID: 37260403 PMCID: PMC10638602 DOI: 10.1210/endrev/bnad015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Adipose tissue is the largest endocrine organ and an accepted contributor to overall energy homeostasis. There is strong evidence linking increased adiposity to the development of 13 types of cancer. With increased adiposity comes metabolic dysfunction and insulin resistance, and increased systemic insulin and glucose support the growth of many cancers, including those of the colon and endometrium. There is also an important direct crosstalk between adipose tissue and various organs. For instance, the healthy development and function of the mammary gland, as well as the development, growth, and progression of breast cancer, are heavily impacted by the breast adipose tissue in which breast epithelial cells are embedded. Cells of the adipose tissue are responsive to external stimuli, including overfeeding, leading to remodeling and important changes in the secretion of factors known to drive the development and growth of cancers. Loss of factors like adiponectin and increased production of leptin, endotrophin, steroid hormones, and inflammatory mediators have been determined to be important mediators of the obesity-cancer link. Obesity is also associated with a structural remodeling of the adipose tissue, including increased localized fibrosis and disrupted angiogenesis that contribute to the development and progression of cancers. Furthermore, tumor cells feed off the adipose tissue, where increased lipolysis within adipocytes leads to the release of fatty acids and stromal cell aerobic glycolysis leading to the increased production of lactate. Both have been hypothesized to support the higher energetic demands of cancer cells. Here, we aim to provide an update on the state of the literature revolving around the role of the adipose tissue in cancer initiation and progression.
Collapse
Affiliation(s)
- Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
26
|
Valencia K, Montuenga LM, Calvo A. Estrogen Receptor and Immune Checkpoint Inhibitors: New Partners in Lung Cancer? Clin Cancer Res 2023; 29:3832-3834. [PMID: 37548629 DOI: 10.1158/1078-0432.ccr-23-1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The influence of sex on immunotherapy response in patients with non-small cell lung cancer (NSCLC) had been studied with no clear conclusions. An article in this issue reports that a key determinant of response is not sex but the existence of a 17β-estradiol/ERα/PDL1 signaling loop in NSCLC. This intriguing result opens new therapeutic options. See related article by Anobile et al., p. 3958.
Collapse
Affiliation(s)
- Karmele Valencia
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Health Research Institute (IDISNA), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Health Research Institute (IDISNA), Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA-University of Navarra, Pamplona, Spain
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Health Research Institute (IDISNA), Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
27
|
Anobile DP, Salaroglio IC, Tabbò F, La Vecchia S, Akman M, Napoli F, Bungaro M, Benso F, Aldieri E, Bironzo P, Kopecka J, Passiglia F, Righi L, Novello S, Scagliotti GV, Riganti C. Autocrine 17-β-Estradiol/Estrogen Receptor-α Loop Determines the Response to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3958-3973. [PMID: 37285115 DOI: 10.1158/1078-0432.ccr-22-3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE The response to immune checkpoint inhibitors (ICI) often differs between genders in non-small cell lung cancer (NSCLC), but metanalyses results are controversial, and no clear mechanisms are defined. We aim at clarifying the molecular circuitries explaining the differential gender-related response to anti-PD-1/anti-PD-L1 agents in NSCLC. EXPERIMENTAL DESIGN We prospectively analyzed a cohort of patients with NSCLC treated with ICI as a first-line approach, and we identified the molecular mechanisms determining the differential efficacy of ICI in 29 NSCLC cell lines of both genders, recapitulating patients' phenotype. We validated new immunotherapy strategies in mice bearing NSCLC patient-derived xenografts and human reconstituted immune system ("immune-PDXs"). RESULTS In patients, we found that estrogen receptor α (ERα) was a predictive factor of response to pembrolizumab, stronger than gender and PD-L1 levels, and was directly correlated with PD-L1 expression, particularly in female patients. ERα transcriptionally upregulated CD274/PD-L1 gene, more in females than in males. This axis was activated by 17-β-estradiol, autocrinely produced by intratumor aromatase, and by the EGFR-downstream effectors Akt and ERK1/2 that activated ERα. The efficacy of pembrolizumab in immune-PDXs was significantly improved by the aromatase inhibitor letrozole, which reduced PD-L1 and increased the percentage of antitumor CD8+T-lymphocytes, NK cells, and Vγ9Vδ2 T-lymphocytes, producing durable control and even tumor regression after continuous administration, with maximal benefit in 17-β-estradiol/ERα highfemale immune-xenografts. CONCLUSIONS Our work unveils that 17-β-estradiol/ERα status predicts the response to pembrolizumab in patients with NSCLC. Second, we propose aromatase inhibitors as new gender-tailored immune-adjuvants in NSCLC. See related commentary by Valencia et al., p. 3832.
