1
|
Song Q, Li Q, Yang Y, Gao H, Han F. Antimicrobial Functions of Galectins from Fish, Mollusks, and Crustaceans: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24895-24907. [PMID: 39471068 DOI: 10.1021/acs.jafc.4c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Galectins are a member of the β-galactoside binding protein family, which play a pivotal role in the immune defense of vertebrates as a pattern recognition receptor and occupy an important position in the innate immune system of invertebrates. The study of galectins in aquatic organisms has only recently emerged. Galectins in aquatic animals exhibit agglutination activity toward bacteria, inhibit bacterial growth, and enhance phagocytosis of immune cells. Additionally, some galectins contribute to the antiviral immune defenses of aquatic animals. This review aims to review recent advancements in the antimicrobial mechanisms, molecular structures, and evolution of galectins from fish, mollusks, and crustaceans. The antimicrobial galectins, as crucial components in the innate immune defense, pave new avenues for developing innovative disease control strategies in aquaculture.
Collapse
Affiliation(s)
- Qing Song
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Qiaoying Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Yao Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | - Haijun Gao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, Fujian, China
| | - Fang Han
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
2
|
Yang W, Sun J, Leng J, Li Y, Guo Q, Wang L, Song L. A novel lectin with a distinct Gal_Lectin and CUB domain mediates haemocyte phagocytosis in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105222. [PMID: 38964676 DOI: 10.1016/j.dci.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Wang H, He K, Zhang H, Zhang Q, Cao L, Li J, Zhong Z, Chen H, Zhou L, Lian C, Wang M, Chen K, Qian PY, Li C. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. eLife 2024; 12:RP88294. [PMID: 39102287 PMCID: PMC11299980 DOI: 10.7554/elife.88294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Jing Li
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Jeyachandran S, Radhakrishnan A, Ragavendran C. Harnessing the power of mollusc lectins as immuno-protective biomolecules. Mol Biol Rep 2024; 51:182. [PMID: 38261113 DOI: 10.1007/s11033-023-09018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 01/24/2024]
Abstract
The rapid advancement of molecular research on macromolecules has contributed to the discovery of 'Lectin', a carbohydrate-binding protein which specifically interacts with receptors on the surface of glycans and regulates various cellular activities thereby stimulating immunological functions. Considering the wide variety of sources and immunological significance, research has led to the discovery of lectins in invertebrate molluscs. Such lectins in molluscs mediate active immune response as they lack adaptive immunity. Phylum Mollusca is identified with different types of lectins such as C-lectin, Galectin, P-lectin, I-lectin, and H-lectin, along with other immunologically significant lectin molecules such as F- lectin, R-lectin, ficolins, chitinase like lectin etc., all of these with specific ligand binding and structural diversity. Molluscan C-type lectins are the most functional ones that increase the activity of phagocytic cells through specific carbohydrate binding of antigenic ligands and haemocyte adhesion thereby enhancing the immune response. Helix pomatia agglutinin and Helix aspersa agglutinin are the two H-lectins that were identified within molluscs that could even target cancer-progressing cells through specific binding. Also, these lectins identified in molluscs are proven to be efficient in antibacterial and immunomodulatory functions. These insights attract researchers to identify novel lectins in molluscs and their characterization that play a key role in protection against diseases. This review discusses the structural features of mollusc lectins, their specific binding, molecular interactions and their immunological applications.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Akshaya Radhakrishnan
- PG & Research Department of Biotechnology & Microbiology, National College Autonomous, Tiruchirappalli, Tamil Nadu, 620001, India
| | - Chinnasamy Ragavendran
- Department of Cardiology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
5
|
Mizgina TO, Chikalovets IV, Bulanova TA, Molchanova VI, Filshtein AP, Ziganshin RH, Rogozhin EA, Shilova NV, Chernikov OV. New l-Rhamnose-Binding Lectin from the Bivalve Glycymeris yessoensis: Purification, Partial Structural Characterization and Antibacterial Activity. Mar Drugs 2023; 22:27. [PMID: 38248652 PMCID: PMC10817417 DOI: 10.3390/md22010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/β-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.
Collapse
Affiliation(s)
- Tatyana O. Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Irina V. Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Tatyana A. Bulanova
- Department of Chemistry and Materials, Far Eastern Federal University, Vladivostok 690950, Russia;
| | - Valentina I. Molchanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Alina P. Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Nadezhda V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (R.H.Z.); (E.A.R.); (N.V.S.)
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia; (I.V.C.); (V.I.M.); (A.P.F.)
| |
Collapse
|
6
|
Hatakeyama T, Masuda K, Kudo M, Tanaka K, Takeuchi A, Unno H. Mannose oligosaccharide recognition of CGL1, a mannose-specific lectin containing DM9 motifs from Crassostrea gigas, revealed by X-ray crystallographic analysis. J Biochem 2023; 175:35-41. [PMID: 37793172 DOI: 10.1093/jb/mvad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
CGL1 is a mannose-specific lectin isolated from the Pacific oyster Crassostrea gigas, and it belongs to the DM9 domain protein family. Each subunit of the CGL1 dimer consists of a tandem repeat of DM9 motifs, which were originally found in the Drosophila melanogaster genome. The CGL1 protomer contains two carbohydrate-binding sites: a high-affinity site A and a low-affinity site B. An assay using dendrimers containing oligomannose from yeast (Saccharomyces cerevisiae) revealed that CGL1 exhibited significantly higher affinity for mannotetraose (Man4) compared to mannobiose (Man2) and mannotriose (Man3). To investigate its oligomannose-recognition mechanism, X-ray crystallographic analyses of CGL1/oligomannose complexes were performed. In the CGL1/Man2 and CGL1/Man3 complexes, Manα1-2Man and Manα1-2Manα1-2Man, respectively, were primarily bound to site A, interacting with the non-reducing mannose residue. On the other hand, in the CGL1/Man4 crystal, Man4 (Manα1-2Manα1-2Manα1-6Man) was bound at both site A and site B at the non-reducing and reducing ends, thus linking adjacent CGL1 molecules with crystallographic symmetry. These findings suggest that CGL1 can recognize both the non-reducing and reducing mannose residues of mannose oligosaccharides at its two distinct carbohydrate-binding sites. This enables efficient complex formation, making CGL1 a pattern-recognition molecule capable of recognizing diverse structures of mannose-containing carbohydrate chains.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Kazuki Masuda
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Mizuki Kudo
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Koshi Tanaka
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Ayaka Takeuchi
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
8
|
Hatakeyama T, Unno H. Functional Diversity of Novel Lectins with Unique Structural Features in Marine Animals. Cells 2023; 12:1814. [PMID: 37508479 PMCID: PMC10377782 DOI: 10.3390/cells12141814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their remarkable structural diversity, glycans play important roles as recognition molecules on cell surfaces of living organisms. Carbohydrates exist in numerous isomeric forms and can adopt diverse structures through various branching patterns. Despite their relatively small molecular weights, they exhibit extensive structural diversity. On the other hand, lectins, also known as carbohydrate-binding proteins, not only recognize and bind to the diverse structures of glycans but also induce various biological reactions based on structural differences. Initially discovered as hemagglutinins in plant seeds, lectins have been found to play significant roles in cell recognition processes in higher vertebrates. However, our understanding of lectins in marine animals, particularly marine invertebrates, remains limited. Recent studies have revealed that marine animals possess novel lectins with unique structures and glycan recognition mechanisms not observed in known lectins. Of particular interest is their role as pattern recognition molecules in the innate immune system, where they recognize the glycan structures of pathogens. Furthermore, lectins serve as toxins for self-defense against foreign enemies. Recent discoveries have identified various pore-forming proteins containing lectin domains in fish venoms and skins. These proteins utilize lectin domains to bind target cells, triggering oligomerization and pore formation in the cell membrane. These findings have spurred research into the new functions of lectins and lectin domains. In this review, we present recent findings on the diverse structures and functions of lectins in marine animals.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
Lin Z, Cheng J, Mu X, Kuang X, Li Z, Wu J. A C-type lectin in saliva of Aedes albopictus (Diptera: Culicidae) bind and agglutinate microorganisms with broad spectrum. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:1. [PMID: 37399114 DOI: 10.1093/jisesa/iead043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
Via complex salivary mixture, mosquitos can intervene immune response and be helpful to transmit several viruses causing deadly human diseases. Some C-type lectins (CTLs) of mosquito have been reported to be pattern recognition receptor to either resist or promote pathogen invading. Here, we investigated the expression profile and agglutination function of an Aedes albopictus CTL (Aalb_CTL2) carrying a single carbohydrate-recognition domain (CRD) and WND/KPD motifs. The results showed that Aalb_CTL2 was found to be specifically expressed in mosquito saliva gland and its expression was not induced by blood-feeding. The recombinant Aalb_CTL2 (rAalb_CTL2) could agglutinate mouse erythrocytes in the presence of calcium and the agglutinating activity could be inhibited by EDTA. rAalb_CTL2 also displayed the sugar binding ability to D-mannose, D-galactose, D-glucose, and maltose. Furthermore, it was demonstrated that rAalb_CTL2 could bind and agglutinate Gram positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa, as well as fungus Candida albicans in vitro in a calcium dependent manner. However, rAalb_CTL2 could not promote type 2 dengue virus (DENV-2) replication in THP-1 and BHK-21 cell lines. These findings uncover that Aalb_CTL2 might be involved in the innate immunity of mosquito to resist microorganism multiplication in sugar and blood meals to help mosquito survive in the varied natural environment.
Collapse
Affiliation(s)
- Zimin Lin
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Jinzhi Cheng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaohui Mu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Xiaoyuan Kuang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| | - Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Immunology, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Parasitology, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
10
|
Ma Y, Qiao X, Dong M, Lian X, Li Y, Jin Y, Wang L, Song L. A C-type lectin from Crassostrea gigas with novel EFG/FVN motif involved in recognition of various PAMPs and induction of interleukin expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104680. [PMID: 36907338 DOI: 10.1016/j.dci.2023.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
C-type lectins (CTLs) are a superfamily of Ca2+-dependent carbohydrate-recognition proteins, which participate in the nonself-recognition and triggering the transduction pathways in the innate immunity. In the present study, a novel CTL (designated as CgCLEC-TM2) with a carbohydrate-recognition domain (CRD) and a transmembrane domain (TM) was identified from the Pacific oyster Crassostrea gigas. Two novel EFG and FVN motifs were found in Ca2+-binding site 2 of CgCLEC-TM2. The mRNA transcripts of CgCLEC-TM2 were detected in all tested tissues with the highest expression level in haemocytes, which was 94.41-fold (p < 0.01) of that in adductor muscle. The relative expression level of CgCLEC-TM2 in haemocytes significantly up-regulated at 6 h and 24 h after the stimulation of Vibrio splendidus, which was 4.94- and 12.77-fold of that in control group (p < 0.01), respectively. The recombinant CRD of CgCLEC-TM2 (rCRD) was able to bind lipopolysaccharide (LPS), mannose (MAN), peptidoglycan (PGN), and poly (I: C) in a Ca2+-dependent manner. The rCRD exhibited binding activity to V. anguillarum, Bacillus subtilis, V. splendidus, Escherichia coli, Pichia pastoris, Staphylococcus aureus and Micrococcus luteus in a Ca2+-dependent manner. The rCRD also exhibited agglutination activity to E. coli, V. splendidus, S. aureus, M. luteus and P. pastoris in a Ca2+-dependent manner. The phagocytosis rate of haemocytes towards V. splendidus significantly down-regulated from 27.2% to 20.9% after treatment of anti-CgCLEC-TM2-CRD antibody, while the growth of V. splendidus and E. coli was inhibited compared with the TBS and rTrx groups. After the expression of CgCLEC-TM2 was inhibited by RNAi, the expression level of phospho-extracellular regulated protein kinases (p-CgERK) in haemocytes, and the mRNA expressions of interleukin17s (CgIL17-1 and CgIL17-4) decreased significantly after V. splendidus stimulation, compared with that in EGFP-RNAi oysters, respectively. These results suggested that CgCLEC-TM2 with novel motifs served as a pattern recognition receptor (PRR) involved in the recognition of microorganisms, and induction of CgIL17s expression in the immune response of oysters.
Collapse
Affiliation(s)
- Youwen Ma
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
11
|
Hwang HJ, Patnaik BB, Baliarsingh S, Patnaik HH, Sang MK, Park JE, Cho HC, Song DK, Jeong JY, Hong CE, Kim YT, Sin HJ, Ziwei L, Park SY, Kang SW, Jeong HC, Park HS, Han YS, Lee YS. Transcriptome analysis of the endangered dung beetle Copris tripartitus (Coleoptera: Scarabaeidae) and characterization of genes associated to immunity, growth, and reproduction. BMC Genomics 2023; 24:94. [PMID: 36864388 PMCID: PMC9979532 DOI: 10.1186/s12864-023-09122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Dung beetles recycle organic matter through the decomposition of feces and support ecological balance. However, these insects are threatened by the indiscriminate use of agrochemicals and habitat destruction. Copris tripartitus Waterhouse (Coleoptera: Scarabaeidae), a dung beetle, is listed as a class-II Korean endangered species. Although the genetic diversity of C. tripartitus populations has been investigated through analysis of mitochondrial genes, genomic resources for this species remain limited. In this study, we analyzed the transcriptome of C. tripartitus to elucidate functions related to growth, immunity and reproduction for the purpose of informed conservation planning. RESULTS The transcriptome of C. tripartitus was generated using next-generation Illumina sequencing and assembled de novo using a Trinity-based platform. In total, 98.59% of the raw sequence reads were processed as clean reads. These reads were assembled into 151,177 contigs, 101,352 transcripts, and 25,106 unigenes. A total of 23,450 unigenes (93.40%) were annotated to at least one database. The largest proportion of unigenes (92.76%) were annotated to the locally curated PANM-DB. A maximum of 5,512 unigenes had homologous sequences in Tribolium castaneum. Gene Ontology (GO) analysis revealed a maximum of 5,174 unigenes in the Molecular function category. Further, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a total of 462 enzymes were associated with established biological pathways. Based on sequence homology to known proteins in PANM-DB, representative immunity, growth, and reproduction-related genes were screened. Potential immunity-related genes were categorized into pattern recognition receptors (PRRs), the Toll-like receptor signaling pathway, the MyD88- dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related transcripts. Among PRRs, we conducted detailed in silico characterization of TLR-2, CTL, and PGRP_SC2-like. Repetitive elements such as long terminal repeats, short interspersed nuclear elements, long interspersed nuclear elements and DNA elements were enriched in the unigene sequences. A total of 1,493 SSRs were identified among all unigenes of C. tripartitus. CONCLUSIONS This study provides a comprehensive resource for analysis of the genomic topography of the beetle C. tripartitus. The data presented here clarify the fitness phenotypes of this species in the wild and provide insight to support informed conservation planning.