Collapse
Affiliation(s)
| | | | - Fabrizio Tabbò
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | | | - Muhlis Akman
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Maristella Bungaro
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | | | - Paolo Bironzo
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesco Passiglia
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Giorgio V Scagliotti
- Thoracic Oncology Unit, Department of Oncology at San Luigi Gonzaga Hospital, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| |
Collapse
|
28
|
Kozieł MJ, Piastowska-Ciesielska AW. Estrogens, Estrogen Receptors and Tumor Microenvironment in Ovarian Cancer. Int J Mol Sci 2023; 24:14673. [PMID: 37834120 PMCID: PMC10572993 DOI: 10.3390/ijms241914673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ovarian cancer is one of the most common cancers in women and the most concerning issues in gynecological oncology in recent years. It is postulated that many factors may contribute to the development of ovarian cancer, including hormonal imbalance. Estrogens are a group of hormones that have an important role both in physiological and pathological processes. In ovarian cancer, they may regulate proliferation, invasiveness and epithelial to mesenchymal transition. Estrogen signaling also takes part in the regulation of the biology of the tumor microenvironment. This review summarizes the information connected with estrogen receptors, estrogens and their association with a tumor microenvironment. Moreover, this review also includes information about the changes in estrogen receptor expression upon exposition to various environmental chemicals.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, 90-752 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
29
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
30
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
31
|
Al-Shami K, Awadi S, Khamees A, Alsheikh AM, Al-Sharif S, Ala’ Bereshy R, Al-Eitan SF, Banikhaled SH, Al-Qudimat AR, Al-Zoubi RM, Al Zoubi MS. Estrogens and the risk of breast cancer: A narrative review of literature. Heliyon 2023; 9:e20224. [PMID: 37809638 PMCID: PMC10559995 DOI: 10.1016/j.heliyon.2023.e20224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In female mammals, the development and regulation of the reproductive system and non-reproductive system are significantly influenced by estrogens (oestrogens). In addition, lipid metabolism is another physiological role of estrogens. Estrogens act through different types of receptors to introduce signals to the target cell by affecting many estrogen response elements. Breast cancer is considered mostly a hormone-dependent disease. Approximately 70% of breast cancers express progesterone receptors and/or estrogen receptors, and they are a good marker for cancer prognosis. This review will discuss estrogen metabolism and the interaction of estrogen metabolites with breast cancer. The carcinogenic role of estrogen is discussed in light of both conventional and atypical cancers susceptible to hormones, such as prostate, endometrial, and lung cancer, as we examine how estrogen contributes to the formation and activation of breast cancer. In addition, this review will discuss other factors that can be associated with estrogen-driven breast cancer.
Collapse
Affiliation(s)
- Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
- Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan
| | | | - Sumaiya Al-Sharif
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Sharaf F. Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Ahmad R. Al-Qudimat
- Department of Public Health, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | | |
Collapse
|
32
|
Zhang X, Zhao P, Ma M, Wu H, Liu R, Liu Z, Cai Z, Liu M, Xie F, Ma X. Missing link between tissue specific expressing pattern of ERβ and the clinical manifestations in LGBLEL. Front Med (Lausanne) 2023; 10:1168977. [PMID: 37457559 PMCID: PMC10346852 DOI: 10.3389/fmed.2023.1168977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Lacrimal gland benign lymphoepithelial lesion (LGBLEL) is an IgG4-related disease of unknown etiology with a risk for malignant transformation. Estrogen is considered to be related to LGBLEL onset. Methods Seventy-eight LGBLEL and 13 control clinical samples were collected and studied to determine the relationship between estrogen and its receptors and LGBLEL development. Results The serological analysis revealed no significant differences in the levels of three estrogens be-tween the LGBLEL and control groups. However, immunohistochemical analyses indicated that the expression levels of ERβ and its downstream receptor RERG were relatively lower in LGBLEL samples than in control samples, with higher expression in the lacrimal gland and lower expression in the lymphocyte infiltration region. However, low expression of ERα was detected. The transcriptome sequence analysis revealed upregulated genes associated with LGBLEL enriched in lymphocyte proliferation and activation function; downregulated genes were enriched in epithelial and vascular proliferation functions. The key genes and gene networks were further analyzed. Interactions between B cells and epithelial cells were analyzed due to the identified involvement of leukocyte subsets and epithelial cells. B cell proliferation was found to potentially contribute to lacrimal gland apoptosis. Conclusion Therefore, the tissue-heterogeneous expression pattern of ERβ is potentially related to the clinical manifestations and progression of LGBLEL, although further investigations are required to confirm this finding.