Collapse
Affiliation(s)
- Hee Ju Hwang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore-, Odisha, 756089, India.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore-, Odisha, 756089, India
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Min Kyu Sang
- Research Support Center (Core-Facility) for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hang Chul Cho
- iLAB, INSILICOGEN, INC. #2901~2904, Tower-Dong A, HEUNGDEOK IT VALLEY, 13, Heungdeok 1-Ro, Giheung-Gu, Yongin-Si, 16954, Gyeonggi-do, Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hyeon Jun Sin
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Liu Ziwei
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Heon Cheon Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-Dong, Yuseong-Gu, Daejeon, 34069, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea. .,Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, South Korea. .,Research Support Center (Core-Facility) for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
| |
Collapse
|
12
|
Li X, Bai Y, Dong Z, Xu C, Liu S, Yu H, Kong L, Li Q. Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101045. [PMID: 36470107 DOI: 10.1016/j.cbd.2022.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The European flat oyster (Ostrea edulis) is an endangered and economically important marine bivalve species that plays a critical role in the coastal ecosystem. Here, we report a high-quality chromosome-level genome assembly of O. edulis, generated using PacBio HiFi-CCS long reads and annotated with Nanopore full-length transcriptome. The O. edulis genome covers 946.06 Mb (scaffold N50 94.82 Mb) containing 34,495 protein-coding genes and a high proportion of repeat sequences (58.49 %). The reconstructed demographic histories show that O. edulis population might be shaped by breeding habit (embryo brooding) and historical climatic change. Comparative genomic analysis indicates that transposable elements may drive lineage-specific evolution in oysters. Notably, the O. edulis genome has a Hox gene cluster rearrangement that has never been reported in bivalves, making this species valuable for evolutionary studies of molluscan diversification. Moreover, genome expansion of O. edulis is probably central to its adaptation to filter-feeding and sessile lifestyles, as well as embryo brooding and pathogen resistance, in coastal ecosystems. This chromosome-level genome assembly provides new insights into the genome feature of oysters, and presents an important resource for genetic research, evolutionary studies, and biological conservation of O. edulis.
Collapse
Affiliation(s)
- Xinchun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yitian Bai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
13
|
Bu L, Lu L, Laidemitt MR, Zhang SM, Mutuku M, Mkoji G, Steinauer M, Loker ES. A genome sequence for Biomphalaria pfeifferi, the major vector snail for the human-infecting parasite Schistosoma mansoni. PLoS Negl Trop Dis 2023; 17:e0011208. [PMID: 36961841 PMCID: PMC10075465 DOI: 10.1371/journal.pntd.0011208] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/05/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin Mutuku
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gerald Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michelle Steinauer
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
| | - Eric S Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
14
|
Orlov IA, Ataev GL, Gourbal B, Tokmakova AS, Bobrovskaya AV, Prokhorova EE. The transcriptomic analysis of Planorbarius corneus hemocytes (Gastropoda) naturally infected with Bilharziella polonica (Schistosomatidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104607. [PMID: 36473549 DOI: 10.1016/j.dci.2022.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The study of molluscan innate immunity is essential for understanding the evolution of the immune system. An advance in the knowledge of their immune system can be achieved by increasing the number of model species. Our study focuses on the immunity of Planorbarius corneus, a pulmonate snail widely distributed in Eurasia. These snails are intermediate hosts of many trematodes, including Bilharziella polonica (Schistosomatidae). In this paper we obtained and analyzed transcriptomes of hemocytes of uninfected snails Planorbarius corneus and snails naturally infected with Bilharziella polonica. The transcriptomes were found to contain transcripts encoding all major groups of immune factors previously described for other gastropods. Pathogen-recognition molecules were the most diverse group of immune factors. Comparison of the transcriptomes of the infected and the uninfected molluscs showed that the expression of some genes changed during infection. Our results extend the knowledge of immune responses of pulmonate snails to trematode invasion and promote P. corneus as a new model for the study of molluscan defence reactions.
Collapse
Affiliation(s)
- I A Orlov
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - G L Ataev
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - B Gourbal
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - A S Tokmakova
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - A V Bobrovskaya
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - E E Prokhorova
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia.
| |
Collapse
|
15
|
Sun J, Wang L, Song L. The primitive complement system in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104565. [PMID: 36216083 DOI: 10.1016/j.dci.2022.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The complement system is an important immune defense mechanism that plays essential roles in both innate and adaptive immunity of vertebrates. Since complement components are identified in deuterostome and even primitive protostome species, the origin and evolution of complement system in invertebrates have been of great interest. Recently, research on the complement system in mollusc immunity has been increasing due to their importance in worldwide aquaculture, and their phylogenetic position. Complement components including C3, C1q domain containing protein (C1qDCP), C-type lectin (CTL), ficolin-like, mannose-binding lectin (MBL)-associated serine proteases like (MASPL), and factor B have been identified, suggesting the existence of complement system in molluscs. The lectin pathway has been outlined in molluscs, which is initiated by CTL with CCP domain and MASPL protein to generate C3 cleavage fragments. The molluscan C1qDCP exhibits the capability to bind human IgG, indicating the existence of possible C1qDCP-mediated activation pathway in molluscs. The activation of C3 regulates the expressions of immune effectors (cytokines and antibacterial peptides), mediates the haemocyte phagocytosis, and inhibits the bacterial growth. Some MACPF domain containing proteins may replace the missing terminal pathway in molluscs. This article provides a review of complement system in molluscs, including its components, activation mechanisms and functions in the immune response of molluscs.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
16
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
17
|
Li X, Yan X, Leng J, Wang W, Li Y, Yang C, Sun J, Wang L, Song L. CgCaspase-3 activates the translocation of CgGSDME in haemocytes of Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 131:757-765. [PMID: 36280129 DOI: 10.1016/j.fsi.2022.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Cysteinyl aspartate specific proteinase-3 (Caspase-3) is an important protein involved in the apoptosis and gasdermin E (GSDME)-mediated cell pyroptosis pathways in vertebrates. A Caspase-3 homologue (designated as CgCaspase-3) was previously identified as an immune receptor specific for lipopolysaccharide (LPS) to regulate apoptosis in the Pacific oyster Crassostrea gigas. In the present study, the binding activity of CgCaspase-3 to different pathogen associated molecular patterns (PAMPs) and its effects on CgGSDME translocation in haemocytes were further investigated in C. gigas. The mRNA expression of CgCaspase-3 could be detected in all the tested tissues, including hepatopancreas, labial palp, adductor muscle, gonad, gill, mantle and haemocytes, and it was highly expressed in labial palp, gonad, haemocytes, and adductor muscle. The mRNA expression of CgCaspase-3 in haemocytes increased significantly at 3, 24, 48 and 72 h after LPS stimulation, and it increased significantly at 6, 12, 24 and 48 h after Vibrio splendidus stimulation. The recombinant CgCaspase-3 displayed binding activity towards LPS, mannose (MAN), peptidoglycan (PGN), and polyinosinic-polycytidylic acid potassium salt (Poly (I:C)). The positive signals of CgGSDME on haemocyte membrane became stronger at 3 h after V. splendidus stimulation, compared with that of Seawater group, and the co-localization of CgCaspase-3 and CgGSDME was observed in the haemocyte membrane. After the injection of dsCgCaspase-3, the positive signals of CgGSDME on haemocyte membrane became weaker compared with that of EGFP-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgCaspase-3 was able to bind diverse PAMPs and activate the translocation of CgGSDME in haemocytes of oyster response against pathogen invasion.