Collapse
Affiliation(s)
- Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Mingshen Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Rui Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| |
Collapse
|
33
|
He P, Ma Y, Wu Y, Zhou Q, Du H. Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq. Front Endocrinol (Lausanne) 2023; 14:1164930. [PMID: 37455906 PMCID: PMC10338225 DOI: 10.3389/fendo.2023.1164930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background PANoptosis, a cell death pathway involving pyroptosis, apoptosis, and necroptosis, is pivotal in the development of malignancy. However, in the field of breast cancer, the interaction between PANoptosis and tumor cells has not been thoroughly explored. Methods We downloaded breast cancer data and GSE176078 single-cell sequencing dataset from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to obtain PANoptosis-associated genes. To construct prognostic models, COX and LASSO regression was used to identify PANoptosis-associated genes with prognostic value. Finally, immune infiltration analysis and differential analysis of biological functions were performed. Results Risk grouping was performed according to the prognostic model constructed by COX regression and LASSO regression. The low-risk group showed a better prognosis (P < 0.05) and possessed higher levels of immune infiltration and expression of immune checkpoint-related genes. In addition, the lower the risk score, the higher the degree of microsatellite instability (MSI). Meanwhile, radixin (RDX), the gene with the highest hazard ratio (HR) value among PANoptosis prognosis-related genes, was explicitly expressed in artery Iendothelial cells (ECs) and was widely involved in signaling pathways such as immune response and cell proliferation, possessing rich biological functions. Conclusion We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of breast cancer patients. Furthermore, this study has led to a deeper understanding of the role of PANoptosis in breast cancer and has the potential to provide new directions for immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Puxing He
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Yixuan Ma
- School of Basic Medicine, Yan 'an University, Yan’an, Shaanxi, China
| | - Yaolu Wu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Qing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| | - Huan Du
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Yan ‘an University, Yan’an, Shaanxi, China
| |
Collapse
|
34
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
35
|
Lankester J, Li J, Salfati ELI, Stefanick ML, Chan KHK, Liu S, Crandall CJ, Clarke SL, Assimes TL. Genetic evidence for causal relationships between age at natural menopause and the risk of ageing-associated adverse health outcomes. Int J Epidemiol 2023; 52:806-816. [PMID: 36409989 PMCID: PMC10244052 DOI: 10.1093/ije/dyac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A later age at natural menopause (ANM) has been linked to several ageing-associated traits including an increased risk of breast and endometrial cancer and a decreased risk of lung cancer, osteoporosis and Alzheimer disease. However, ANM is also related to several proxies for overall health that may confound these associations. METHODS We investigated the causal association of ANM with these clinical outcomes using Mendelian randomization (MR). Participants and outcomes analysed were restricted to post-menopausal females. We conducted a one-sample MR analysis in both the Women's Health Initiative and UK Biobank. We further analysed and integrated several additional data sets of post-menopausal women using a two-sample MR design. We used ≤55 genetic variants previously discovered to be associated with ANM as our instrumental variable. RESULTS A 5-year increase in ANM was causally associated with a decreased risk of osteoporosis [odds ratio (OR) = 0.80, 95% CI (0.70-0.92)] and fractures (OR = 0.76, 95% CI, 0.62-0.94) as well as an increased risk of lung cancer (OR = 1.35, 95% CI, 1.06-1.71). Other associations including atherosclerosis-related outcomes were null. CONCLUSIONS Our study confirms that the decline in bone density with menopause causally translates into fractures and osteoporosis. Additionally, this is the first causal epidemiological analysis to our knowledge to find an increased risk of lung cancer with increasing ANM. This finding is consistent with molecular and epidemiological studies suggesting oestrogen-dependent growth of lung tumours.