Collapse
Affiliation(s)
- Xiaopeng Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
18
|
Zhu Y, Liao X, Han T, Chen JY, He C, Lu Z. Utilizing an artificial intelligence system to build the digital structural proteome of reef-building corals. Gigascience 2022; 11:giac117. [PMID: 36399057 PMCID: PMC9673494 DOI: 10.1093/gigascience/giac117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Reef-building corals play an important role in the marine ecosystem, and analyzing their proteomes from a structural perspective will exert positive effects on exploring their biology. Here we integrated mass spectrometry with newly published ColabFold to obtain digital structural proteomes of dominant reef-building corals. RESULTS Of the 8,382 homologous proteins in Acropora muricata, Montipora foliosa, and Pocillopora verrucosa identified, 8,166 received predicted structures after about 4,060 GPU hours of computation. The resulting dataset covers 83.6% of residues with a confident prediction, while 25.9% have very high confidence. CONCLUSIONS Our work provides insight-worthy predictions for coral research, confirms the reliability of ColabFold in practice, and is expected to be a reference case in the impending high-throughput era of structural proteomics.
Collapse
Affiliation(s)
- Yunchi Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, 210096, China
| | - J-Y Chen
- Nanjing Institute of Paleontology and Geology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
19
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
20
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Characterization of a C-Type Lectin Domain-Containing Protein with Antibacterial Activity from Pacific Abalone ( Haliotis discus hannai). Int J Mol Sci 2022; 23:ijms23020698. [PMID: 35054883 PMCID: PMC8775961 DOI: 10.3390/ijms23020698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve the productivity of the aquaculture industry. Previous research demonstrated that the differential expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame that consisted of 145 amino acids. The sequence showed a significant homology to other genes that encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages and from various tissues showed that the gene was first expressed at approximately 50 days after fertilization (shell length of 2.47 ± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host defense mechanism.
Collapse
|
22
|
Mollusc N-glycosylation: Structures, Functions and Perspectives. Biomolecules 2021; 11:biom11121820. [PMID: 34944464 PMCID: PMC8699351 DOI: 10.3390/biom11121820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Molluscs display a sophisticated N-glycan pattern on their proteins, which is, in terms of involved structural features, even more diverse than that of vertebrates. This review summarises the current knowledge of mollusc N-glycan structures, with a focus on the functional aspects of the corresponding glycoproteins. Furthermore, the potential of mollusc-derived biomolecules for medical applications is addressed, emphasising the importance of mollusc research.
Collapse
|
23
|
Grinchenko AV, von Kriegsheim A, Shved NA, Egorova AE, Ilyaskina DV, Karp TD, Goncharov NV, Petrova IY, Kumeiko VV. A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans. Mar Drugs 2021; 19:668. [PMID: 34940667 PMCID: PMC8706970 DOI: 10.3390/md19120668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman's degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein.
Collapse
Affiliation(s)
- Andrei V. Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Alex von Kriegsheim
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Nikita A. Shved
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Anna E. Egorova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Diana V. Ilyaskina
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Tatiana D. Karp
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Nikolay V. Goncharov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| | - Irina Y. Petrova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
| | - Vadim V. Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.V.G.); (N.A.S.); (N.V.G.); (I.Y.P.)
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.E.E.); (D.V.I.); (T.D.K.)
| |
Collapse
|
24
|
Laith AA, Ros-Amira MK, Sheikh HI, Effendy AWM, Najiah M. Histopathological and immunological changes in green mussel, Perna viridis, challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:169-179. [PMID: 34487829 DOI: 10.1016/j.fsi.2021.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Understanding of pathogenicity and immunity is crucial in producing disease-resistant cultured mollusk varieties. This study aimed to isolate pathogenic Vibrio alginolyticus from naturally infected Perna viridis, and to determine histopathological and immunological changes after challenge test with the same bacteria. Biochemical tests and 16S rDNA identified the pathogen as V. alginolyticus (99%). Antibiotic susceptibility test showed ampicillin resistance of the pathogen. Pathogenicity assay was conducted by immersing P. viridis in 1.5 × 106 CFU mL-1V. alginolyticus for 60 min and observed for 5 days. Clinical signs, histopathological and immunological alterations were observed and monitored. Infected groups showed 60% mortality and decreased immunity factors, including total hemocyte count and lysozymes activity. Histopathological examination revealed pathological lesions in the hepatopancreas at 24 h post-challenge and hemocyte proliferation as part of a severe inflammatory reaction. Karyomegaly in the hepatopancreas tissue, concomitant with necrosis demolition of tubules cells, was also observed. V. alginolyticus was determined to be pathogenic to P. viridis, causing mortality as a result of multiple organ lesions and dysfunction in digestive gland and immune organs. This study demonstrated the role of histopathological and immunological parameters as potential biomarkers in assessing vibriosis caused by Vibrio species in green mussel, P. viridis.
Collapse
Affiliation(s)
- A A Laith
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia.
| | - M K Ros-Amira
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - H I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - A W M Effendy
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| | - M Najiah
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia
| |
Collapse
|
25
|
Li J, Wang W, Zhao Q, Fan S, Li Y, Yuan P, Wang L, Song L. A haemocyte-expressed Methyltransf_FA domain containing protein (MFCP) exhibiting microbe binding activity in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104137. [PMID: 34023375 DOI: 10.1016/j.dci.2021.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The Methyltransf_FA domain is well-known as a key protein domain of enzyme synthesizing juvenile hormone, and Methyltransf_FA domain containing proteins (MFCPs) are widely existed in vertebrates and invertebrates. In the present study, a CgMFCP with a single Methyltransf_FA domain was screened from oyster Crassostrea gigas, and its open reading frame of CgMFCP was of 1128 bp, encoding a polypeptide of 376 amino acids with a signal peptide, a Methyltransf_FA domain and a transmembrane region. CgMFCP was clustered with FAMeTs from insecta and crustacea of arthropod. The mRNA transcripts of CgMFCP were detected in different tissues, with the extremely high expression level in haemocytes, which was 131.36-fold (p < 0.05) of that in gills. The expression level of CgMFCP protein was verified to be highly expressed in haemocytes. The expression level of CgMFCP mRNA in primarily cultured haemocytes significantly up-regulated at 3 h, 24 h and 48 h post LPS stimulation, which was 3.25-fold (p < 0.01), 2.04-fold (p < 0.05) and 3.59-fold (p < 0.01) compared to that in blank group. After the oysters were stimulated with Vibrio splendidus in vivo, the expression level of CgMFCP mRNA in haemocytes was also significantly up-regulated at 3 h, 12 h, and 24 h, which was 4.22-fold (p < 0.05), 4.39-fold (p < 0.05) and 6.35-fold (p < 0.01) of that in control group, respectively. By flow cytometry analysis, anti-rCgMFCP can label 95% of oyster haemocytes. And by fluorescence microscope analysis, CgMFCP was mainly distributed in cytomembrane of haemocytes. The recombinant CgMFCP (rCgMFCP) exhibited higher affinity towards MAN and LPS in a dose-dependent manner, while relatively lower affinity to PGN and poly (I:C). rCgMFCP also displayed binding activities towards Gram-negative bacteria (Vibrio anguillarum and V. splendidus), Gram-positive bacteria (Staphylococcu aureu) and fungi (Pichia pastoris). These results collectively indicated that CgMFCP specifically expressed in haemocytes and functioned as a pattern recognition receptor by binding to various microbes in oyster C. gigas, which provided insight into the function of Methyltransf_FA domain containing proteins.
Collapse
Affiliation(s)
- Jiaxin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Fan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
26
|
Mizgina TO, Chikalovets IV, Molchanova VI, Ziganshin RH, Chernikov OV. Identification and Characterization of a Novel Lectin from the Clam Glycymeris yessoensis and Its Functional Characterization under Microbial Stimulation and Environmental Stress. Mar Drugs 2021; 19:474. [PMID: 34564136 PMCID: PMC8466245 DOI: 10.3390/md19090474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Lectin from the bivalve Glycymeris yessoensis (GYL) was purified by affinity chromatography on porcine stomach mucin-Sepharose. GYL is a dimeric protein with a molecular mass of 36 kDa, as established by SDS-PAGE and MALDI-TOF analysis, consisting of 18 kDa subunits linked by a disulfide bridge. According to circular dichroism data, GYL is a β/α-protein with the predominance of β-structure. GYL preferentially agglutinates enzyme-treated rabbit erythrocytes and recognizes glycoproteins containing O-glycosidically linked glycans, such as porcine stomach mucin (PSM), fetuin, thyroglobulin, and ovalbumin. The amino acid sequences of five segments of GYL were acquired via mass spectrometry. The sequences have no homology with other known lectins. GYL is Ca2+-dependent and stable over a range above a pH of 8 and temperatures up to 20 °C for 30 min. GYL is a pattern recognition receptor, as it binds common pathogen-associated molecular patterns, such as peptidoglycan, LPS, β-1,3-glucan and mannan. GYL possesses a broad microbial-binding spectrum, including Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Vibrio proteolyticus), but not the fungus Candida albicans. Expression levels of GYL in the hemolymph were significantly upregulated after bacterial challenge by V. proteolyticus plus environmental stress (diesel fuel). Results indicate that GYL is probably a new member of the C-type lectin family, and may be involved in the immune response of G. yessoensis to bacterial attack.
Collapse
Affiliation(s)
- Tatyana O. Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (I.V.C.); (V.I.M.)
- School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Irina V. Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (I.V.C.); (V.I.M.)
- School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Valentina I. Molchanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (I.V.C.); (V.I.M.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (I.V.C.); (V.I.M.)
| |
Collapse
|
27
|
Liu Y, Wang W, Zhao Q, Yuan P, Li J, Song X, Liu Z, Ding D, Wang L, Song L. A DM9-containing protein from oyster Crassostrea gigas (CgDM9CP-3) mediating immune recognition and encapsulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103937. [PMID: 33242570 DOI: 10.1016/j.dci.2020.103937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
DM9 domain containing protein (DM9CP) is a recently identified pattern recognition molecules exiting in most organisms except plants. In the present study, a novel DM9-containing protein (CgDM9CP-3) was identified from Pacific oyster Crassostrea gigas with an open reading frame of 438 bp, encoding a polypeptide of 145 amino acids containing two tandem DM9 repeats. The deduced amino acid sequence of CgDM9CP-3 shared 52.4% and 58.6% identity with CgDM9CP-1 and CgDM9CP-2, respectively. The mRNA transcripts of CgDM9CP-3 were highest expressed in oyster gills and its protein was mainly distributed in cytomembrane of haemocytes. After the stimulations with Vibrio splendidus and mannose, the mRNA expression of CgDM9CP-3 in oyster gills was significantly up-regulated and reached the peak level at 12 h and 24 h (p < 0.05), which was 7.80-fold (p < 0.05) and 42.82-fold (p < 0.05) of that in the control group, respectively. The recombinant CgDM9CP-3 protein (rCgDM9CP-3) was able to bind LPS, PGN and d-Mannose, fungi Pichia pastoris and Yarrowia lipolytica, as well as gram-negative bacteria Escherichia coli, Vibrio anguillarum and V. splendidus in a Ca2+-dependent manner. Moreover, it could enhance the encapsulation of haemocytes and exhibited agglutination activity towards fungi P. pastoris and Y. lipolytica in vitro with Ca2+. These results suggested that CgDM9CP-3 not only acted as a PRR involved in the pathogen recognition, but also enhanced cellular encapsulation in oyster C. gigas.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiaxin Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dewen Ding
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
28
|
Jia Z, Jiang S, Wang M, Wang X, Liu Y, Lv Z, Song X, Li Y, Wang L, Song L. Identification of a Novel Pattern Recognition Receptor DM9 Domain Containing Protein 4 as a Marker for Pro-Hemocyte of Pacific Oyster Crassostrea gigas. Front Immunol 2021; 11:603270. [PMID: 33643289 PMCID: PMC7907646 DOI: 10.3389/fimmu.2020.603270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
DM9 refers to an uncharacterized protein domain that is originally discovered in Drosophila melanogaster. Two proteins with DM9 repeats have been recently identified from Pacific oyster Crassostrea gigas as mannose-specific binding pattern-recognition receptors (PRRs). In the present study, a novel member of DM9 domain containing protein (designated as CgDM9CP-4) was identified from C. gigas. CgDM9CP-4, about 16 kDa with only two tandem DM9 domains, was highly enriched in hemocytes and gill. The transcripts level of CgDM9CP-4 in circulating hemocytes were decreased after LPS, PGN and Vibrio splendidus stimulations. The recombinant protein of CgDM9CP-4 (rCgDM9CP-4) displayed a broad binding spectrum towards various pathogen-associated molecular patterns (PAMPs) (LPS, PGN, β-glucan and Mannose) and microorganisms (Staphylococcus aureus, Micrococcus luteus, V. splendidus, V. anguillarum, Escherichia coli, Pichia pastoris and Yarrowia lipolytica). CgDM9CP-4 was mostly expressed in gill and some of the hemocytes. Flow cytometry analysis demonstrated that the CgDM9CP-4-positive hemocytes accounted for 7.3% of the total hemocytes, and they were small in size and less in granularity. CgDM9CP-4 was highly expressed in non-phagocytes (~82% of total hemocytes). The reactive oxygen species (ROS) and the expression levels of cytokines in CgDM9CP-4-positive hemocytes were much lower than that in CgDM9CP-4-negative hemocytes. The mRNA expression level of CgDM9CP-4 in hemocytes was decreased after RNAi of hematopoietic-related factors (CgGATA, CgRunt, CgSCL, and CgNotch). In addition, CgDM9CP-4-positive cells were found to be much more abundant in hemocytes from gill than that from hemolymph, with most of them located in the gill filament. All these results suggested that CgDM9CP-4 was a novel member of PRR that expressed in undifferentiated pro-hemocytes to mediate immune recognition of pathogens.