Collapse
Affiliation(s)
- Joanna Lankester
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Thermofisher Scientific, South San Francisco, CA, USA
| | - Elias Levy Itshak Salfati
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marcia L Stefanick
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kei Hang Katie Chan
- Departments of Biomedical Sciences and Electrical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Medicine & Department of Surgery, Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Carolyn J Crandall
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shoa L Clarke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
36
|
Lin M, Du T, Tang X, Liao Y, Cao L, Zhang Y, Zheng W, Zhou J. An estrogen response-related signature predicts response to immunotherapy in melanoma. Front Immunol 2023; 14:1109300. [PMID: 37251404 PMCID: PMC10213284 DOI: 10.3389/fimmu.2023.1109300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background Estrogen/estrogen receptor signaling influences the tumor microenvironment and affects the efficacy of immunotherapy in some tumors, including melanoma. This study aimed to construct an estrogen response-related gene signature for predicting response to immunotherapy in melanoma. Methods RNA sequencing data of 4 immunotherapy-treated melanoma datasets and TCGA melanoma was obtained from open access repository. Differential expression analysis and pathway analysis were performed between immunotherapy responders and non-responders. Using dataset GSE91061 as the training group, a multivariate logistic regression model was built from estrogen response-related differential expression genes to predict the response to immunotherapy. The other 3 datasets of immunotherapy-treated melanoma were used as the validation group. The correlation was also examined between the prediction score from the model and immune cell infiltration estimated by xCell in the immunotherapy-treated and TCGA melanoma cases. Results "Hallmark Estrogen Response Late" was significantly downregulated in immunotherapy responders. 11 estrogen response-related genes were significantly differentially expressed between immunotherapy responders and non-responders, and were included in the multivariate logistic regression model. The AUC was 0.888 in the training group and 0.654-0.720 in the validation group. A higher 11-gene signature score was significantly correlated to increased infiltration of CD8+ T cells (rho=0.32, p=0.02). TCGA melanoma with a high signature score showed a significantly higher proportion of immune-enriched/fibrotic and immune-enriched/non-fibrotic microenvironment subtypes (p<0.001)-subtypes with better response to immunotherapy-and significantly better progression-free interval (p=0.021). Conclusion In this study, we identified and verified an 11-gene signature that could predict response to immunotherapy in melanoma and was correlated with tumor-infiltrating lymphocytes. Our study suggests targeting estrogen-related pathways may serve as a combination strategy for immunotherapy in melanoma.
Collapse
Affiliation(s)
- Min Lin
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Tian Du
- Department of Breast Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Xiaofeng Tang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Ying Liao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Lan Cao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yafang Zhang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wei Zheng
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
37
|
Brook N, Dharmarajan A, Chan A, Dass CR. Potential therapeutic role for pigment epithelium-derived factor in post-menopausal breast cancer bone metastasis. J Pharm Pharmacol 2023:7146711. [PMID: 37116213 DOI: 10.1093/jpp/rgad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVES This review discusses key oestrogens associated with the circulating pre- and post-menopausal milieu and how they may impact intratumoral oestrogen levels and breast cancer (BC) metastasis. It also identifies critical steps in BC metastasis to bone from the viewpoint of pigment epithelium-derived factor (PEDF) function, and discusses the role of several associated pro-metastatic biomarkers in BC bone metastasis. KEY FINDINGS PEDF is regulated by oestrogen in a number of oestrogen-sensitive tissues. Changes in circulating oestrogen levels associated with menopause may enhance the growth of BC bone metastases, leading to the establishment of a pre-metastatic niche. The establishment of such a pre-metastatic niche is driven by several key mediators, with pro-osteoclastic and pro-metastatic function which are upregulated by BC cells. These mediators appear to be regulated by oestrogen, as well as differentially affected by menopausal status. PEDF interacts with several pro-metastatic, pro-osteoclastic biomarkers, including C-X-C motif chemokine receptor 4 (CXCR4) and nuclear factor kappa B (NFκB) in BC bone metastasis. CONCLUSION Mediators such as CXCR4 and MT1-MMP underpin the ability of PEDF to function as an antimetastatic in other cancers such as osteosarcoma, highlighting the possibility that this serpin could be used as a therapeutic against BC metastasis in future.
Collapse
Affiliation(s)
- Naomi Brook
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Arun Dharmarajan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Breast Cancer Research Centre-Western Australia, Hollywood Private Hospital, Nedlands 6009, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Bentley 6102, Australia
| |
Collapse
|
38
|
Denaro N, Romanò R, Alfieri S, Dolci A, Licitra L, Nuzzolese I, Ghidini M, Bareggi C, Bertaglia V, Solinas C, Garrone O. The Tumor Microenvironment and the Estrogen Loop in Thyroid Cancer. Cancers (Basel) 2023; 15:cancers15092458. [PMID: 37173925 PMCID: PMC10177023 DOI: 10.3390/cancers15092458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) cells employ multiple signaling pathways, such as PI3K/AKT/mTOR and RAS/Raf/MAPK, fostering cell proliferation, survival and metastasis. Through a complex interplay with immune cells, inflammatory mediators and stroma, TC cells support an immunosuppressive, inflamed, pro-carcinogenic TME. Moreover, the participation of estrogens in TC pathogenesis has previously been hypothesized, in view of the higher TC incidence observed among females. In this respect, the interactions between estrogens and the TME in TC could represent a relevant, unexplored area of research. We thereby collectively reviewed the available evidence concerning the potential carcinogenic role of estrogens in TC, specifically focusing on their crosstalk with the TME.