Collapse
Affiliation(s)
- Zhihao Jia
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| |
Collapse
|
29
|
Araújo CAC, Pacheco JPF, Waniek PJ, Geraldo RB, Sibajev A, Dos Santos AL, Evangelho VGO, Dyson PJ, Azambuja P, Ratcliffe NA, Castro HC, Mello CB. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103823. [PMID: 32800901 DOI: 10.1016/j.dci.2020.103823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lectins are ubiquitous proteins involved in the immune defenses of different organisms and mainly responsible for non-self-recognition and agglutination reactions. This work describes molecular and biological characterization of a rhamnose-binding lectin (RBL) from Rhodnius prolixus, which possesses a 21 amino acid signal peptide and a mature protein of 34.6 kDa. The in-silico analysis of the primary and secondary structures of RpLec revealed a lectin domain fully conserved among previous insects studied. The three-dimensional homology model of RpLec was similar to other RBL-lectins. Docking predictions with the monosaccharides showed rhamnose and galactose-binding sites comparable to Latrophilin-1 and N-Acetylgalactosamine-binding in a different site. The effects of RpLec gene silencing on levels of infecting Trypanosoma cruzi Dm 28c and intestinal bacterial populations in the R. prolixus midgut were studied by injecting RpLec dsRNA into the R. prolixus hemocoel. Whereas T. cruzi numbers remained unchanged compared with the controls, numbers of bacteria increased significantly. The silencing also induced the up regulation of the R. prolixus defC (defensin) expression gene. These results with RpLec reveal the potential importance of this little studied molecule in the insect vector immune response and homeostasis of the gut bacterial microbiota.
Collapse
Affiliation(s)
- C A C Araújo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - J P F Pacheco
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Waniek
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - R B Geraldo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - A Sibajev
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Av. Cap. Enê Garcez 2413, Boa Vista, RR, CEP 69400-000, Brazil
| | - A L Dos Santos
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - V G O Evangelho
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - P Azambuja
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação, Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, CEP 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - N A Ratcliffe
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK
| | - H C Castro
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil.
| | - C B Mello
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Mizgina TO, Chikalovets IV, Molchanova VI, Kokoulin MS, Filshtein AP, Sidorin EV, Chernikov OV. Lectin of the Bivalve Glycymeris yessoensis as a Pattern Recognition Receptor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Sun J, Wang L, Yang W, Wang L, Fu Q, Song L. IgIT-Mediated Signaling Inhibits the Antimicrobial Immune Response in Oyster Hemocytes. THE JOURNAL OF IMMUNOLOGY 2020; 205:2402-2413. [PMID: 32989090 DOI: 10.4049/jimmunol.2000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
The long-term evolutionary interaction between the host and symbiotic microbes determines their cooperative relationship. It is well known that the symbiotic microbes have evolved various mechanisms to either benefit or exploit the mammalian host immune system to maintain homeostasis. However, the strategies employed by the symbiotic microbes to overcome host immune responses in invertebrates are still not clear. In the current study, the hemolymph microbes in oyster Crassostrea gigas were found to be able to directly bind an oyster Ig superfamily member (IgSF) (designated as CgIgIT) to inhibit the immune responses of hemocytes. The mRNA transcripts of CgIgIT in hemocytes increased significantly after the stimulation with hemolymph microbes. CgIgIT was found to be located on the hemocyte membrane and it was able to directly bind the hemolymph microbes and polysaccharides via its three Ig domains and recruited the protein tyrosine phosphatase CgSHP2 through its ITIM. The recruited CgSHP2 inhibited the activities of CgERK, CgP38 and CgJNK proteins to reduce the productions of dual oxidase 2 (CgDuox2) and defensin 2 (CgDef2), which eventually protected the hemolymph microbes from CgDuox2/CgDef2-mediated elimination. Collectively, the results suggest that the oyster IgIT-SHP2 signaling pathway can recognize bacteria capable of residing in oyster hemolymph and inhibit innate immune responses, which contributes to the maintenance, colonization, and survival of hemolymph microbes.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; and
| |
Collapse
|
32
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
33
|
Peng J, Li Q, Xu L, Wei P, He P, Zhang X, Zhang L, Guan J, Zhang X, Lin Y, Gui J, Chen X. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour 2020; 20:980-994. [PMID: 32198971 DOI: 10.1111/1755-0998.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Crassostrea hongkongensis is a popular and important native oyster species that is cultured mainly along the coast of the South China Sea. However, the absence of a reference genome has restricted genetic studies and the development of molecular breeding schemes for this species. Here, we combined PacBio and 10 × Genomics technologies to create a C. hongkongensis genome assembly, which has a size of 610 Mb, and is close to that estimated by flow cytometry (~650 Mb). Contig and scaffold N50 are 2.57 and 4.99 Mb, respectively, and BUSCO analysis indicates that 95.8% of metazoan conserved genes are completely represented. Using a high-density linkage map of its closest related species, C. gigas, a total of 521 Mb (85.4%) was anchored to 10 haploid chromosomes. Comparative genomic analyses with other molluscs reveal that several immune- or stress response-related genes extensively expanded in bivalves by tandem duplication, including C1q, Toll-like receptors and Hsp70, which are associated with their adaptation to filter-feeding and sessile lifestyles in shallow sea and/or deep-sea ecosystems. Through transcriptome sequencing, potential genes and pathways related to sex determination and gonad development were identified. The genome and transcriptome of C. hongkongensis provide valuable resources for future molecular studies, genetic improvement and genome-assisted breeding of oysters.
Collapse
Affiliation(s)
- Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiongzhen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| |
Collapse
|
34
|
Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, Palos-Ladeiro M. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep 2020; 10:6226. [PMID: 32277127 PMCID: PMC7148315 DOI: 10.1038/s41598-020-63321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France.
| |
Collapse
|
35
|
An Ancient BCR-like Signaling Promotes ICP Production and Hemocyte Phagocytosis in Oyster. iScience 2020; 23:100834. [PMID: 31982779 PMCID: PMC6994640 DOI: 10.1016/j.isci.2020.100834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BCR/TCR-based adaptive immune systems arise in the jawed vertebrates, and B cell receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. The existence of BCR-like molecule and the activation mechanism of the downstream response are still not clear in invertebrates. In this study, an ancient BCR-like molecule (designated as CgIgR) with an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail was identified from the Pacific oyster Crassostrea gigas to investigate its involvement in immune response. CgIgR could bind different bacteria through five extracellular Ig domains and formed dimers. The activated CgIgR recruited CgSyk to promote CgERK phosphorylation. The CgIgR-mediated signaling promoted the production of immunoglobulin domain-containing proteins (CgICP-2 and CgLRRIG-1) through inducing CgH3K4me2. The produced CgICPs eventually facilitated hemocytes to phagocytize and eliminate V. splendidus. This study proposed that there was an ancient BCR-like molecule and BCR-like signaling in molluscs. An ancient BCR-like molecule (defined as CgIgR) was identified from C. gigas We propose IgR-mediated signaling induces CgERK activity in oyster IgR-mediated signaling induced CgH3K4me2 to promote the production of CgICPs CgICPs facilitated the hemocytes to phagocytize and eliminate V. splendidus
Collapse
|
36
|
Wang G, Lei Y, Kang T, Li Z, Fei H, Zeng B, Zhou P, Wang C, Lv Z, Huang M, Xu X. Two C-type lectins (ReCTL-1, ReCTL-2) from Rimicaris exoculata display broad nonself recognition spectrum with novel carbohydrate binding specificity. FISH & SHELLFISH IMMUNOLOGY 2020; 96:152-160. [PMID: 31794843 DOI: 10.1016/j.fsi.2019.11.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
C-type lectins are Ca2+-dependent carbohydrate-binding proteins containing one or more carbohydrate-recognition domains (CRDs). C-type lectins play crucial roles in innate immunity, including nonself-recognition and pathogen elimination. In the present study, two C-type lectins (designated ReCTL-1 and ReCTL-2) were identified from the shrimp Rimicaris exoculata which dwells in deep-sea hydrothermal vents. The open reading frames of ReCTL-1 and ReCTL-2 encoded polypeptides of 171 and 166 amino acids respectively, which were both composed of a signal peptide and a single CRD. The key motifs determining the carbohydrate binding specificity of ReCTL-1 and ReCTL-2 were respectively Glu-Pro-Ala (EPA) and Gln-Pro-Asn (QPN), which were firstly discovered in R. exoculata. ReCTL-1 and ReCTL-2 displayed similar pathogen-associated molecular pattern (PAMP) binding features and they bound three PAMPs-β-glucan, lipopolysaccharide and peptidoglycan-with relatively high affinity. In addition, both could efficiently recognize and bind Gram-positive bacteria, Gram-negative bacteria and fungi. However, ReCTL-1 and ReCTL-2 exhibited different microbial agglutination activities: ReCTL-1 agglutinated Staphylococcus aureus and Saccharomyces cerevisiae, while ReCTL-2 agglutinated Micrococcus luteus, Vibrio parahaemolyticus and V. fluvialis. Both ReCTL-1 and ReCTL-2 inhibited the growth of V. fluvialis. All these results illustrated that ReCTL-1 and ReCTL-2 could function as important pattern-recognition receptors with broad nonself-recognition spectra and be involved in immune defense against invaders, but their specificities are not the same. In addition, the two ReCTLs possessed different carbohydrate binding specificities from each other and from the classical pattern: ReCTL-1 with an EPA motif bound d-galactose and l-mannose, while ReCTL-2 with a QPN motif bound d-fucose and N-acetylglucosamine.
Collapse
Affiliation(s)
- Gaoyang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yutong Lei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Boxin Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| |
Collapse
|
37
|
Wang N, Qin M, Chen X, Lu Y, Zhao X, Wu Y, Shi J, Li Y, Zhang R. Molecular cloning of complement component C3 gene from pearl mussel, Hyriopsis cumingii and analysis of the gene expression in response to tissue transplantation. FISH & SHELLFISH IMMUNOLOGY 2019; 94:288-293. [PMID: 31494277 DOI: 10.1016/j.fsi.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Complement component C3 is well recognized as the central mediator of complement system, whose activation is responsible for the immune surveillance and elimination of non-self-antigens. In this study, C3 gene (HcC3) from a pearl making mussel, Hyriopsis cumingii, was successfully identified. The putative HcC3 possessed the canonical domains and highly conserved functional residues of C3 family members. In phylogenetic analysis, HcC3 was also clustered into C3 subfamily and separated from α2 macroglobulin clade. HcC3 gene was constitutively expressed in a wide range of tissues of pearl mussels, among which the immune-related tissues like hemocytes got highest expression. After allograft surgery of mantle tissues for aquaculture pearl production, the gene expression of HcC3 exhibited a rapid upregulation on day 1, dropped back on day 3, peaked the value on day 7, and restored to the level similar to control samples on day 14 after mantle allograft. The biphasic expression within the two weeks post the surgery suggests the important roles for HcC3 in alloimmune responses and an intricate complement activation mechanism in mollusks during tissue allograft.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China.
| | - Mengting Qin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Xihua Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yang Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Xinxin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Yuhui Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Jie Shi
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Yitian Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Rui Zhang
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China.
| |
Collapse
|
38
|
Sun J, Wang L, Huang M, Li Y, Wang W, Song L. CgCLec-HTM–Mediated Signaling Pathway Regulates Lipopolysaccharide-Induced CgIL-17 and CgTNF Production in Oyster. THE JOURNAL OF IMMUNOLOGY 2019; 203:1845-1856. [DOI: 10.4049/jimmunol.1900238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/01/2019] [Indexed: 01/29/2023]
|
39
|
Di G, Li Y, Zhao X, Wang N, Fu J, Li M, Huang M, You W, Kong X, Ke C. Differential proteomic profiles and characterizations between hyalinocytes and granulocytes in ivory shell Babylonia areolata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:405-420. [PMID: 31212011 DOI: 10.1016/j.fsi.2019.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The haemocytes of the ivory shell, Babylonia areolata are classified by morphologic observation into the following types: hyalinocytes (H) and granulocytes (G). Haemocytes comprise diverse cell types with morphological and functional heterogene and play indispensable roles in immunological homeostasis of invertebrates. In the present study, two types of haemocytes were morphologically identified and separated as H and G by Percoll density gradient centrifugation. The differentially expressed proteins were investigated between H and G using mass spectrometry. The results showed that total quantitative proteins between H and G samples were 1644, the number of up-regulated proteins in G was 215, and the number of down-regulated proteins in G was 378. Among them, cathepsin, p38 MAPK, toll-interacting protein-like and beta-adrenergic receptor kinase 2-like were up-regulated in G; alpha-2-macroglobulin-like protein, C-type lectin, galectin-2-1, galectin-3, β-1,3-glucan-binding protein, ferritin, mega-hemocyanin, mucin-17-like, mucin-5AC-like and catalytic subunit of protein kinase A were down-regulated in G. The results showed that the most significantly enriched KEGG pathways were the pathways related to ribosome, phagosome, endocytosis, carbon metabolism, protein processing in endoplasmic reticulum and oxidative phosphorylation. For phagosome and endocytosis pathway, the number of down-regulation proteins in G was more than that of up-regulation proteins. For lysosome pathway, the number of up-regulation proteins in G was more than that of down-regulation proteins. These results suggested that two sub-population haemocytes perform the different immune functions in B. areolata.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Yanfei Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Ning Wang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Abstract
The Mycobacterium sp. BRS2A-AR2 is an endophyte of the mangrove plant Rhizophora racemosa G. Mey., which grows along the banks of the River Butre, in the Western Region of Ghana. Chemical profiling using 1H-NMR and HRESI-LC-MS of fermentation extracts produced by the strain led to the isolation of the new compound, α-d-Glucopyranosyl-(1→2)-[6-O-(l-tryptophanyl)-β-d–fructofuranoside] or simply tortomycoglycoside (1). Compound 1 is an aminoglycoside consisting of a tryptophan moiety esterified to a disaccharide made up of β-d-fructofuranose and α-d-glucopyranose sugars. The full structure of 1 was determined using UV, IR, 1D, 2D-NMR and HRESI-LC-MS data. When tested against Trypanosoma brucei subsp. brucei, the parasite responsible for Human African Trypanosomiasis in sub-Saharan Africa, 1 (IC50 11.25 µM) was just as effective as Coptis japonica (Thunb.) Makino. (IC50 8.20 µM). The extract of Coptis japonica (Thunb.) Makino. is routinely used as laboratory standard due to its powerful antitrypanosomal activity. It is possible that, compound 1 interferes with the normal uptake and metabolism of tryptophan in the T. brucei subsp. brucei parasite.