Collapse
Affiliation(s)
- Nerina Denaro
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rebecca Romanò
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Salvatore Alfieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Alessia Dolci
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Hematology and Oncology, University of Milan, 20122 Milan, Italy
| | - Imperia Nuzzolese
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Claudia Bareggi
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bertaglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Cinzia Solinas
- Medical Oncology, AOU Cagliari, Policlinico di Monserrato, 09042 Cagliari, Italy
| | - Ornella Garrone
- Medical Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
39
|
Minor BMN, LeMoine D, Seger C, Gibbons E, Koudouovoh J, Taya M, Kurtz D, Xu Y, Hammes SR. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164:bqad061. [PMID: 37042477 PMCID: PMC10164661 DOI: 10.1210/endocr/bqad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.
Collapse
Affiliation(s)
- Briaunna M N Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dana LeMoine
- Division of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina Seger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jules Koudouovoh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, Department of Internal Medicine, UTSW Medical Center, Dallas, TX 75390, USA
| | - Daniel Kurtz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Xu
- Divisions of Pulmonary Biology & Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
40
|
Chen J, Wang Y, Meng W, Zhao R, Lin W, Xiao H, Liao Y. Stearoyl-CoA Desaturases1 Accelerates Non-Small Cell Lung Cancer Metastasis by Promoting Aromatase Expression to Improve Estrogen Synthesis. Int J Mol Sci 2023; 24:ijms24076826. [PMID: 37047797 PMCID: PMC10095487 DOI: 10.3390/ijms24076826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Metastases contribute to the low survival rate of non-small cell lung cancer (NSCLC) patients. Targeting lipid metabolism for anticancer therapies is attractive. Accumulative evidence shows that stearoyl-CoA desaturases1 (SCD1), a key enzyme in lipid metabolism, enables tumor metastasis and the underlying mechanism remains unknown. In this study, immunohistochemical staining of 96 clinical specimens showed that the expression of SCD1 was increased in tumor tissues (p < 0.001). SCD1 knockdown reduced the migration and invasion of HCC827 and PC9 cells in transwell and wound healing assays. Aromatase (CYP19A1) knockdown eliminated cell migration and invasion caused by SCD1 overexpression. Western blotting assays demonstrated that CYP19A1, along with β-catenin protein levels, was reduced in SCD1 knocked-down cells, and estrogen concentration was reduced (p < 0.05) in cell culture medium measured by enzyme-linked immunosorbent assay. SCD1 overexpression preserving β-catenin protein stability was evaluated by coimmunoprecipitation and Western blotting. The SCD1 inhibitor A939572, and a potential SCD1 inhibitor, grape seed extract (GSE), significantly inhibited cell migration and invasion by blocking SCD1 and its downstream β-catenin, CYP19A1 expression, and estrogen concentration. In vivo tumor formation assay and a tail vein metastasis model indicated that knockdown of SCD1 blocked tumor growth and metastasis. In conclusion, SCD1 could accelerate metastasis by maintaining the protein stability of β-catenin and then promoting CYP19A1 transcription to improve estrogen synthesis. SCD1 is expected to be a promised therapeutic target, and its novel inhibitor, GSE, has great therapeutic potential in NSCLC.
Collapse
Affiliation(s)
- Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
41
|
Zhang J, Tang K, Liu L, Guo C, Zhao K, Li S. Management of pulmonary nodules in women with pregnant intention: A review with perspective. Ann Thorac Med 2023; 18:61-69. [PMID: 37323371 PMCID: PMC10263075 DOI: 10.4103/atm.atm_270_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023] Open
Abstract
The process for the management of pulmonary nodules in women with pregnant intention remains a challenge. There was a certain proportion of targeted female patients with high-risk lung cancer, and anxiety for suspicious lung cancer in early stage also exists. A comprehensive review of hereditary of lung cancer, effects of sexual hormone on lung cancer, natural history of pulmonary nodules, and computed tomography imaging with radiation exposure based on PubMed search was completed. The heredity of lung cancer and effects of sexual hormone on lung cancer are not the decisive factors, and the natural history of pulmonary nodules and the radiation exposure of imaging should be the main concerns. The management of incidental pulmonary nodules in young women with pregnant intention is an intricate and indecisive problem we have to encounter. The balance between the natural history of pulmonary nodules and the radiation exposure of imaging should be weighed.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Landais Y, Vallot C. Multi-modal quantification of pathway activity with MAYA. Nat Commun 2023; 14:1668. [PMID: 36966153 PMCID: PMC10039856 DOI: 10.1038/s41467-023-37410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Signaling pathways can be activated through various cascades of genes depending on cell identity and biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one unique common metric across cell types. Here, we present MAYA, a computational method that enables the automatic detection and scoring of the diverse modes of activation of biological pathways across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of genes within reference pathways, each characteristic of a cell population and how it activates a pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the perspective to discover shared therapeutic vulnerabilities.
Collapse
Affiliation(s)
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
43
|
Locomotion Outcome Improvement in Mice with Glioblastoma Multiforme after Treatment with Anastrozole. Brain Sci 2023; 13:brainsci13030496. [PMID: 36979306 PMCID: PMC10046174 DOI: 10.3390/brainsci13030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee. We analyzed the steps dissimilarity factor between control and GBM mice with and without anastrozole. The body weight of the untreated animals decreased compared to treated mice. Anastrozole reduced the malignant cells and decreased GPR30 and ERα receptor expression. In addition, we observed a partial recovery in metatarsus and knee joint displacement (dissimilarity factor). The vertical axis displacement of the GBM+anastrozole group showed a difference in the right metatarsus, right knee, and left ankle compared to the GBM group. In the horizontal axis displacement of the right metatarsus, ankle, and knee, the GBM+anastrozole group exhibited a difference at the last third of the step cycle compared to the GBM group. Thus, anastrozole partially modified joint displacement. The dissimilarity factor and the vertical and horizontal displacements study will be of interest in GBM patients with locomotion alterations. Hindlimb displacement and gait locomotion analysis could be a valuable methodological tool in experimental and clinical studies to help diagnose locomotive deficits related to GBM.
Collapse
|
44
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
45
|
Zou X, Liu Y, Lin X, Wang R, Dai Z, Chen Y, Ma M, Tasiheng Y, Yan Y, Wang X, Yu X, Cheng H, Liu C. Characterization of Estrogen Receptors in Pancreatic Adenocarcinoma with Tertiary Lymphoid Structures. Cancers (Basel) 2023; 15:cancers15030828. [PMID: 36765788 PMCID: PMC9913785 DOI: 10.3390/cancers15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
The role of estrogen signaling in antitumor immunology remains unknown for non-traditional sex-biased cancer types such as pancreatic adenocarcinoma (PAAD). Tertiary lymphoid structures (TLS) are active zones composed of multiple types of immune cells, whose presence indicates anti-tumor immune responses. In this study, we employed a 12-chemokine signature to characterize potential gene categories associated with TLS development and identified seventeen major gene categories including estrogen receptors (ERs). Immunohistochemistry staining revealed the expression patterns of three ERs (ERα, ERβ, and GPER) in 174 PAAD samples, and their correlation with clinicopathological characteristics, immune cell infiltration levels, and intratumoral TLS presence was analyzed. The results indicated that ERα (+) and ERβ (+) were correlated with high tumor grade, and ERβ (+) and GPER (+) were correlated with lower TNM stage, and both ERα (+) and GPER (+) displayed a beneficial effect on prognosis in this cohort. Interestingly, positive staining of all three ERs was significantly correlated with the presence of intratumoral TLSs and infiltration of more active immune cells into the microenvironment. Moreover, the chemotaxis of CD8+T-cells to PAAD cells was significantly increased in vitro with upregulated expression of ERα or ERβ on PAAD cells. To conclude, our study showed a novel correlation between ER expression and TLS development, suggesting that ERs may play a protective role by enhancing anti-tumor immune responses in PAAD.
Collapse
Affiliation(s)
- Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (H.C.); (C.L.)
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (H.C.); (C.L.)
| |
Collapse
|
46
|
Hargrove-Wiley E, Fingleton B. Sex Hormones in Breast Cancer Immunity. Cancer Res 2023; 83:12-19. [PMID: 36279153 DOI: 10.1158/0008-5472.can-22-1829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Sex hormones, such as estrogens and androgens, regulate genomic and cellular processes that contribute to sex-specific disparities in the pathophysiology of various cancers. Sex hormones can modulate the immune signals and activities of tumor cells and tumor-associated leukocytes to support or suppress cancer progression. Therefore, hormonal differences between males and females play a crucial role in cancer immunity and in the response to therapies that exploit the intrinsic immune system to eliminate malignant cells. In this review, we summarize the impact of sex hormones in the breast cancer microenvironment, with a focus on how the hormonal environment affects tumor immunity. We also discuss the potential benefits of endocrine therapy used in combination with immunotherapy to strengthen the antitumor immune response.