Collapse
|
41
|
Unno H, Itakura S, Higuchi S, Goda S, Yamaguchi K, Hatakeyama T. Novel Ca 2+ -independent carbohydrate recognition of the C-type lectins, SPL-1 and SPL-2, from the bivalve Saxidomus purpuratus. Protein Sci 2019; 28:766-778. [PMID: 30793424 PMCID: PMC6423708 DOI: 10.1002/pro.3592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Novel Ca2+ -independent C-type lectins, SPL-1 and SPL-2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL-2 composed of two B-chains) or distinct (SPL-1 composed of A- and B-chains) polypeptide chains, and show affinity for N-acetylglucosamine (GlcNAc)- and N-acetylgalactosamine (GalNAc)-containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C-type lectin family. X-ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate-recognition domain (CRD) of the C-type lectin family. Nevertheless, these lectins (especially SPL-2) showed Ca2+ -independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL-2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate-recognition motifs among the C-type CRD (the QPD [Gln-Pro-Asp] and EPN [Glu-Pro-Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate-binding specificities of individual A- and B-chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α-glycosidic linkages with slightly different specificities.
Collapse
Affiliation(s)
- Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of EngineeringNagasaki UniversityNagasaki 852‐8521Japan
| | - Shuhei Itakura
- Biomolecular Chemistry Laboratory, Graduate School of EngineeringNagasaki UniversityNagasaki 852‐8521Japan
| | - Shuhei Higuchi
- Biomolecular Chemistry Laboratory, Graduate School of EngineeringNagasaki UniversityNagasaki 852‐8521Japan
| | - Shuichiro Goda
- Biomolecular Chemistry Laboratory, Graduate School of EngineeringNagasaki UniversityNagasaki 852‐8521Japan
| | - Kenichi Yamaguchi
- Division of Biochemistry, Faculty of FisheriesNagasaki UniversityNagasaki 852‐8521Japan
| | - Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of EngineeringNagasaki UniversityNagasaki 852‐8521Japan
| |
Collapse
|
42
|
Patnaik BB, Chung JM, Hwang HJ, Sang MK, Park JE, Min HR, Cho HC, Dewangan N, Baliarsingh S, Kang SW, Park SY, Jo YH, Park HS, Kim WJ, Han YS, Lee JS, Lee YS. Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction. BMC Genomics 2019; 20:154. [PMID: 30808280 PMCID: PMC6390351 DOI: 10.1186/s12864-019-5526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hee Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hang Chul Cho
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Neha Dewangan
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Snigdha Baliarsingh
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Se Won Kang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Change Research Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Yong Hun Jo
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Republic of Korea
| | - Wan Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Basic Science, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea.
| |
Collapse
|
43
|
Zong Y, Liu Z, Wu Z, Han Z, Wang L, Song L. A novel globular C1q domain containing protein (C1qDC-7) from Crassostrea gigas acts as pattern recognition receptor with broad recognition spectrum. FISH & SHELLFISH IMMUNOLOGY 2019; 84:920-926. [PMID: 30385248 DOI: 10.1016/j.fsi.2018.10.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
The globular C1q domain containing (C1qDC) proteins are a family of versatile pattern recognition receptors (PRRs) to bind various ligands by their globular C1q (gC1q) domain. In the present study, a novel globular C1qDC (CgC1qDC-7) was characterized from Pacific oyster Crassostrea gigas. The open reading frame of CgC1qDC-7 was of 555 bp, encoding a polypeptide of 185 amino acids. Phylogenetic analysis indicated that CgC1qDC-7 shared high homology with C1qDCs from Crassostrea virginica, Mytilus galloprovincialis, and Mizuhopecten yessoensis. The mRNA transcripts of CgC1qDC-7 were widely expressed in all the tested tissues including mantle, gonad, gills, adductor muscle, hemocytes, hepatopancreas and labial palps, with the highest expression level in hemocytes and gills. The recombinant protein of CgC1qDC-7 (rCgC1qDC-7) exhibited binding activity towards Gram-negative bacteria (Vibrio splendidus, V. anguillarum, Escherichia coli, V. alginolyticus, and Aeromonas hydrophila), Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and fungi (Pichia pastoris and Yarrowia lipolytica), and displayed strongest binding affinity towards Gram-negative bacteria V. splendidus and V. anguillarum. It also exhibited affinity to vital pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PGN), mannan (MAN) and Poly (I:C) with high affinity towards LPS and PGN, and low affinity to MAN and Poly (I:C). These results collectively indicated that CgC1qDC-7 was a novel PRR in C. gigas with high binding affinity towards LPS and PGN as well as Gram-negative bacteria.
Collapse
Affiliation(s)
- Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaojun Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
44
|
Shen Y, Shao Y, Cui Y, Zhao X, Zhang W, Li C. Novel C-type lectin from razor clam Sinonovacula constricta agglutinates bacteria and erythrocytes in a Ca 2+-dependent manner. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:9-16. [PMID: 29723812 DOI: 10.1016/j.dci.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Among its other physiological roles, C-type lectins functioned as pattern recognition receptors (PRR) in innate immunity received much attention. In the present study, a novel C-type lectin was identified and characterized from the invertebrate razor clam Sinonovacula constrict and designated as ScCTL. The complete cDNA sequence of ScCTL was 828 bp in length and coded a secreted polypeptide of 158 amino acids with a typical CRD domain. Multiple sequence alignments combined with phylogenetic analysis both collectively confirmed that ScCTL was a novel member belong to lectin family. Spatial expression distribution analysis revealed that ScCTL was extensively expressed in all of the examined tissues, and the highest expression was detected in the hepatopancreas. After 1 × 107 CFU/mL Vibrio parahaemolyticus challenge by immersion infection, the ScCTL transcript in hepatopancreas and gill were markedly upregulated and arrived the maximum levels at 24 or 12 h after challenge, respectively. Recombinant ScCTL could agglutinate not only all tested bacteria but sheep and mouse erythrocyte in the presence of Ca2+. All of our studies suggested that ScCTL performed important roles in protecting cells from pathogenic infection in S. constrict.
Collapse
Affiliation(s)
- Yaoyao Shen
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yi Cui
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|