Collapse
Affiliation(s)
- Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
47
|
The ubiquitin ligase RNF2 stabilizes ERα and modulates breast cancer progression. Hum Cell 2023; 36:353-365. [PMID: 36271315 DOI: 10.1007/s13577-022-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Estrogen receptor α (ERα) is the most common clinical marker used for breast cancer prognosis and the classification of breast cancer subtypes. Clinically, patients with estrogen receptor-positive breast cancer can receive endocrine therapy. However, resistance to endocrine therapy has become an urgent clinical problem. A large number of previous studies have proven that posttranslational modification of the estrogen receptor is significantly related to endocrine therapy resistance. RNF2 is a member of the RING finger protein family that functions as an E3 ubiquitin ligase. Several studies have clarified that RNF2 is a critical regulator of ERα transcriptional regulation. In our current study, we identified RNF2 as an important posttranslational modification regulator of the estrogen receptor. RNF2 depletion inhibited breast cancer cell progression and ERα signaling activity. TCGA data analysis indicated that RNF2 was elevated in breast malignancies, while RNF2 depletion could drastically inhibit estrogen response gene expression on a whole-genome scale. TCGA data analysis revealed that RNF2 was positively correlated with ERα target gene expression. Further mechanistic studies showed that RNF2 was mainly localized in the nucleus and associated with ERα. The association increased ERα stability by inhibiting ERα K48-linked polyubiquitination. In conclusion, our study implicates nongenomic regulation by RNF2 on ERα protein stability and suggests that targeting RNF2 could be a promising strategy for breast cancer treatments.
Collapse
|
48
|
Khan M, Ai M, Du K, Song J, Wang B, Lin J, Ren A, Chen C, Huang Z, Qiu W, Zhang J, Tian Y, Yuan Y. Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective. Front Immunol 2022; 13:1062225. [PMID: 36605187 PMCID: PMC9808401 DOI: 10.3389/fimmu.2022.1062225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background and aim Pyroptosis is an inflammatory form of programmed cell death implicated in inflammation and disease. Moreover, inducing pyroptosis has been appreciated as anti-cancer therapy for its ability to unleash anti-cancer immune responses. Methods Utilizing the data available in The Cancer Genome Atlas (TCGA), pyroptosis-related genes' (PRGs) expression, genomic aberrations, and clinical significance were systematically analyzed in pan-cancer. A GSVA score was obtained to rate pyroptosis level and divide the cancers into pyroptosis-low and pyroptosis-high groups. Immunohistochemistry (IHC) was used to evaluate the differential expression of major PRGs (GSDMC, GSDMD, GSDME, NLRP3, NLRC4, IL1B) in selected tumor types (COAD, HNSC, KIRC, LIHC, LUAD, LUSC). Selection of tumors for immunohistochemistry (IHC) was based on their expression pattern in TCGA cancers, clinical relevance, tumor epidemiology, and sample availability. Results Differential expression of PRGs was evident in various cancers and associated with prognosis which was driven by genomic variations and epigenetic abnormalities, such as single nucleotide variations (SNVs), copy number variation (CNV) and DNA methylation level. For example, methylation of PRGs in lower grade glioma (LGG), uveal melanoma (UVM) and kidney renal clear cell carcinoma (KIRC) were predictive of improved survival as upregulation of PRGs was risky in these cancers. Pyroptosis level significantly differentiated tumor from normal samples in 15 types of cancers, exhibited a progressive trend with cancer stage, observed variation among cancer subtypes, and showed a significant association with cancer prognosis. Higher pyroptosis level was associated with worst prognosis in majority of the cancers in terms of OS (KIRC, LGG, and UVM), PFS (GBM, KIRC, LGG, PRAD, THCA, and THYM) and DSS (KIRC and LGG) as estimated by Kaplan-Meier survival curves. Moreover, Pyroptosis level was strongly indicative of a hot tumor immune microenvironment with high presence of CD8+ T cell and other T cell subtypes. Several oncogenic pathways, such as P53 pathway, DNA repair, KRAS signaling, epithelial-mesenchymal transition (EMT), IL6 JAK STAT3 signaling, IL2 STAT5 signaling, PI3K AKT MTOR signaling and angiogenesis, were enriched in pyroptosis-hi subgroups across cancers. Conclusions Genetic alterations in PRGs greatly influence the pyroptosis level and cancer prognosis. A relatively hot tumor immune microenvironment was associated with pyroptosis irrespective of the cancer prognosis. Overall, our study reveals the critical role of pyroptosis in cancer and highlights pyroptosis-based therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Meiling Ai
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Song
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Wenze Qiu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China,*Correspondence: Yawei Yuan, ; Yunhong Tian, ; Jiangyu Zhang,
| |
Collapse
|
49
|
Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2940654. [PMID: 36578460 PMCID: PMC9791079 DOI: 10.1155/2022/2940654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
epatocellular carcinoma (HCC) is one of the leading contributors to cancer mortality worldwide. Currently, the prevention and treatment of HCC remains a major challenge. As a traditional Chinese medicine (TCM) formula, Ruangan Lidan decoction (RGLD) has been proved to own the effect of relieving HCC symptoms. However, due to its biological effects and complex compositions, its underlying mechanism of actions (MOAs) have not been fully clarified yet. In this study, we proposed a pharmacological framework to systematically explore the MOAs of RGLD against HCC. We firstly integrated the active ingredients and potential targets of RGLD. We next highlighted 25 key targets that played vital roles in both RGLD and HCC disease via a protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Furthermore, an ingredient-target network of RGLD consisting of 216 ingredients with 306 targets was constructed, and multilevel systems pharmacology analyses indicated that RGLD could act on multiple biological processes related to the pathogenesis of HCC, such as cellular response to hypoxia and cell proliferation. Additionally, integrated pathway analysis of RGLD uncovered that RGLD might treat HCC through regulating various pathways, including MAPK signaling pathway, PI3K/Akt signaling pathway, TNF signaling pathway, and ERBB signaling pathway. Survival analysis results showed that HCC patients with low expression of VEGFA, HIF1A, CASP8, and TOP2A were related with a higher survival rate than those with high expression, indicating the potential clinical significance for HCC. Finally, molecular docking results of core ingredients and targets further proved the feasibility of RGLD in the treatment of HCC. Overall, this study indicates that RGLD may treat HCC through multiple mechanisms, which also provides a potential paradigm to investigate the MOAs of TCM prescription.
Collapse
|
50
|
NFκB-Mediated Mechanisms Drive PEDF Expression and Function in Pre- and Post-Menopausal Oestrogen Levels in Breast Cancer. Int J Mol Sci 2022; 23:ijms232415641. [PMID: 36555293 PMCID: PMC9779285 DOI: 10.3390/ijms232415641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) protein regulates normal bone, with anti-tumour roles in bone and breast cancer (BC). Pre- and post-menopausal oestrogen levels may regulate PEDF expression and function in BC, though the mechanisms behind this remain unknown. In this study, in vitro models simulating pre- and post-menopausal bone microenvironments were used to evaluate if PEDF regulates pro-metastatic biomarker expression and downstream functional effects on BC cells. PEDF treatment reduced phosphorylated-nuclear factor-κB p65 subunit (p-NFκB-p65), tumour necrosis factor-α (TNFα), C-X-C chemokine receptor type-4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) in oestrogen receptor (ER)+/human epidermal growth factor receptor-2 (HER2)- BC cells under post-menopausal oestrogen conditions. In triple negative BC (TNBC) cells, PEDF treatment reduced pNFκB-p65 and uPAR expression under pre-menopausal oestrogen conditions. A potential reciprocal regulatory axis between p-NFκB-65 and PEDF in BC was identified, which was BC subtype-specific and differentially regulated by menopausal oestrogen conditions. The effects of PEDF treatment and NFκB inhibition on BC cell function under menopausal conditions were also compared. PEDF treatment exhibited superior anti-viability effects, while combined PEDF and NFκB-p65 inhibitor treatment was superior in reducing BC cell colony formation in a subtype-specific manner. Lastly, immunohistochemical evaluation of p-NFκB-p65 and PEDF expression in human BC and bone metastases specimens revealed an inverse correlation between nuclear PEDF and NFκB expression in bone metastases. We propose that menopausal status is associated with a PEDF/NFκB reciprocal regulatory axis, which drives PEDF expression and anti-metastatic function in a subtype-specific manner. Altogether, our findings identify pre-menopausal TNBC and post-menopausal ER+/HER2- BC patients as target populations for future PEDF research.
Collapse
|